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 DISCRETE EVENT DYNAMIC PROGRAMMING WITH
 SIMULTANEOUS EVENTS*t

 PIERRE L'ECUYER* AND ALAIN HAURIE?

 This paper deals with an infinite-horizon discrete-event dynamic programming model with
 discounting, and with Borel state and action spaces. Instead of the usual n-stage contraction
 assumption [4], uniform over all admissible state-action pairs, we propose milder conditions,
 sufficient for regularity, and allowing any number of simultaneous events. This model permits
 one to treat properly a number of problems typically associated with continuous-time
 maintenance models [5, 6, 11, 12].

 The main results concern the uniform convergence of the dynamic programming (DP)
 procedure to the optimal cost-to-go function, the existence of an E-optimal policy for any
 e > 0, and a set of sufficient conditions for the convergence of the DP procedure to an optimal
 policy.

 1. Introduction. The aim of this paper is to extend the classical results of
 discounted infinite horizon dynamic programming to situations where a sequence of
 actions could be taken simultaneously. This class of problems stems from the modeling
 of continuous-time maintenance or replacement systems. For such models, there is no
 natural way to postulate the usual (strong) contraction hypothesis in the Denardo
 operator formalism as in [1, 2, 4, 7, 8, 14, 17, 18, 21]. The main point of this paper is to
 show that this class of models still admits of analysis via the contraction mapping
 approach, under a much weaker assumption called the local contraction hypothesis.

 [6, 11, 12] give a motivation for the theory developed in the present paper. They deal
 with deteriorating systems which can be inspected, repaired, replaced, overhauled, etc.
 An event is defined as the undertaking of one of these maintenance actions. If the
 system is modeled in a continuous-time setting, there is no mathematical reason for
 eliminating the possibility of simultaneous events or for bounding away from zero the
 (expected) time delay between pairs of successive events. In such circumstance, the
 one-stage (expected) discount factor is not bounded away from one and the usual
 contraction assumption is obviously violated. However, for these systems, even if
 simultaneous events are allowed, it is economically unattractive to use a strategy which
 would generate too large a number of simultaneous (or almost simultaneous) events.
 Hence the idea of the local contraction hypothesis: formulate realistic assumptions on
 the one-stage cost function and on the class of admissible strategies such that, without
 preventing the occurrence of simultaneous events, it eliminates as candidates for
 optimality those strategies which would generate too many events in a short period of
 time.
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 DISCRETE EVENT DYNAMIC PROGRAMMING

 Another difficulty in the mathematical analysis of continuous-time optimal mainte-
 nance problems stems from the fact that the state is continuous (e.g. includes the ages
 of the components), therefore the measurability issue has to be addressed. Bertsekas
 and Shreve [1, 19] have proposed a nice mathematical framework for the study of
 Discrete-Event Dynamic Programming (DEDP) models, with Borel state and action
 spaces, and a constant one-stage discount factor. Here, we extend their formalism to a
 larger class of models. This setting encompasses the classical models of semi-Markov
 and Markov Renewal Decision Process (MRDP) with discounting [4, 9, 10, 14]. Related
 models have been studied by Schil [16, 18] and Whittle [22], but in a different
 mathematical framework and under different sets of assumptions.

 The paper is organized as follows. In ?2, we focus on the local contraction
 hypothesis and its relationship with the contraction mapping approach in Dynamic
 Programming. In order to eliminate unnecessary complexities in this section, we
 formulate the problem as if the state space were countable, putting aside temporarily
 the delicate measurability issues. In ?3 we give the more general version of the model
 with Borel state and action spaces. In ?4 we prove that an adaptation of the
 contraction mapping approach can be used to obtain the basic results of Dynamic
 Programming for our model. ?5 deals with sufficient conditions for the existence of an
 optimal policy.

 2. The local contraction hypothesis. Consider a Discrete Event Dynamic Program-
 ming (DEDP) model with state space X and action space A. Each state x in X has a
 nonempty set of admissible actions A(x). At each of an infinite sequence of stages
 (events), the decision maker observes the state x and selects an action a from A(x). A
 cost g(x, a) is incurred for the current stage and the next state x' is generated
 randomly according to a probability measure Q(. x, a) over X. A new action a' is
 selected from A(x'), and so on. All costs incurred in state x are discounted to a given
 point of reference by a state-dependent discount factor P(x), 0 < P(x) < 1. Each
 Q( lx, a) is assumed to be concentrated on the set of states x' for which ,/(x') < P,(x).
 The expected one-stage discount factor associated with state x and action a in A(x) is

 a(x, a) = f(x) f(x')Q(dx'x, a)

 and satisfies 0 < a(x, a) < 1.
 Let us assume for the moment that X is countable. The policy space is then the set

 of all functions ,u: X -> A such that /u(x) E A(x) for all x E X.
 Let B be the set of all extended real-valued functions V: X - [- oo, oo], endowed

 with the supremum norm IlVl = sup x,xlV(x)l, and Bo be the Banach space of all
 bounded functions in B. An operator 4 mapping a closed subset of Bo into itself is
 said to be contracting with factor a if a < 1 and |I|(V2) - ~(V1)lI < alV2 - VIll for
 all V1 and V2 in that subset.

 Defined below are three standard dynamic programming operators. For V E B,
 x E X and a E A(x), let (when the integral exists):

 H(V)(x, a) = g(x, a) + / x (x)')Q(dx'x, a), (1)

 T(V)(x) = inf H(V)(x, a). (2)
 aFA(x)

 For every policy it, let

 T,(V)(x) = H(V)(x, (x)).

 153
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 It is easily seen that the operators T and T, are monotone; that is, if V1 < V2, then
 T(V1) < T(V2) and T,(V1) < T,1(V2). Without further conditions, however, we cannot
 be certain that T or T, are contracting operators on Bo (or on one of its proper
 subsets).

 The usual assumptions on DEDP models that admits of analysis via contraction
 mappings [4, 9, 10, 13] include the uniform boundedness of the cost function g and the
 uniform boundedness, away from one, of the one-stage discounting function a. These
 assumptions imply that T and each T, are contracting operators.

 In this paper, we propose a model for which these strong contraction assumptions
 are replaced by milder conditions, allowing any number of events during any time
 period. First, it calls for the existence of one policy F for which T, is contracting.
 Other conditions make economically unattractive those strategies under which the
 n-stage discount factor does not converge to zero almost surely as n goes to infinity.

 A policy ,t is called distinguished if there exist three constants 8S < 1, go and g,
 such that for all x in X:

 a(x, IL(x)) 8< ,, (4)

 go0 g(X, ,U(x)) < g8. (5)

 If u is distinguished, then T, is contracting on Bo with factor 81. The DEDP model is
 called locally contracting if there exist a distinguished policy j and two constants K,
 and K2 such that

 K1 + K2 > 0 (6)

 and for all x E X and a E A(x),

 K, + K2a(x, a) < g(x, a). (7)

 If K1 > 0, then by (6) and (7), the cost is always nonnegative. The cost function can
 take positive and negative values if K1 < 0 and K2 > - K1 > 0. Conditions (6) and (7)
 mean that a positive cost will be incurred if the expected discount factor is close to
 one. Due to these conditions, a high cost will be associated with any strategy that tends
 to generate too many simultaneous (or almost simultaneous) events. Condition (4)
 ensures that it is possible for the decision maker to use a policy under which the
 expected discount factor between any two successive stages is no larger than 81 < 1. It
 does not imply, however, that an optimal strategy has this property.
 In a locally contracting DEDP, it need not be the case that for every policy y there

 exists an integer n such that Tn, the n-fold composition of T,, is contracting. T is not
 necessarily contracting either, but the key to our analysis will be to show that there is a
 closed subset of Bo and an integer no such that T" is contracting on that subset for all
 n > n0. From this n-stage contraction property, the Dynamic Programming approach
 winds out. The mathematical proof of this property will be given in the forthcoming
 sections for a DEDP model defined in a more general setting.

 3. The general DEDP model. Let X and A be two Borel spaces called the state
 space and action space respectively. The constraint set F is an analytic subset of X X A
 such that for each x e X, the slice A(x) = {a E AJ(x, a) E rF is nonempty. A(x) is
 the set of admissible actions in state x. The cost function g: r -, (- 0o, 0) is a lower
 semianalytic function; the discount function f/: X -o (0,1] is Borel-measurable; and the
 transition kernel Q is a Borel measurable stochastic kernel on X given X x A.
 For a definition of the measurability concepts used in this and forthcoming sections,

 we refer to [1].
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 A policy ut is a universally measurable stochastic kernel on A given X such that
 /p(A(x)lx) = 1 for all x in X. Let U denote the set of policies. When i(' Ix) is
 degenerate for each x, the policy is called nonrandomized (NR) and can be viewed as a
 universally measurable function ,u: X -* A.

 A (Markov) strategy is a sequence 7r = (juo, Ail, . ., , -.. ) such that each /n is a
 policy. It is NR if each In is NR and it is called stage-stationary (SS) if all lln are
 identical (= j). In the latter case, we also use the symbol ,u to represent the SS
 strategy. In this paper, we consider only Markov strategies. It can be easily shown, by a
 direct adaptation of the proofs given in [21] and Proposition 8.1 of [1], that for any
 non-Markov strategy (where each Jn may be conditioned on all the previous history of
 the process) and each initial state x, there exists a Markov strategy which is at least as
 good.

 To each initial state x E X and strategy 7r = (/,O, Al,..., , . . . ) there corresponds
 a probability measure P,,, on the set of all infinite sequences h = (x0, ao, xl, al,...)
 in H = r x r x ..., with corresponding mathematical expectation E x,, and such
 that

 P,,x(x = x) = 1, (8)

 P,,x( IXo, ao,.**, x,) = n(' Ix,n), (9)

 Pr, x(' Ix, ao .., Xn, a) = Q( Ix,, an), (10)

 where the dots in (9) and (10) denote the appartenance of an to a Borel subset of A
 and of x,+l to a Borel subset of X respectively (see [1, 13]). The variables x, and an
 denote the state and action at stage n respectively. We also define

 /p(xn)
 Pn 2(X )' (11) P(Xo)'

 which is the n-stage discount factor between stage 0 and stage n, and

 Cn = fPng(Xn, an) (12)

 the cost for stage n discounted to the initial stage.
 The structure (X, A, F, g, P, Q) is said to define a regular DEDP model if the

 following condition is satisfied:

 Condition 1. For each state x and strategy Ir, C = E_ocn is well defined P,, x-almost
 everywhere and E, x(C) is well defined (i.e. takes a value in the interval [- o, oo]).
 Given a regular DEDP model, a strategy ST and an initial state xo = x, define

 V,(x) = E, x(C) (13)

 and let

 V*(x)= inf V(x) (14)

 where II is the set of all strategies. Functions V, and V, represent respectively the total
 expected discounted cost associated with strategy Xr and the optimal total expected
 discounted cost. When Xr is SS, we write P,x, E, x and V, instead of P, x, E, x
 and V,.

 We say that strategy ri is optimal at x if V,(x)= V*(x), and c-optimal at x, for
 c > 0, if V,(x) < V*(x) + e. If XT is optimal (resp. E-optimal) at x for every x in X, it
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 is called optimal (e-optimal). Similar definitions hold for policies (regarded as SS
 strategies).

 The operator T is defined over Bo as in (1)-(2) and the operator T, is defined, for
 each policy / viewed as a mapping that assigns to each state x a probability measure
 u(' Ix) over A(x), by

 T,(V)(x) = H(V)(x, a)(dalx).
 (x)

 Let B, be the space of all universally measurable functions in B, and B1 be the
 space of all functions in Bu which are lower semianalytic (B is defined in ?2). As in
 [1, p. 26], we adopt the convention that oo - oo = oo and 0 ? oo = 0, so the sum and
 product of any two extended real numbers is well defined. In this way for each V in
 B,, the expressions (1)-(3) are well defined. T, and T are the usual dynamic program-
 ming operators. From Proposition 7.46 in [1], T, maps Bu into Bu and can be
 composed. T does not map B, into Bu but from Propositions 7.45 and 7.50 in [1], it
 maps B1 into B1. Let Tn and Tn denote respectively the n-fold compositions of T, on
 Bu and of T on B1.

 The next lemma shows that if the structure (X, A, r, g, a, Q) corresponds to a
 locally contracting DEDP, then Condition 1 is satisfied and we have a regular DEDP
 model.

 LEMMA 1. If there exist a distinguished policy f E U and two constants K1 and K2
 that satisfy (6)-(7), then Condition 1 is satisfied and for each rT in II,

 00

 V,(x) = E,=,x(C) = Ev,x(cn) (15)
 n=O

 PROOF. For a given sequence h in H and a fixed positive integer n, we have from
 (7):

 n n 1

 E ci = ig-(xi, ai) < fimax(O, -K1 - K,a(xi, a,))
 i=O i=O i=O

 where c-= max(-ci,0) and g-(.) = max(-g(-),0). Define the set of integers ( =
 (ilO < i < n and -K1 - K2a(x,, ai) > O}. Let v be the cardinality of (F, let
 5(1),..., {(v) be the elements of (I ranked by increasing order and define {(v + 1) =
 n + 1. If K1 > O then, by (6), ( is empty and Eo?ci = 0. If K1 < 0 then K2 > 0 and

 n v

 E,,x E C- < E,, E (-)(-K1-K2a(xi(j), a,j)))
 _i=O _ j=1

 E= , x1 E (-K,(1j) - K2(j)+l)
 j=l

 < E,T, x (-Klf(j) - K23(j+1))
 j=1

 < E,x -K, - K2In+l - (K1 + K2) /(j)
 j=2

 < -K1.
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 In either case, Eloc- converges almost surely and (15) follows from the monotone
 convergence theorem. u

 4. Contraction properties. In this section, we consider a locally contracting DEDP
 model(X, A, F, g, /, Q) where ji E U, 81 < 1, go, gl > 0, K1 and K2 satisfy (4)-(7).
 Such a model allows for situations where for no n, the operator T~, is contracting for
 every A. However, we will find a closed subset B2 of Bo n B1 (Bo and B1 are defined
 in ??2 and 3 respectively) and a real number q such that for every integer n > q, T is
 an n-stage contraction mapping on B2 (i.e. B2 is closed under T and T" is contracting
 on B2).

 Define

 B2 = (VE BlK1 + min(0, K2) < < 1 8 (16)

 which is a closed subset of the Banach space B0.

 LEMMA 2. B2 is closed under T.

 PROOF. Let V E B2. From Lemma 7.30 and Propositions 7.47 and 7.48 in [1], T(V)
 is in B1. For every x in X,

 T()(x) TV)(x) < g, + a(x, (x))( 1 ) < 1

 On the other hand, since K1 + K2 > 0,

 T(V)(x) > inf [K1 + K2a(x, a) + a(x, a)(K1 + min(0, K2))]
 aeA(x)

 > K1 + min(0, K2).

 Therefore T(V) is in B2. ?
 The next lemma states that T" is contracting on B2 if n is large enough. T,n might

 also be contracting for some ,u, but only under additional assumptions. Part (b) will be
 used in the proof of proposition 4.

 LEMMA 3. Let a1 E (0,1) and

 g/(l - 8 - K1 - min(0, K2)
 (K + K2) (17)

 (a) For any integer n > q, Tn is contracting with factor a1.
 (b) Let it E U, E > 0 and n1 an integer such that n1 > 1 + E/((K1 + K2)al) and

 T"n(Kl + min(0, K2)) < g1/(1 - 61) + E. Then, for any n > nl, T," is contracting on
 Bo n B1 with factor a1.

 PROOF. Let V1 and V2 in B2, El > 0 and n > 7. By Proposition 7.50 in [1], there is
 a sequence j,o, 1, *- of nonrandomized policies such that

 T,(T- <(V))< T(T"n--(V )) +

 for i = 0,..., n - 1. Using induction on n, one easily sees that

 To T *(V) STm T"(Vl) T+ 1 + (18)
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 Setting Ui =-I n- 1 for i > n and 7T = (0, -,n-1, n,'), we have

 T,o ..._ T_ (VI)( )

 n-l

 = Eq,x Ci, + fnVl(Xn)
 i=O

 n-l

 > E,,x Klfo + K2a, + (K1 + K2) + (Kl + min(0, K2))i,
 i=i

 > K1 + min(0, K2) + n(Kl + K2)E, x(I3). (19)

 From (17-19), we obtain

 g (/(l - 81) + ,l - K1 - min(O, K2) +
 E,T,x (n3fl)n(K1 + K2) n(KI + K2)

 and

 T(V2) - T() - To u Tn_(V2)(X) -To ... T,n _(V)(X) + '1

 < 11V2 - VIllE,1,x(fln) + El

 < iV2- Villa1 + (1 +K2) )1 n(Kl + K2) L1'

 Letting cE -" 0 and since V1 and V2 can be interchanged, (a) follows.
 Under the assumptions of (b), we have

 T n(Kl + min(0, K2)) > K1 + min(0, K2) + n(Kl + K2)E,x(fi,nl)

 and then

 x nl nl(K1 + K2)

 from which we obtain that for any V1 and V2 in Bo n B1,

 Tn (V2) - Ti'(V1) < 1 V2: - v11 a1.

 Since we can interchange V1 and V2 and since

 Tfn(V2)- T1n(V1)= Tn-nl(Trnl(V2)- T~nl(V1))< ?lT n T(V2)- Tnl (Vw )lI

 for all n > nl, this completes the proof. a
 From the two previous lemmas and the fixed point theorem for contraction map-

 pings [1, 4], there is a unique fixed point l,' in B2 such that T(V*,)= V and
 limn .,JolT"(V) - *11 = 0 for all V in B2. Thus, the DP algorithm converges to this
 V* and it remains to prove that V, = V,. This is done in the following proposition.
 Related results appear in [1, 2, 4, 8, 16, 18, 19, 22] for other DP models.
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 PROPOSITION 4. For any V in B2, we have:
 (a) T(V) = V if and only if V = V,;
 (b) T(V) < V implies V, < V;
 (c) T(V) > V implies V* > V;
 (d) limn _ iTn-(V) - , = 0;
 (e) V, is in B2;
 (f) A policy la is optimal if and only if Tl(V*) = V,;
 (g) A policy t? is optimal if and only if T(Vp) = V, and V E B2.

 The proof needs the two following lemmas.

 LEMMA 5. If there exists P > 0 such that

 def (
 p = P, limsupA, >f i > 0 (20)

 . ---X oo

 then ,,(x) = oo.

 PROOF. We have in that case

 n n

 E, x E ci > E,x flO + K2a(Xn, an) + (K1 + K2) i
 .i-O _ i=1

 > (K1 + min(0, K2)) + n(Kl + K2)/p

 and from (15), V,(x) = oo. U

 LEMMA 6. Let t, a1, E and n1 satisfy the assumptions of Lemma 3(b). Then

 (a) T,(V,)= VP;
 (b) limn,, JolT(V) - v1 = 0 for all V in B2.

 PROOF. The idea of the proof is to find a closed subset of B, on which the
 operators Tn, T,'+'1,..., T,2" are closed, and then to apply the fixed point theorem.
 Let Ko = K1 + min(0, K2). From (7), g > Ko. From the assumptions and from (1),
 (3), we have

 g(x, t(x)) - nlIKol < Tn(Ko)(x) < -1 +

 and then

 g(x, /(x)) < 1 -^ + + njlKo (21)

 for all x in X. Call g2 the r.h.s. of (21). Let K3 = (2n1g2 + (1 + al)l Kol)/(1 - a1)
 and B3 = {FV B1iKQo < V< K3}, which includes B2. Let V be in B3 and n an
 integer such that n1 < n < 2n1. We have T7(V) > T,(Ko) > Tn(Ko) > Ko. From
 (1), (3), (21) and Lemma 3(b), we also have

 T7(v)--= T(Ko) + Tf(V)- T- (Ko)

 < 2nlg2 + IKl + aIllV - KOlI

 < 2nlg2 + (1 + al)IKoi + alIK3a

 =K3.
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 Thus, B3 is closed under T,. From the fixed point theorem, there is a unique V in B3
 such that T,(V) = n and limko,llTITn(V) - Vin = 0 for all V in B3. These V are
 clearly identical for all n between nI and 2nl, since for n < ni < nj < 2nl, we have

 lim ITkn i(V) - ;|n| = 0 k-+oo

 ~ def

 for both n = ni and n = ni. Let V, = V1. We thus have

 lim IITn(V) - V,_, = 0
 n -- oo

 for all V in B3. Furthermore the following holds:

 V=-Tnl " l() = T,(f ^)) = T,
 Now it only remains to show that V = V,.

 For any V in B3 and x in X, we have

 n

 V,(x) = lim Ilim (V(x)= lim , E ci + 3,V(xn)
 n-* oo n-*oo i=O

 = ,(x) + lim E, x[InV(Xn)].
 n- oo0

 Since V and V are bounded, V is bounded and from Lemma 5 the latter limit equals
 zero. This completes the proof. *
 PROOF OF PROPOSITION 4. To prove (a), (d) and (e), it suffices to show that

 V* = V*. For any strategy Xr = (0,, . . . ) E I, V e B2 and x E X, we have from
 Lemmas 1 and 5:

 V(x) = lim [T *. T, l(V)(x) - E,x(n)( )]
 n - 00

 > m [T,o... T"-(V)(x)]
 n - oo

 > lim Tn(V)(x)= V*(x) (22)
 n -- o

 and therefore

 V*(x) = inf V,(x) > V(x).
 7Ten

 To verify the reverse inequality, choose a1 E (0,1), E > 0 and an integer n1 > *q +
 E/((K1 + K2)al). For any E1 E (0, E), from Proposition 7.50 in [1], there exists a
 nonrandomized policy IL such that T,(V*) < T(V*) + El/nl. Since T(V*) = V*, we
 obtain

 El,(

 T,2(J) ~< VT + +

 nn
 Tnl() < r(V) + ) < V( + -
 ^*u T(i<"V*1 +
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 and by the monotonicity of T,,

 T,'(Kl + min(O, K2)) < Tnl(*,) < f, + E1 < 1 g1 + E

 From Lemma 3(b), we then obtain:

 T2nl(fl) < Tn,l(* + E1) < Tr"(f) + a1ll < + E1 + alE1

 Tinl(J) < T (i-1)nj(J + E1) ** < + E a
 j=1

 and from Lemma 6,

 V < J = lim Tl(V ) < V + V+ E1
 i- -- 00

 Letting E1 -, 0, we obtain the proof of (a), (d) and (e). Properties (b) and (c) are direct
 consequences of (d) and the monotonicity of T. It remains to verify (f) and (g).

 If ju is an optimal policy, then V = V* e B2 and the conditions of Lemma 6 are
 satisfied for ,u with c = 0. Therefore, T,(V,) = V. or, equivalently, T,(V*) = V. If
 T,(V*) = V, then using again Lemma 6, we have

 V, = lim T;(V* ) = V = T =T(V) B2.
 n -0oo

 If T(Vg) = V1 E B2 then from (a), V. = V* and /L is optimal. ?

 5. Existence of optimal policies. We now have optimality conditions, but no
 guarantee that an optimal policy or strategy exists (see [2]). Sufficient conditions for the
 existence of an optimal nonrandomized policy are given below. Related results appear
 in [1, 19].

 PROPOSITION 7. (a) For any e > O, there exists a nonrandomized C-optimal policy.
 (b) There exists an optimal nonrandomized policy if and only if for any x in X, the

 infimum infa A(x)H(V*)(x, a) is attained.
 (c) If for any x in X there exists a strategy optimal at x, then there exists an optimal

 nonrandomized policy.
 (d) Let V E B2. If there is a nonnegative integer no such that for every integer n > no,

 real number X and state x E X, the set U,(V)(x, X) = (a E A(x)IH(Tn(V))(x, a) <
 }) is compact, then there is a sequence ,o, ,I1, JL2, ... of nonrandomized policies such
 that T (T"(V)) = T"+l(V) for all n > no, and a nonrandomized policy iL such that for
 all x in X, pu(x) is an accumulation point of the sequence !O(x), ili(x), 2(X),.... This
 policy is optimal.

 PROOF. (a) Such a policy has been constructed in the proof of Proposition 4(a).
 (b) From Proposition 7.50 in [1], the infimum is attained if and only if there is a

 nonrandom ju E U such that T,(V*) = T(V*) = V, and from Proposition 4(f), this is
 true if and only if ,u is optimal.
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 (c) Let x E X and strategy rT = ( 0 1,, . . . ) optimal at x. From equation (22) and
 the monotone convergence theorem, we have

 V*(x) = V(x) > lim T o ... T (V*)(x)= T, lim T ... T,L(V*))(x)

 > T, lim Tn(V ))( ) = T,o(V,)(x) > T(V*)(x)= V*(x).

 Therefore, V*(x) = T(o(V*)(x), the infimum inf aA(xH(V*)(x, a) is attained and the
 conclusion follows from (a).

 (d) Let n > no and x e X. Let X0 > X1 > ... be a real nonincreasing sequence
 that converges to T"+l(V)(x). For each integer i > 0, U,(V)(x, X) is compact,
 nonempty and U,(V)(x, Xi,,) c Un(V)(x, hi). Then n_,oun(V)(x, Ai) is a compact
 nonempty set and infa A(X)H(T"(V))(x, a) is attained for every point in that set. By
 Proposition 7.50 in [1], for every n > no, there exists a nonrandomized policy [,n such
 that T,,(T"(V)) = T"+l(V). From Proposition 4(d), for every e > 0, there is an
 n, > no such that IITn(V) - V,*I < e for all n > n1. Let n2 > n1. For n > n2, we have

 Tr(Tn2(V)) < T,(T"(V) + 2?) < T(T"n()) + 2e T+1(V) + 2E < V, + 3E

 and then

 !,n(x) E Un2(V)(x, V*(x) + 3) for all x E X. (23)

 As in the proof of Lemma 4 in [17], one can construct a policy t such that for any
 x E X, ,i(x) is an accumulation point of the sequence {Jl(x), 2(x), ... }. From (23)
 and since Un2(V)(x, V*(x) + 3e) is compact, ,u(x) is in Un2(V)(x, V.(x) + 3E) which is
 a subset of A(x), i.e. H(T"2(V))(x, IL(x)) < V*(x) + 3E.

 Since this is true for any n2 > n , we obtain from Lebesgue's dominated conver-
 gence theorem:

 T,(V*)(x) = H(V*)(x, Ki(x)) = lim H(T"2(V))(x, t(x)) < V*(x) + 3E.
 n2 - O00

 This holds true for all x in X and E > 0. Therefore T^,(V) = V* and from Proposition
 4(f), f is optimal. *

 When the condition in Proposition 7(d) is verified, an optimal policy can theoreti-
 cally be obtained via the DP procedure. It is verified, in particular, if each A(x) is
 finite, or if each A(x) is compact, g and V are lower semicontinuous, and a and Q are
 continuous on X x A (see Propositions 7.31-7.33 in [1] and Theorem 11.11 in [3]).

 Acknowledgement. We wish to thank Michele Breton, who helped us improve the
 derivation of Lemma 6, and an anonymous referee who helped recast the paper in a
 more readable way.
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