
INFORMS Journal on Computing
Articles in Advance, pp. 1–12
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.2013.0576

© 2014 INFORMS

On the Lattice Structure of a Special Class of
Multiple Recursive Random Number Generators

Pierre L’Ecuyer, Richard Simard
Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada

{lecuyer@iro.umontreal.ca, simardr@iro.umontreal.ca}

We examine some properties of the points produced by certain classes of long-period linear multiple recur-
sive random number generators proposed by L.-Y. Deng and his co-authors in several papers. These

generators have their parameters selected in special ways to make the implementation faster. We show that as
a result, the points produced by these generators have a poor lattice structure, and a poor initialization of the
state can have long-lasting impact, because of the limited diffusion capacity of the recurrence.

Keywords : random number generators; multiple recursive generators; lattice structure; simulation
History : Accepted by David Woodruff, EIC and (former) Area Editor for Heuristic Search and Learning;

received May 2013; accepted July 2013. Published online in Articles in Advance.

1. Introduction
A widely used type of uniform random number gen-
erator for simulation, known as multiple recursive gen-
erators (MRG), is based on a linear recurrence of the
form

xi = 4a1xi−1 + · · · + akxi−k5 mod m1 (1)

ui = xi/m1 (2)

where m (the modulus) and k (the order) are posi-
tive integers, the aj (the coefficients) are in 80111 0 0 0 1
m − 19, and ui ∈ 60115 is the output (or random
number generated) at step i. Typically, m is a prime
number and the coefficients aj are selected so that
the characteristic polynomial of the recurrence (1) is
a primitive polynomial, in which case the output
sequence is periodic with (maximal) period �=mk −1
(Knuth 1998). In practice, the output ui is often modi-
fied slightly (e.g., by adding 005/m) to avoid returning
zero, but this has little impact on the analysis and we
ignore it here for simplicity. More details on the MRG
and its properties can be found in L’Ecuyer (1999a,
2006) and Niederreiter (1992), for example.

In a series of papers, L.-Y. Deng and his co-authors
have proposed various special cases of MRGs of large
order k, where the coefficients aj satisfy certain condi-
tions that can make the implementation faster (Deng
and Lin 2000; Deng and Xu 2003; Deng 2004, 2005;
Deng et al. 2008, 2009, 2012). The main idea is to have
only a small number of nonzero values for the coef-
ficients aj . They specialize the recurrence (1) to the
form

xi =
∑

a∈A

a
∑

j∈S4a5

xi−j mod m1 (3)

where A⊂ 811 0 0 0 1m−19 is a small set, usually of car-
dinality no more than 2 or 3, and S4a5 ⊂ 811 0 0 0 1 k9
for each a ∈A. The rationale is to reduce the number
of multiplications modulo m required to compute the
recurrence.

Their earliest proposal in this family was the
FMRG-k generator of Deng and Lin (2000), where A=

8m− 11 b9, S4m− 15= 1, and S4b5= k, which gives

xi = 44m− 15xi−1 + bxi−k5 mod m

= 4−xi−1 + bxi−k5 mod m0 (4)

Deng and Xu (2003) and Deng (2005) then proposed
a class named DX-k-�-t (originally with t = 1), where
A = 8b9, S4b5 = 8t1 k9 for � = 2, S4b5 = 8t1 �k/2�1 k9
for � = 3, and S4b5 = 8t1 �k/3�1 �2k/3�1 k9 for � = 4.
For � ≥ 2, this gives

xi = b
∑

j∈S4b5

xi−j mod m0 (5)

Computing the corresponding recurrence requires a
single modular multiplication, by b. For � = 1, they
take A = 811 b9 with S415 = 8t9 and S4b5 = 8k9, which
gives xi = 4xi−t + bxi−k5 mod m.

Deng et al. (2008) then proposed the DL-k-t class,
where A= 8b9 and S4b5= 8t1 t+ 11 0 0 0 1 k9, which gives

xi = b
k
∑

j=t

xi−j mod m

= xi−1 + b4xi−t − xi−k−15 mod m1 (6)

1

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

and the DS-k-t class, where A = 8b9 and S4b5 =

811 0 0 0 1 t − 11 t + 11 0 0 0 1 k9, which gives

xi = b
k
∑

j=11 j 6=t

xi−j mod m

= xi−1 + b4xi−1 − xi−t + xi−t−1 − xi−k−15 mod m0 (7)

In (6) and (7), the last expression provides an efficient
way of implementing the recurrence, with a single
multiplication and a small number of additions.

Deng et al. (2012) introduced a modified version
of the DX-k-�-t recurrences, in which t = 1 and the
term xi−g is added to the right side for some integer
g ∈ 811 0 0 0 1 k9. That is, they take A = 811 b9, S415 = 8g9
for � ≥ 2 and S415 = 811g9 for � = 1, and S4b5 as for
the DX-k-�-t. They call them DX∗-k-�-g. For example,
for � = 1, this gives

xi = xi−g + xi−1 + bxi−k mod m1 (8)

and for � = 2, we have

xi = xi−g + b4xi−1 + xi−k5 mod m0 (9)

These authors provide specific parameter choices
that give a maximal period mk − 1 for k ranging from
101 to 25013, for m = 231 − c for small values of c
(Deng and Lin 2000; Deng and Xu 2003; Deng 2004,
2005, 2008; Deng et al. 2012).

Besides a long period, a key requirement for a good
random number generator (RNG) is that the set of
all vectors of successive output values (ui1 0 0 0 1ui+s−1),
from all possible initial states, should cover the unit
hypercube 60115s very evenly (L’Ecuyer 2006). This
requirement captures both uniformity and indepen-
dence. Indeed, an (ideal) RNG would produce inde-
pendent uniform random variables over 60115 if and
only if (ui1 0 0 0 1ui+s−1) has the uniform distribution
over the unit hypercube for any i and s. More gen-
erally, for any finite set of integers I = 8i11 0 0 0 1 is9,
where 0 ≤ i1 < · · · < is , consider the multiset ës4I5 of
all s-dimensional output vectors (ui1

1 0 0 0 1uis
) obtained

when the initial state s0 = 4x01 0 0 0 1 xk−15 of the MRG
runs over all its mk possibilities:

ës4I5= 84ui1
1 0 0 0 1uis

5 ∈ 60115s � s0 ∈�k
m91

with �m = 801 0 0 0 1m−19. We shall denote by ë̃s4I5 the
ordinary set that corresponds to the multiset ës4I5 (it
contains a single copy of each point). If s0 is selected
at random uniformly from �k

m, (ui1
1 0 0 0 1uis

) has the
uniform distribution over ës4I5. For this to be a good
approximation of the uniform distribution over 60115s ,
ës4I5 must cover 60115s very evenly. Note that if the
MRG has maximal period mk − 1 (which we shall
assume from now on), then all points of ës4I5 are vis-
ited exactly once (or according to their multiplicity

if they appear more than once in the multiset ës4I5)
when the MRG runs over its full period, except for the
zero vector (01 0 0 0 10) which appears one time fewer.

Whenever is − i1 < k, ës4I5 contains every vector of
4�s

m5/m, i.e., every s-dimensional vector whose coor-
dinates are in 8011/m1 0 0 0 1 4m − 15/m9 exactly mk−s

times each. This is the best uniformity we can hope
for, given that the output coordinates are all mul-
tiples of 1/m. For s > k, this ideal uniformity is of
course impossible, because �ës4I5� = mk < ms . More
interestingly, when is − i1 ≥ k, this uniformity is no
longer guaranteed even if s is small. For this situa-
tion, it is known that ë̃s4I5 is the intersection of a
lattice in �s with the hypercube 60115s (Knuth 1998,
L’Ecuyer 1999a). This implies in particular that there
are families of equidistant parallel hyperplanes in �s

such that each family covers ës4I5. A standard way
of measuring the uniformity of ës4I5 then is via the
so-called spectral test (Knuth 1998): one computes the
distance ds4I5 between the hyperplanes of the family
for which this distance is largest. We want this dis-
tance ds4I5 to be as small as possible, to avoid large
empty gaps. It is common practice to standardize this
measure into a real number between 0 and 1 defined
as Ss4I5= d∗

s 4n5/ds4I5, where d∗
s 4n5 is a lower bound on

the smallest possible distance between hyperplanes
that can be achieved by a general s-dimensional lat-
tice having n points per unit of volume (Conway and
Sloane 1999), and n = min4mk1ms5 is the largest pos-
sible number of distinct points in ës4I5. Very small
values of Ss4I5 must be avoided. Good MRGs hav-
ing reasonably large values of Ss4I5 (Ss4I5 > 006, for
example) for all I in a large collection of index sets I ,
including sets with s = �I � � k, have been constructed
(L’Ecuyer 1999a).

A primary purpose of this paper is to study the
structure of ës4I5 for the special types of MRGs men-
tioned earlier, and exhibit index sets I for which
Ss4I5 is always very small, when is − i1 ≥ k. This is a
sequel to a first analysis made by L’Ecuyer and Touzin
(2004) for the RNGs of Deng and Lin (2000) and Deng
and Xu (2003).

We also exhibit and explain potential problems that
may occur in the initialization of these special types of
MRGs. If one is not sufficiently careful about the ini-
tialization, the structure of the initial state can easily
interact with that of the MRG and be apparent in the
output for a large number of steps. We explain why
and we show that this may have a disastrous impact
on the statistical behavior of the RNG. The reason for
this is that the recurrence of those special types of
MRGs does not make a sufficiently complicated mod-
ification of the state at each step. This type of problem
does not occur for MRGs having a smaller state and a
more complicated recurrence, such as those proposed

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS 3

in L’Ecuyer (1999a) and L’Ecuyer and Touzin (2000),
for example.

The rest of the article is organized as follows. In §2,
we give some background on the lattice structure
analysis of MRGs, and provide bounds on a figure of
merit that measures the quality of the lattice structure
of the set ës4I5 for certain classes of DX, DX∗, DL,
and DS generators. These bounds show in particular
that the lattice structure cannot be good when b, or its
inverse modulo m, is small, or when a small multiple
of b is close to a small multiple of m, or if b is a sum
of two powers of 2 of a certain form. We also man-
age to bound those bounds uniformly in b; this yields
upper bounds which show that some of these gener-
ators cannot have a good lattice structure regardless
of the value of b (even for large b). In §3, we com-
pare these bounds with the exact value of the figure
of merit for a representative selection of those spe-
cial types of MRGs. In §4, we illustrate the effect of
this lattice structure on the results of a simple empir-
ical statistical test. Section 5 is devoted to problems
that can occur with the initialization of these MRGs.
It shows that if the initial state has too much struc-
ture, then this structure may persist for a very large
number of steps. Section 6 offers some conclusions.

2. Lattice Structure
2.1. Vectors of the Dual Lattice
Let ei4s5 denote the ith unit vector in s dimensions, and
let xi101xi111 0 0 0, be the sequence obtained from the
recurrence (1) when 4x01 0 0 0 1 xk−15= 4xi101 0 0 0 1 xi1 k−15=

ei4k5, for i = 11 0 0 0 1 k. It is known (L’Ecuyer and Cou-
ture 1997) that ë̃s4I5= Ls4I5∩ 60115s , where Ls4I5 is the
lattice generated by the vectors 4xi1 i1/m1 0 0 0 1 xi1 is/m5
for i = 11 0 0 0 1 k, together with the unit vectors
e14s51 0 0 0 1es4s5. From this set of k + s vectors, one can
obtain a basis of s linearly independent vectors that
generate the same lattice (L’Ecuyer and Couture).
The dual lattice L∗

s 4I5 to Ls4I5 is the set of vectors w
such that wtv mod 1 = 0 for all v ∈ Ls4I5. If ls4I5 is
the Euclidean length of the shortest nonzero vector
in L∗

s 4I5, then ds4I5 = 1/ls4I5. Thus, a small value of
ls4I5 means a small value of Ss4I5 and poor unifor-
mity of ës4I5. For s ≤ 8, the smallest possible dis-
tance between hyperplanes that can be achieved by
a general s-dimensional lattice of density n is known
exactly (Conway and Sloane 1999, Knuth 1998); we
denote it by d∗

s 4n5 (the dimension s considered in this
paper never exceeds 6).

By putting a0 = −1, we can rewrite (1) as

k
∑

j=0

ajxi−j mod m= 00 (10)

Let I∗ = 8j2 0 ≤ j ≤ k and ak−j 6= 09. For the special
case where 0 = i1 < i2 < · · · < is = k and I∗ ⊆ I , it is

easily seen from (10) (L’Ecuyer 1997) that the vec-
tors wi = mei4s5 for i = 11 0 0 0 1 s − 1 and ws = 4ak−i1

1
ak−i2

1 0 0 0 1 ak−is−1
1−15 form a basis of L∗

s 4I5, and that
mes4s5 also belongs to L∗

s 4I5. The fact that ws ∈ L∗
s 4I5

implies that

l2s 4I5≤ �ws�
2
= 1 + a2

1 + · · · + a2
k1 (11)

where � · � is the Euclidean norm. Any integer mul-
tiple of ws modulo m also belongs to L∗

s 4I5, as well
as any linear combination of the form w =

∑s
i=1 ziwi

with integer coefficients zi. Moreover, if I∗ ⊆ I ⊂ I ′,
s′ = �I ′� > s, w ∈ L∗

s 4I5, and w′ is constructed from w
by adding zero coordinates for the s′ − s indexes in
I ′\I , then w′ ∈ L∗

s′4I
′5. This implies that ls′4I

′5 ≤ ls4I5
and that the bound (11) holds for I ′ as well.

For any integer w, we denote

6w7m =w− z′m1 (12)

where z′ is the unique integer for which −m/2 <w−

z′m ≤ m/2. This integer minimizes �w − z′m�. For a
vector w = 4w11 0 0 0 1ws5 with integer coordinates, we
denote 6w7m = 46w17m1 0 0 0 1 6ws7m5. Whenever w ∈ L∗

s 4I5,
6w7m ∈ L∗

s 4I5 as well, because 6w7m can be obtained
from w by adding an integer linear combination of
me14s51 0 0 0 1mes4s5, which all belong to L∗

s 4I5. It is also
obvious that �6w7m� ≤ �w�.

Observe that a vector w belongs to L∗
s 4I5 if and

only if it can be written as w = zws +
∑s

j=1 zjmej4s5 for
some integers z1z11 0 0 0 1 zs . For z fixed, the shortest of
those vectors w is precisely 6zws7m ∈ L∗

s 4I5. Thus, the
shortest vector in the dual lattice must have the form
6zws7m for some nonzero integer z, which can be taken
from 811 0 0 0 1m − 19 because z can be reduced mod-
ulo m. We have just proved the following result:

Proposition 1. One has

l2s 4I5 = min
z∈811 0001m−19

�6zws7m�
2

= min
z∈811 0001m−19

46zak−i1
72
m + · · · + 6zak−is−1

72
m + 6z72

m50

For the case where k = 1, s = 2, I = 80119, and a1 = b,
this gives l2s 4I5 = minz∈811 0001m−1946zb7

2
m + 6z72

m5. But it is
known (Knuth 1998) that for this special case, for any
choices of m > b > 0, l224I5 ≤ 44/351/2m. This gives the
general inequality:

Proposition 2. For any integers m > b > 0, there is
an integer z ∈ 811 0 0 0 1m− 19 such that

6zb72
m + 6z72

m ≤ 44/351/2m0

In what follows, we will exploit these two propo-
sitions to develop refined bounds on ls4I5 for special
types of MRGs proposed by Deng and his co-authors.
We denote S̄4b5= 8k− j � j ∈ S4b51 j < k9∪ 8k9.

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

2.2. Short Dual Lattice Vectors for the
DX-k-�-t Generator

For the DX-k-�-t with � ≥ 2, for I = 809 ∪ S̄4b5, we
have ws = 4b1 0 0 0 1 b1−15, where s = � + 1, and there-
fore l2s 4I5≤ �b2 +1. If b∗ is the inverse of b modulo m,
i.e., b∗b mod m = 1 (assuming that such a b∗ exists; it
always does when m is prime, which is typical in our
setting), then w∗

s
def
= b∗ws mod m = 411 0 0 0 111−b∗5 also

belongs to L∗
s 4I5, so l2s 4I5 ≤ 4b∗52 + � . More generally,

for any integer z, 6zws7m = 46zb7m1 0 0 0 1 6zb7m1 6−z7m5 ∈

L∗
s 4I5, which gives the upper bound

l2s 4I5≤ �6zb72
m + 6z72

m0 (13)

If zb is close to a multiple of m for some small inte-
ger z, then this bound is particularly small. Likewise,
if z∗b∗ is close to a multiple of m for a small integer z∗,
taking z = z∗b∗ in (13) yields l2s 4I5 ≤ �6z∗72

m + 6z∗b∗72
m,

which is small. In other words, if either b or b∗ is near
m/2, or m/3, or 2m/31 0 0 0 , or zm/i for small integers
z≥ 1 and i ≥ 2, then we know a priori that l2s 4I5 must
be small, and that the lattice structure of L∗

s 4I5 cannot
be good.

For the DX-k-1-t, a similar argument with I = 801 k−

t1 k9 shows that ws = 4b111−15 ∈ L∗
s 4I5, and this gives

the upper bound

l2s 4I5≤ 6zb72
m + 26z72

m (14)

for all integers z. Taking z = z∗b∗, this gives l2s 4I5 ≤

6z∗72
m +26z∗b∗72

m. This shows again that if either b or b∗

is near zm/i for small integers z ≥ 1 and i ≥ 2, then
l2s 4I5 must be small and the lattice structure cannot be
good.

Example 1. One example of DX-k-�-1 proposed by
Deng et al. (2012) has � = 3, m = 231 − 1, k = 7499,
and b = 1073741559. Here, 2b = 2147483118 =

m− 529 is very close to m. By taking z= 2 in (13), the
bound evaluates to 42b − m52� + 22 = 839527. Taking
the square root gives ls4I5 ≤ 9160257, and the corre-
sponding bound on the standardized figure of merit
becomes Ss4I5≤ 30587×10−7, which is very small. This
bound is actually the exact value in this case.

If we combine Proposition 2 with the bound in (13),
we find that for � ≥ 2, there is a z > 0 such that

l2s 4I5 ≤ �44/351/2m− 4� − 156z72
m

≤ �44/351/2m− 4� − 151 (15)

where the last expression is a bound that does not
depend on b. For � = 1, a similar argument with (14)
gives

l2s 4I5≤ 244/351/2m− 10 (16)

We call L2
2 the bound in (15) or (16), depending on the

value of � .

We now examine a different way of showing the
existence of a small integer z for which zb is close to a
multiple of m, i.e., for which zb/m mod 1 is close to 0
or 1. It will give a slightly different bound. The arith-
metic sequence 8z� mod 11 z= 112131 0 0 09, for an arbi-
trary real number �> 0, is well known and has been
studied at length in the literature. When � is irra-
tional, it is known as a Weyl sequence. Here we will
use a property of this sequence called the Three Gap
Theorem, first proved by Sós (1958) and revisited by
several other authors; see, e.g., van Ravenstein (1988):

Theorem 1. Let � > 0 be a real number and let r ≥ 1
be an integer, let u415 < · · ·<u4r5 be the values 8z� mod 1,
z = 11 0 0 0 1 r9, sorted by increasing order, and define the
gaps �0 = u415, �i = u4i+15 − u4i5 for i = 11 0 0 0 1 r − 1, and
�r = 1 − u4r5. Then these r + 1 gaps take at most three
distinct values, which are �0, �r , and (perhaps) �0 + �r .

Clearly, the smallest gap here is min4�01�r 5 =

min8�6z�71�2 1 ≤ z≤ r9, and this smallest gap cannot be
larger than 1/4r+15, because the sum of the r+1 gaps
must add up to 1. Applying this result to our setting
for �= b/m, we find that there is an integer z≤ r for
which �6zb/m71� = �6zb7m�/m ≤ 1/4r + 15, and noticing
that 6zb7m must be an integer, we obtain:

Corollary 1. For any integer r ≥ 1, there is an integer
z ∈ 811 0 0 0 1 r9 for which

6zb72
m ≤ �m/4r + 15�20 (17)

By plugging this into (13), it follows that for � ≥ 2,
for any r ≥ 1,

l2s 4I5≤ ��m/4r + 15�2
+ r2 def

= �4r50 (18)

Now we can try to minimize this bound with respect
to r ; that is, compute

L2
3

def
= �4r∗5= min

r≥1
�4r50

To obtain a crude (initial) estimate of r∗, we will
neglect the fact that r must be an integer, ignore
the floor function, and replace r + 1 by r in (18).
This gives the approximate bound �m2/r2 + r2. Tak-
ing the derivative of this expression with respect to
r and equaling it to zero, we obtain the equation
−2m2�r−3 + 2r = 0, for which r = m1/2�1/4 is a root,
where the expression has a minimum, because the
second derivative is positive for r > 0. We shall take
x0 = m1/2�1/4 as a crude real-valued approximation
of r∗, and then search on both sides of x0 to find
the exact integer r∗ that minimizes �4r5. Another
possibility is to just round x0 to the nearest integer
instead of searching for r∗; in our experiments this
made no significant difference. When m is large and
� is small (which is typical), we have L2

3 ≈ 2m�1/2.

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS 5

When comparing L2
3 with L2

2, for � = 2, we have L2
2 =

2m
√

4/3 − 1 <L2
3 ≈ 2m

√
2. For � = 3, L2

2 = 2m
√

3 − 2 ≈

L2
3 ≈ 2m

√
3. For � ≥ 4, L2

2 = m�
√

4/3 − 4� − 15 > L2
3 ≈

2m
√
� . Either of those bounds can be used to show

that Ss4I5 cannot be close to 1 regardless of b, for given
values of m and k. In the following, we will take the
minimum of the two and will denote L0 = min4L21L35.

Example 2. Consider the DX-k-�-t generator with
m = 231 − 1 = 2147483647 and k = 7499, also exam-
ined in Table 3, in Section 3. For � = 2, we have
x0 =m1/2�1/4 ≈ 55109, r∗ = 55115, and the bound �4r∗5
evaluates to l2s 4I5 ≤ minr≥1 �4r5 = �4r∗5 = 6073738113,
or ls4I5≤ L3 =

√

�4r∗5= 7793402 (accurate to the given
digits). The corresponding bound on the standardized
figure of merit becomes Ss4I5 ≤ 3023316 × 10−5 � 1.
We also have L2

2 = 2m
√

4/3 − 1, which gives L2 =

7042300 <L3 and Ss4I5≤ 2092155 × 10−5. These bounds
hold for all b. If we take b = 1038757, for instance,
the exact values are ls4I5= 4814701 ≈ 00684L2 ≈ 00618L3
and Ss4I5= 1099741 × 10−5.

For � = 1, the corresponding numbers are x0 =

m1/2/21/4 ≈ 38968, r∗ = 38962, �4r∗5= 6073738113, L3 =

7793402, and this gives Ss4I5 ≤ 3023316×10−5 � 1.
We also have L2 = 7042300 <L3. If we take b = 967501,
the exact values are ls4I5= 5247903 ≈ 00745L2 ≈ 00673L3
and Ss4I5= 2017714 × 10−5.

For � = 4, we obtain L3 = 9267908 <L2 = 9959302.

2.3. Short Dual Lattice Vectors for
the DX∗-k-�-g Generator

For the DX∗-k-�-g with � ≥ 2, for I = 801g9 ∪ S̄4b5,
we obtain ws = 4b1 0 0 0 111 0 0 0 1 b1−15 with s = � + 2,
where the position of the 1 depends on the position
of g in the ordered set I . We also have that w∗

s
def
=

b∗ws mod m = 411 0 0 0 1 b∗1 0 0 0 111−b∗5 ∈ L∗
s 4I5. In this

case, the bound given by Proposition 1 becomes
l2s 4I5 ≤ �6zws7m�2 = 6zb72

m� + 26z72
m for all z. For the

case where z= z∗b∗, this gives l2s 4I5≤ �6z∗72
m+26z∗b∗72

m.
Again, if b or b∗ is close to zm/i for some small inte-
gers z≥ 1 and i ≥ 2, then l2s 4I5 is necessarily small.

For the DX∗-k-1-g, if we take I = 801 k− g1k− 11 k9,
we obtain ws = 4b11111−15 and w∗

s = 411 b∗1 b∗1−b∗5,
and this leads to l2s 4I5 ≤ 6zb72

m + 36z72
m and l2s 4I5 ≤

6z∗72
m + 36z∗b∗72

m for all integers z and z∗.

2.4. Short Dual Lattice Vectors for the
DL-k-t and DS-k-t Generators

For the DL-k-t and DS-k-t, we find from the repre-
sentations (6) and (7) that they can be seen as MRGs
of order k′ = k + 1. We will use these representations
for our lattice structure analysis (the fact that they
do not have period mk+1 − 1 has no impact on this
analysis). For the DL-k-t with t > 1, for I = 801 k −

t + 11 k1k+ 19, we obtain that both w = 4−b1 b111−15
and w∗ = 4−1111 b∗1−b∗5 are in L∗

s 4I5. This leads to

l2s 4I5 ≤ 26zb72
m + 26z72

m and l2s 4I5 ≤ 26z∗b∗72
m + 26z∗72

m for
all z and z∗.

For the DL-k-1, for I = 801 k1k + 19, we obtain that
both w = 4−b1 b + 11−15 and w∗ = 4−111 + b∗1−b∗5
are in L∗

s 4I5. This gives l2s 4I5≤ 6zb72
m + 6z4b+ 1572

m + 6z72
m

and l2s 4I5≤ 6z∗b∗72
m+6z∗4b∗+1572

m+6z∗72
m for all z and z∗.

Likewise, for the DS-k-t, for I = 801 k − t1 k − t + 11
k1k+ 19, we find that both w = 4−b1 b1−b1 b + 11−15
and w∗ = 4−1111−11 b∗+11−b∗5 are in L∗

s 4I5, and from
this we obtain l2s 4I5 ≤ 36zb72

m + 6z4b + 1572
m + 6z72

m and
l2s 4I5≤ 6z∗b∗72

m + 6z∗4b∗ + 1572
m + 36z∗72

m for all z and z∗.

2.5. Summary of Upper Bounds on l2s 4I5
Table 1 summarizes the bounds on l2s 4I5 derived so
far in this section. Each bound depends on the choice
of a small integer z ≥ 1 or z = z∗b∗ (in which case
zb = z∗) for a small z∗ ≥ 1. In the remainder of the
paper, we use L2

14z5 to denote the upper bound on
l2s 4I5 given in the table, for each considered type of
MRG. The bounds L2

14z5 in this table are small (and
typically tight) for some small z or z∗ when a small
multiple of either b or b∗ is close to a small multiple
of m. As a special case, the bounds are small when b
or b∗ is small.

In general, we can apply Proposition 2 and Corol-
lary 1 to these bounds, as we did in (15) and (18), to
obtain a set of bounds L2

2 and L2
3 that hold uniformly

in b. Corollary 1 gives a bound that depends on r , of
the general form l2s 4I5 ≤ �4r5 for all r ≥ 1, where the
function � depends on the type of generator and is
given in Table 2. The table also gives a crude real-
valued estimate x0 of r∗ = arg minr≥1 �4r5. The corre-
sponding bound �4r∗5 on l2s 4I5 is named L2

3. Note that
for the DL and DS generators, we use the fact that
6z4b + 1572

m ≤ 6zb72
m + 2�6zb7m�z + 6z72

m ≤ �m/4r + 15�2 +

2�m/4r + 15�r + r2 to obtain our �.
In §3, we compute and compare these bounds with

the exact values of ls4I5 and Ss4I5, for several specific
MRGs proposed by Deng and his co-authors. In our
examples, the bound L0 = min4L21L35 will never be
reached exactly, but will often be within a factor of 2
or 3 from the exact value.

Table 1 Bounds L214z5 and L22 on l2s 4I5 for Special Types of MRGs

L214z5 L22

DX-k-� -t for � ≥ 2 � 6zb72m + 6z72m � 44/351/2m− 4� − 15
DX-k-1-t 6zb72m + 26z72m 244/351/2m− 1
DX∗-k-� -g for � ≥ 2 � 6zb72m + 26z72m � 44/351/2m− 4� − 25
DX∗-k-1-g 6zb72m + 36z72m 344/351/2m− 2
DL-k-t with t > 1 26zb72m + 26z72m 244/351/2m
DL-k-1 6zb72m + 6z4b+ 1572m + 6z72m 244/351/2m− 1
DS-k-t 36zb72m + 6z4b+ 1572m + 6z72m 444/351/2m− 3

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

Table 2 Expressions for x0 and �4r 5 for the Bounds L23, for
Special Types of MRGs

x0 �4r 5

DX-k-� -t for � ≥ 2 m1/2� 1/4 �m/4r + 15�2� + r 2

DX-k-1-t m1/22−1/4 �m/4r + 15�2 + 2r 2

DX∗-k-� -g for � ≥ 2 m1/24�/251/4 �m/4r + 15�2� + 2r 2

DX∗-k-1-g m1/23−1/4 �m/4r + 15�2 + 3r 2

DL-k-t with t > 1 m1/2 24�m/4r + 15�2 + r 25

DL-k-1 m1/2 24�m/4r + 15�2 + �m/4r + 15�r + r 25

DS-k-t m1/221/4 242�m/4r + 15�2 + �m/4r + 15�r + r 25

2.6. Bounds on l2s 4I5 When b = 2w + 2r and
m= 231 − 1

Deng et al. (2012) propose several generators with
coefficients of the special form b = 2r ±2w, where 31 >
r > w > 0, for m = 231 − 1. In our experiments, we
found that for those types of generators, in most cases
L14z5 was minimized and equal to ls4I5 for z equal to
a power of 2 (see Tables 4–7). To explain this, observe
that by taking z = 2e for some integer e > 0, we have
in this case

6zb72
m = 62e42r

± 2w572
m = 62e+r

± 2e+w72
m1 and

6z4b+ 1572
m = 62e42r

± 2w
+ 1572

m = 62e+r
± 2e+w

+ 2e72
m0

Knowing that 62317m = 1 and w < r , it is easily seen
that 6zb72

m is minimized by taking e = 31 − w if
r −w ≤ 15 and e = 31 − r when r −w ≥ 16. However,
the bound L14z5 itself can be minimized by another
value of e, because it contains other terms, namely
6z72

m and in some cases 6z4b + 1572
m. With e = 31 − w,

we have

6zb72
m = 62r−w

± 172
m1 and

6z4b+ 1572
m = 62r−w

± 1 + 231−w72
m1

which are small when w is not too far from 31 (in
which case both 31 − w and r − w must be small),
whereas taking e = 31 − r gives

6zb72
m = 61 ± 231−4r−w572

m1 and

6z4b+ 1572
m = 61 ± 231−4r−w5

+ 231−r 72
m1

which are small when both r and r −w are not too far
from 31 (that is, r is large and w is small). By plugging
these values of 6zb72

m and 6z4b + 1572
m in the bounds

L2
14z5 of Table 1, for any e > 0, we obtain special

instances of the bounds which are often equal to the
exact values, according to our numerical experiments
in §3.

Example 3. Consider the DX-k-2-64 generator with
m = 231 − 1, k = 7499 and b = 229 + 217, taken from
Table 2 of Deng et al. (2012). Here, w = 17, so 31 −

w = 14. We compute L2
142

145= 302006274, which gives
ls4I5≤ L142145= 1737803, and then Ss4I5≤ 70210 × 10−6,
which is very small. This bound is actually the exact
value in this case.

3. Bounds and Exact Spectral Test
Figures for Some Proposed
Generators

Here we consider a representative selection of param-
eters proposed by Deng et al. (2012) for DX, DX∗,
DL, and DS generators; we compute the exact spectral
test values ls4I5 and Ss4I5 defined in §2; and compare
these values with the bounds L14z5 in Table 1, com-
puted for a few small values of z, and the bound L0 =

min4L21L35 defined earlier. We computed the bound
L14z5 for z = 11 0 0 0 125 and z = b∗1 0 0 0 125b∗, and also
for z = 2e for e = 01 0 0 0 130, in the situations where
b = 2w ± 2r . The number 25 was selected arbitrarily.
We report in the tables the maximum of ls4I5/L14z5
over these values of z, the value of z where the max-
imum was reached (with a single exception, it was
always reached for z = 1 or z equal to a power of 2),
and the value of ls4I5/L0. We actually made these com-
putations for all the generators proposed in the above-
named papers and the results reported here are rep-
resentative of what we have observed.

Table 3 gives the values for some DX-k-�-1 genera-
tors taken from Table 1 of Deng et al. (2012). The row
with 4�1 b5 = 43110737350565 corresponds to Exam-
ple 1, and those with other values of � correspond to
Example 2. A key observation is that the normalized
spectral test value Ss4I5 is much smaller than 1 in all
cases, and it is not significantly larger on average for
larger values of b. Looking at the ratio ls4I5/L0, we
also find that there is no hope to find a value of b for
which Ss4I5 will be significantly larger (as we saw in
Example 2). This means the lattice structure of the set
ës4I

′5 is always bad, for any I ′ that contains the set I
considered here.

Looking at the bounds more closely, we find as
expected that when b < m1/2, then L1415 < L0, and
the bound L1415 is also equal to the exact value in
this case. For larger b, we find four situations where
b is close to m/2 = 107374182305. In fact, m− 2b takes

Table 3 Spectral Test Values and Bounds for the DX-k-� -1 with
m = 231 − 1 and k = 7499

� b ls4I5 Ss4I5 z ls4I5/L14z5 ls4I5/L0

1 13620 1362000 5.650e−6 1 1 001934
1 967501 5247903 2.177e−5 25b∗ 007961 007452
1 1073735056 1353500 5.615e−6 2 1 001922
2 18178 2570706 1.066e−5 1 1 003650
2 1038757 4814701 1.997e−5 1 000328 006837
2 1073706686 4677304 1.940e−5 2 004706 006642
3 2307 399508 1.564e−6 1 1 000463
3 517486 3985601 1.561e−5 1 000445 004621
3 1073741559 91603 3.588e−7 2 1 000106
4 25972 5194400 1.965e−5 1 1 005605
4 519708 5453900 2.063e−5 1 000525 005885
4 1073723713 6367405 2.408e−5 2 008790 006870

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS 7

Table 4 Spectral Test Values and Bounds for the DX-k-� -t with m = 231 − 1 and k = 7499

� t b ls4I5 Ss4I5 z ls4I5/L14z5 ls4I5/L0

1 29 1048832= 220 + 28 579608 2.405e−6 211 0.0111 000823
2 64 537001984= 229 + 217 1737803 7.210e−6 214 1 002468
3 70 134479872= 227 + 218 824000 3.227e−6 213 1 000955
4 11 1048578= 220 + 21 844601 3.195e−6 211 1 000911

Table 5 Spectral Test Values and Bounds for the DX∗-k-� -g with m = 231 − 1 and k = 7499

� g b ls4I5 Ss4I5 z ls4I5/L14z5 ls4I5/L0

1 45 134217984= 227 + 28 409701 1.604e−6 16 1 000475
1 193 8388612= 223 + 22 111608 4.373e−7 28 1 000129
1 360 528384= 219 + 212 2845409 1.114e−5 1 0.0539 003299
1 383 1074003968= 230 + 218 1476806 5.783e−6 213 1 001712
2 17 134217792= 227 + 26 144907 5.677e−7 16 1 000206
2 222 536870944= 229 + 25 18205 7.147e−8 4 1 000026
2 257 536871040= 229 + 27 72505 2.841e−7 4 1 000103
3 197 541065216= 229 + 222 75708 2.866e−7 29 1 000088
3 257 4198400= 222 + 212 723701 2.737e−6 219 0.0098 000839
3 496 268500992= 228 + 216 4688101 1.773e−5 215 1 005435
4 69 67633152= 226 + 219 579804 2.092e−6 212 1 000582
4 131 536871040= 229 + 27 102600 3.702e−7 4 1 000103
4 345 1074790400= 230 + 220 354804 1.280e−6 211 1 000356

the values 13535, 70275, 529, 36221 for � = 1121314,
respectively, in those situations. For the two smallest
values of m− 2b, for � = 1 and 3, the bound L1425 is
equal to the exact value of ls4I5 (we saw this in Exam-
ple 1 for � = 3). For the two other cases, for � = 2
and 4, the bound is close to the exact ls4I5, and closer
when m− 2b is smaller. There is also one lucky situ-
ation where z= 25b∗ gave a pretty tight bound, L14z5.
For the three cases with a medium value of b and
� ≥ 2, the bound L0 is much tighter than L14z5 for
the values of z that we have examined, and roughly
within a factor of two of the exact value. The bound
L0 is very loose in cases where ls4I5 is unusually small;
this is not surprising because this bound is the same
for all b.

Table 4 gives the results for a few representative
DX-k-�-t generators with t > 1, taken from Table 2
of Deng et al. (2012). They all have b of the form
b = 2r + 2w. Again, Ss4I5 is very small (bad) in all cases.
Here we see that the bound L14z5 is exact for z= 231−w,
when w is large (17 and 18) and for z = 231−r when
w is much smaller than r (the case where w = 1).
The case with � = 2 is Example 3. For z ≤ 25 or
z∗ ≤ 25, the bound L14z5 (not shown) turns out to be
very loose in all cases here. In most cases, it is smaller
than L0, which is already not very tight.

Table 5 reports some results with DX∗-k-�-g gen-
erators taken from Table 3 of Deng et al. (2012), all
with b = 2r + 2w. Again, Ss4I5 is very small in all
cases, and the ratio ls4I5/L0 shows that it cannot get
much larger. Here we find situations where zb is close

to m for z = 4 and for z = 16. Note that for b =

134217984 and 134217792, we have m − 16b = −4097
and −1025, respectively, while for b = 536870944 and
536871040, we have m− 4b = −129 and −513, respec-
tively. In those situations, L14z5= ls4I5 for z= 4 or 16,
and Ss4I5 is very small. This is also true for z = 231−w

in all cases where w ≥ 16 and for z= 231−r in all cases
where r −w ≥ 16. Note that for the cases mentioned
above where the bound is exact for z = 4 or z = 16,
this z also happens to equal 231−r and w is small in
all those cases, so this choice of z is justified in two
different ways.

Tables 6 and 7 report some results for DL and DS
generators taken from Tables 1 and 2 of Deng et al.
(2012), with s = k+ 1. Again, Ss4I5 is very small in all
cases. In the two situations where b is small, L1415 is
the exact value, while when 2b is close to m, namely
m−2b = 21637 for b = 1073731005, and m−2b = 49805
for b = 1073716921, L1425 is close or equal to the exact
value. Another case where L14z5 is the exact value has
b = 221 + 22, with r −w = 19 and z= 210.

Table 6 Spectral Test Values and Bounds for the DL-k-t with
m = 231 − 1, k = 7499

t b ls4I5 Ss4I5 z ls4I5/L14z5 ls4I5/L0

1 38999 5515306 2.288e−5 1 1 007832
1 1035347 1556900 6.459e−6 1 000106 002211
1 1073716921 5386804 2.235e−5 2 007648 007649
13 2097280= 221 + 27 2316906 9.073e−6 210 001250 003290
125 2097156= 221 + 22 597203 2.339e−6 210 1 000848

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

Table 7 Spectral Test Values and Bounds for the DS-k-t with
m = 231 − 1, k = 7499

t b ls4I5 Ss4I5 z ls4I5/L14z5 ls4I5/L0

3,750 26908 5381605 2.036e−5 1 1 005404
3,750 451111 4536000 1.716e−5 1 000503 004555
3,750 1073731005 4327300 1.637e−5 2 1 004345
3,754 1048832= 220 + 28 563107 2.130e−6 211 000054 000565
3,915 1050624= 220 + 211 1559602 5.899e−6 220 000105 001566

4. Some Empirical Statistical Tests
We now show the potential impact of the small spec-
tral test value Ss4I5 on the empirical behavior of
these generators, via a standard statistical test called
the birthday spacings test (Marsaglia 1985, Knuth
1998), in the form studied by L’Ecuyer and Simard
(2001) and implemented in TestU01 (L’Ecuyer and
Simard 2007). For this test, we select two positive inte-
gers n and d, and we generate n points u01 0 0 0 1un−1
“independently” in the d-dimensional unit hypercube
60115d, by calling the RNG d times (once for each
coordinate) for each point. We partition 60115d into
c = 2rd cubic boxes of equal size by dividing the
interval 60115 into 2r equal parts for some integer r .
These boxes are numbered from 0 to c − 1, in lexi-
cographic order of the coordinates. Let K415 ≤ K425 ≤

· · · ≤ K4n5 be the box numbers, sorted by increasing
order, where the n points fall and define the spacings
Sj = K4j+15 −K4j5, for j = 11 0 0 0 1n− 1. The test statistic
is the number Y of collisions between the spacings,
defined as the number of values of j ∈ 811 0 0 0 1n− 29
such that S4j+15 = S4j5, where S4151 0 0 0 1 S4n−15 are the
spacings sorted by increasing order. Under the null
hypothesis, H0, that the generator’s output is perfectly
random, Y is approximately a Poisson random vari-
able with mean � = n3/4c if c is large while � is not
too large (L’Ecuyer and Simard 2001). If y denotes the
observed value of Y , then the right p-value of the test
is p+ def

= P6Y ≥ y � Y ∼ Poisson4�57.
Table 8 gives the right p-values of the birthday

spacings test for selected generators with m= 231 − 1
and k = 7499, examined earlier. They were initialized
with the combined Tausworthe generator LFSR113
from L’Ecuyer (1999b) (see §5). The points are con-
structed as ui = 4uijd+j1

1 0 0 0 1u4i+15jd 5, for i = 01 0 0 0 1n−1,
with I = 8j11 0 0 0 1 jd9 as given in the table. The p-values

Table 8 Right p-Values for the Birthday Spacings Tests with
n Points in d Dimensions and c Boxes

RNG b I d n c p+

DX-k-1-29 1048832 (01747017499) 3 219 254 508×10−64

DX-k-2-64 537001984 (01743517499) 3 220 254 102×10−97

DX-k-3-70 134479872 (0137491742917499) 4 223 264 105×10−19

DL-k-125 2097156 (0173751749917500) 4 223 264 105×10−19

DX∗-k-2-257 536871040 (0172421749817499) 4 220 256 803×10−37

indicate spectacular failures of the tests. The explana-
tion is that for the given choice of I , the points have a
poor lattice structure, as we saw earlier, and the test
detects this structure. For sets I composed of succes-
sive output values instead of the I in the table, the
test results depend on the initialization, as we will see
in the next section.

5. Initialization Problems
5.1. Initializing an MRG with an LCG
MRGs with a large k have a large state, which must be
initialized before use. When k exceeds a few dozen,
it is common practice to initialize the state using
another RNG, whose state is much smaller and easier
to initialize. For example, a simple linear congruential
generator (LCG) is often used. Taking the same mod-
ulus m for the LCG and for the MRG simplifies things
even further, because then, k successive integers xi
produced by the LCG can be used directly for the ini-
tial state of the MRG. But this type of initialization
leads to serious problems, as noted by Matsumoto
et al. (2007): the successive values xi in the initial state
have an affine dependence dictated by the LCG and
this dependence (or structure) tends to remain for a
large number of steps after the initialization. An MRG
initialized in this way may fail many simple statistical
tests, just like the LCG that was used for initializa-
tion. To avoid this type of problem, Matsumoto et al.
recommend that MRGs with a large k be initialized
using either a generator with a modulus m different
from the modulus of the MRG, or with a generator of
a different type than an MRG.

For a concrete illustration of this problem, consider
the DX-k-1-382 generator with m = 231 − 1, k = 20897,
and b = 134217736, from Deng et al. (2012). We initial-
ize this MRG using the LCG based on the recurrence
yi+1 = 16807yi mod 231 −1. We submit the MRG to the
following three empirical tests described in the user’s
guide of TestU01 (L’Ecuyer and Simard 2007), after
reinitializing the generator each time with the given
LCG: the birthday-spacing test with sample size n= 214

and c = 240 cells in d = 2 dimensions, the collision test
with sample size n = 217 and c = 236 cells in d = 2
dimensions, and the maximum-of-t test with sample
size n= 218, taking the maximum of each group of five
successive values and using 214 categories for the chi-
square test. The DX-k-1-382 had spectacular failures
in all three tests, with a p-value smaller than 10−300 in
each case, regardless of the choice of initial state of
the LCG. When we initialize the same generator with
the LFSR113 from L’Ecuyer (1999b), it passes all three
tests.

As another example, we applied a birthday spac-
ings test with n= 222 and c = 260 cells in d = 2 dimen-
sions to a set of DX-k-�-t generators with k = 20897,

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS 9

m = 231 − 1, and t ≥ 23, taken from Table 2 of Deng
et al. (2012), also initialized with the LCG based on
yi+1 = 16807yi mod 231 − 1. We observed spectacular
failures, with several p-values smaller than 10−300.
In all cases, the number of collisions was much larger
than expected. Because of the large first lag t in these
generators, any update of an xi will have no influence
on the next updated xi+j for j < t. As a consequence,
if there is a simple dependence between the xi at any
time, blocks of t (or less) successive xi will carry a sim-
ilar dependence for many steps, and this can explain
our empirical results. When the first lag is set to t = 1
in these generators, they pass the test.

5.2. Simple Initialization for the
DX, DX∗, DL Generators

Another easy way to initialize an MRG when k is
large is to set all xi in the initial state to the same
nonzero integer value, say xi−k = c for i = 11 0 0 0 1 k, or
perhaps to use xi−k = i−1 for i = 11 0 0 0 1 k. These types
of states appear in the period of the MRG, so tak-
ing one of them as the initial state should not be a
problem for robust MRGs. In fact, the default initial
state in the widely used RNG software of L’Ecuyer
et al. (2002) has this form, with all initial values set to
c = 12345, and this causes no problem. We now show
that for the class of generators examined in this paper,
these types of initializations are very bad.

For a concrete illustration, we take a DX-k-1-t gen-
erator with m = 231 − 1, k = 20897, b = 134217736,
and t = 382, from Deng et al. (2012). We initialize it
with xi−k = 12345 for i = 11 0 0 0 1 k, then we generate
and plot the (overlapping) output pairs (ui1ui+1), for
i = 11 0 0 0 11000; see the left panel of Figure 1. Inter-
estingly, two of the three points lying on the main
diagonal are repeated exactly t − 1 = 381 times, and
the third one is repeated 236 times. The other two
points appear only once. In the right panel, we see

0 1

1

u i
+

 1

u i
+

 1

ui ui

0 1

1

Figure 1 The 1000 Pairs 4u�+i 1 u�+i+15 Produced by the DX-k-1-t Generator with m = 231 − 1, k = 20897, b = 134217736, and t = 382, with
Initial State x−k+1 = · · · = x0 = 12345, for � = 0 (Left panel) and � = 106 (Right panel)

the points (u�+i1u�+i+1), for i = 11 0 0 0 11000, for � = 106,
i.e., after discarding the first one million values. There
are still 874 points lying exactly on the diagonal,
and some of them are repeated several times: 59 are
repeated 10 times, 56 are repeated four times, and
12 are repeated five times.

To understand what happens here, recall that the
recurrence for the DX-k-1-t generator is xi = 4xi−t +

bxi−k5 mod m. If we initialize x−k+11 0 0 0 1 x0 to the same
constant c > 0 and use this recurrence to com-
pute x11x21 0 0 0 , we find that x11 0 0 0 1 xt are all equal
to 4b+ 15c mod m; then xt+11 0 0 0 1 x2t are all equal to
42b+ 15c mod m; then x2t+11 0 0 0 1 x3t are all equal to
43b + 15c mod m; and so on, up to xk. Starting from
xk+1, we still observe blocks of equal successive values,
but these blocks have lengths smaller than t. When k is
very large and t is large, as in our example, it takes
a very long time before these blocks of equal succes-
sive values disappear completely. This property holds
regardless of the value of c.

If we do the same initialization (x−k+1 = · · · = x0 =

c > 0) for the DX-k-�-t in (5) with � ∈ 8213149, we
find a similar behavior. We have xi = �bc mod m for
i = 11 0 0 0 1 t, then xi = 4�b + � − 15bc mod m for i =

t + 11 0 0 0 12t, then xi = 6b4�b+� −15+� −17bc mod m
for i = 2t + 11 0 0 0 13t, then xi = 6b4b4�b + � − 15 +

� − 15+ � − 17bc mod m for i = 3t + 11 0 0 0 14t, and so
on, as long as i ≤ �k/4� − 15�. For larger indexes i,
successive xi will be equal by smaller groups, depend-
ing on the values of k, t, and � , and the average
group sizes will generally decrease with i. Plots for
the DX-k-4-t generator with m = 231 − 1, k = 20897,
b = 268435968, and t = 148, taken from Deng et al.
(2012), give a similar pattern as in Figure 1.

These generators have a very poor diffusion capacity,
in the sense that a strong dependence between values
in the initial state needs a very large number of steps
before it disappears.

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

0 1

1

u i
+

 1

u i
+

 1

ui ui
0 1

1

Figure 2 The 1000 Pairs 4u�+i 1 u�+i+15 Produced by the DX-k-1-t Generator with m = 231 − 1, k = 20897, b = 134217736, and t = 382, with
Initial State Given by xi−k = i − 1 for i = 1121 0 0 0 1 k, for � = 0 (Left panel) and � = 105 (Right panel)

We now initialize the DX-k-1-t generator mentioned
earlier with xi−k = i − 1 for i = 1121 0 0 0 1 k, and repeat
the same experiment as above, except that we now
discard the first 105 generated values for the right
panel. The plots are in Figure 2. Again, these points
are far from looking like uniform random points.
On the left panel, several points are repeated and lie
on just a few lines of slope 1. On the right panel, they
still lie on a limited number of lines of slope 1.

To explain this behavior, note that for the recur-
rence xi = 4xi−t +bxi−k5 mod m, where x−k+11 0 0 0 1 x0 are
initialized to xi−k = i − 1 for i = 1121 0 0 0 1 k, we have
that xi = 44b + 15i− t + k5 mod m for i = 11 0 0 0 1 t, then
xi = 442b+15i− 4b+25t+k5 mod m for i = t+11 0 0 0 12t,
then xi = 443b + 15i − 34b + 15t + k5 mod m for i =

2t + 11 0 0 0 13t, etc. This implies that groups of t − 1
pairs (ui1ui+1) will lie on the same line with slope 1,
with each of those lines intersecting the vertical and
horizontal axes at different points. The first line (that
contains the first t−1 pairs) intersects the vertical axis
at 4b + 15/m; the second line (that contains the pairs
(ui1ui+1) for i = t + 11 0 0 0 12t − 1) intersects the ver-
tical axis at 42b + 15/m; and so on. The slope of the
line that connects two successive points is equal to
(ui+1 −ui5/4ui −ui−1).

We made similar plots with the DX-k-4-t generator
with m= 231 −1, k = 20897, b = 268435968, and t = 148,
taken from Deng et al. (2012), and observed similar
behavior as in Figure 2.

For the DX∗-k-1-g generator (8) initialized with
x−k+11 0 0 0 1 x0 all equal to c > 0, one easily finds that
xi = c4ib+ i+15 mod m for i = 11 0 0 0 1 g, and therefore,
4xi+1 −xi5= 4b+15c mod m for i = 11 0 0 0 1 g − 1. That is,
the first g − 1 points (ui1ui+1) are all (modulo 1) on
a line of slope 1 that intersects the vertical axis at
4b+ 15c/m mod 1. Although the structure of the fol-
lowing points is a bit more complicated, the second
difference 4xi+2 − 2xi+1 + xi5 mod m between the suc-
cessive values is the same for all i = g + 11 0 0 0 12g − 2;

then the third difference is the same for i = 2g +

11 0 0 0 13g − 3; and so on. The equality of the second
differences would show up more clearly in three-
dimensional plots of the triples (ui1ui+11ui+2); that
of the third differences would show up in four-
dimensional plots; and so on.

The left panel of Figure 3 plots the first 1,000 points
generated by the DX∗-k-1-g generator with m = 231 −

1, k = 20897, b = 537001984, and g = 499, taken from
Deng et al. (2012), initialized with xi = c = 12345
for i = −k + 11 0 0 0 10. The visible diagonal line con-
tains the first 498 points and intersects the vertical
axis at 4b+ 15c/m mod 1 = 000034. In the right panel,
we initialized the generator with xi−k = i − 1 for i =

1121 0 0 0 1 k. The generated points also exhibit a lot of
structure.

For the DL-k-t generator (6) defined by the recur-
rence xi = b4xi−t + · · · + xi−k5 mod m, initialized with
x−k+11 0 0 0 1 x0 all equal to c > 0, we find that xi = bc4k−

t + 15 mod m for i = 11 0 0 0 1 t, so the points (ui1ui+1)
are all on the main diagonal for i = 11 0 0 0 1 t− 1. Then,
xt+i = bc4k − t + i − 1 + i4k − t + 155 for i = 11 0 0 0 1 t,
which implies that 4ui+1 −ui5 mod 1 = bc4k− t5/m for
i = t + 11 0 0 0 12t − 1, and therefore the points (ui1ui+1)
are all on a line of slope 1 (modulo 1). Then, the sec-
ond difference 4ui+2 −2ui+1 +ui5 mod 1 is the same for
all i = 2t+11 0 0 0 13t−2, and so on. This generator also
exhibits a poor diffusion capacity.

It is interesting to observe that if we use the
equivalent recurrence xi = xi−1 +b4xi−t −xi−k−15 mod m
to implement this generator, as recommended by
Deng et al. (2008), and initialize it with xi−k = c for
i = −k1 0 0 0 10, then we obtain xi = c for all i ≥ 1 as
well. That is, the generator always outputs the same
value. To avoid this type of problem, it is important
to start this recurrence from an initial state that obeys
the original recurrence, that is, for which x0 = b4x−t +

· · · + x−k5 mod m. Otherwise, the modified recurrence

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS 11

0 01

1

u i
 +

 1

u i
 +

 1

ui ui
1

1

Figure 3 The 1000 Pairs 4ui 1 ui+15 Produced by the DX∗-k-1-g Generator with m = 231 − 1, k = 20897, b = 537001984, and g = 499, with
Initial State x−k+1 = · · · = x0 = 12345 (Left panel), and xi−k = i − 1 for i = 1121 0 0 0 1 k (Right panel)

may end up in a cycle of length much smaller than
mk − 1.

5.3. Initialization Problems for
Other Similar Generators

Several other widely available generators have the
same lack of diffusion capacity that we just illustrated
and are plagued by the same initialization prob-
lems. They include, for example, the additive lagged
Fibonacci, the add-with-carry (AWC) and subtract-
with-borrow (SWB), and the generalized feedback
shift register (GFSR) generators. These generators
may have a huge period, but if they happen to hit a
region where the state has a lot of structure between
the different xi, it will take them a long time to get
out of that bad region.

As an illustration, consider the additive lagged-
Fibonacci generator based on the recurrence xi =

4xi−21034 + xi−444975 mod 232, available in The Boost
C++ Library (Maurer and Watanabe 2010), and which
behaves just like the DX-k-1-t generator with b = 1
and k = 44497. If we initialize this generator with xi =
c for i = −k + 11 0 0 0 10, the first 21034 output values
are all equal to 2c mod m; then the next 21034 out-
put values are all equal to 3c mod m, and it takes a
huge number of steps before this structure dissipates.
We used this initialization with c = 123456789; we
generated and discarded 229 (nearly one billion) ran-
dom numbers from the generator, and then applied a
birthday spacings test with sample size n = 211, with
228 cells in two dimensions. The generator failed the
test with a p-value smaller than 10−300.

As another example, consider the SWB proposed
in Marsaglia (1999), based on the recurrence xi =

4xi−222 − xi−237 − bi−15 mod 232 with borrow bi =

	6xi−222 < xi−237 + bi−17, where 	 is the indicator func-
tion. If we initialize this generator with xi = 123456789
for i = −2361 0 0 0 10 and b0 = 0, then among the first
1000 values x11 0 0 0 1 x1000, 466 are 0 and 384 are 1. If we

then generate and discard 213 values and then apply a
birthday spacings test with sample size n = 211, with
228 cells in d = 2 dimensions, the generator fails the
test with a p-value smaller than 10−300 (the number of
observed collisions is 693 compared with an expected
number of eight).

6. Conclusion
We have examined structural properties of special
classes of MRGs designed to have a very long
period and a fast implementation. We found that the
points produced by these generators have a lot of
structure. In particular, low-dimensional points con-
structed from output values at certain specific lags
have a poor lattice structure, regardless of the choice
of parameters within certain classes of MRGs. A naive
initialization of the state can also produce very bad
and long-lasting behavior in the output, because of
the limited diffusion capacity of the recurrence. This
behavior happens when the recurrence has large
order k, and there are too few nonzero coefficients aj ,
or all (or most) of these coefficients are equal to the
same value b. It is particularly bad when the smallest
lag in the recurrence (e.g., the value of t for a DX-k-
�-t generator) is large.

This type of behavior tilts the balance against
MRGs with very large order k. Other arguments are
that MRGs with large order k have a very large
state, which means more overhead for the initializa-
tion and even more overhead to maintain multiple
streams and substreams of random numbers for par-
allel processing and for comparing systems with well-
synchronized common random numbers (L’Ecuyer
et al. 2002). Jumping ahead in the sequence to produce
disjoint streams and substreams becomes too slow
when k is large. Recurrences of smaller order k hav-
ing both a fast implementation and a high diffusion
capacity are easy to construct (L’Ecuyer 1999a) and

L’Ecuyer and Simard: Lattice Structure of a Special Class of Multiple Recursive RNG
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2014 INFORMS

provide random numbers with sufficiently good qual-
ity for practically all current simulation applications.

Acknowledgments
The authors thank the three reviewers and the Associate
Editor Marvin Nakayama, whose comments and sugges-
tions led to a better paper. Alexandru Ionut had contributed
to an earlier version of this paper, but then refused to be
a co-author, so the authors removed his contribution. They
nevertheless thank him for his earlier help. This work has
been supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada, an
Equipment Grant from the Canadian Fund for Innovation,
and a Canada Research Chair, to Pierre L’Ecuyer.

References
Conway JH, Sloane NJA (1999) Sphere Packings, Lattices and Groups

3rd ed. Grundlehren der Mathematischen Wissenschaften 290,
(Springer-Verlag, New York).

Deng L-Y (2004) Generalized Mersenne prime number and its
application to random number generation. Niederreiter H, ed.
Monte Carlo and Quasi-Monte Carlo Methods 2002 (Springer-
Verlag, Berlin), 167–180.

Deng L-Y (2005) Efficient and portable multiple recursive gener-
ators of large order. ACM Trans. Modeling Comput. Simulation
15:1–13.

Deng L-Y (2008) Issues on computer search for large-order multi-
ple recursive generators. Keller A, Heinrich S, Niederreiter H,
eds. Monte Carlo and Quasi-Monte Carlo Methods 2006 (Springer-
Verlag, Berlin), 251–261.

Deng L-Y, Lin DKJ (2000) Random number generation for the new
century. Amer. Statistician 54:145–150.

Deng L-Y, Xu H (2003) A system of high-dimensional, efficient,
long-cycle and portable uniform random number generators.
ACM Trans. Modeling Comput. Simulation 13:299–309.

Deng L-Y, Li H, Shiau J-JH (2009) Scalable parallel multiple recur-
sive generators of large order. Parallel Comput. 35:29–37.

Deng L-Y, Shiau J-JH, Lu HH-S (2012) Large-order multiple recur-
sive generators with modulus 231 − 1. INFORMS J. Comput.
24:636–647.

Deng L-Y, Li H, Shiau J-JH, Tsai GH (2008) Design and implemen-
tation of efficient and portable multiple recursive generators
with few zero coefficients. Keller A, Heinrich S, Niederreiter H,
eds. Monte Carlo and Quasi-Monte Carlo Methods 2006 (Springer-
Verlag, Berlin), 263–273.

Knuth DE (1998) The Art of Computer Programming, Volume 2: Semi-
numerical Algorithms, 3rd ed. (Addison-Wesley, Reading, MA).

L’Ecuyer P (1997) Bad lattice structures for vectors of non-
successive values produced by some linear recurrences.
INFORMS J. Comput. 9:57–60.

L’Ecuyer P (1999a) Good parameters and implementations for com-
bined multiple recursive random number generators. Oper. Res.
47:159–164.

L’Ecuyer P (1999b) Tables of maximally equidistributed combined
LFSR generators. Math. Comput. 68:261–269.

L’Ecuyer P (2006) Uniform random number generation. Henderson
SG, Nelson BL, eds. Simulation. Handbooks in Operations Research
and Management Science, Chap. 3 (Elsevier, Amsterdam), 55–81.

L’Ecuyer P, Couture R (1997) An implementation of the lattice and
spectral tests for multiple recursive linear random number gen-
erators. INFORMS J. Comput. 9:206–217.

L’Ecuyer P, Simard R (2001) On the performance of birthday spac-
ings tests for certain families of random number generators.
Math. Comput. Simulation 55:131–137.

L’Ecuyer P, Simard R (2007) TestU01: A C library for empirical test-
ing of random number generators. ACM Trans. Math. Software
Vol. 33, Article 22.

L’Ecuyer P, Touzin R (2000) Fast combined multiple recursive gen-
erators with multipliers of the form a = ±2q ± 2r . Joines JA,
Barton RR, Kang K, Fishwick PA, eds. Proc. 2000 Winter Simu-
lation Conf. (IEEE Press, Piscataway, NJ), 683–689.

L’Ecuyer P, Touzin R (2004) On the Deng-Lin random number gen-
erators and related methods. Statist. Comput. 14:5–9.

L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002) An object-
oriented random-number package with many long streams
and substreams. Oper. Res. 50:1073–1075.

Marsaglia G (1985) A current view of random number genera-
tors. Billard L, ed. Comput. Sci. Statist., Sixteenth Sympos. Inter-
face (Elsevier Science Publishers, North-Holland, Amsterdam),
3–10.

Marsaglia G (1999) Random numbers for C: The END? Posted to
the electronic billboard sci.math.num-analysis. https://groups
.google.com/forum/#!search/marsaglia$20random$20numbers
$20222/sci.math.num-analysis/yoaCpGWKEk0/UXCxgufdTesJ.

Matsumoto M, Wada I, Kuramoto A, Ashihara H (2007) Common
defects in initialization of pseudorandom number generators.
ACM Trans. Modeling Comput. Simulation Vol. 17, Article 15.

Maurer J, Watanabe S (2010) Boost random number library. http://
www.boost.org/libs/random/index.html.

Niederreiter H (1992) Random Number Generation and Quasi-Monte
Carlo Methods. SIAM CBMS-NSF Regional Conf. Ser. Appl.
Math., Vol. 63 (SIAM, Philadelphia).

Sós VT (1958) On the distribution mod 1 of the sequence n�. Ann.
Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 1:127–134.

van Ravenstein T (1988) The three gap theorem (Steinhaus conjec-
ture). J. Australian Math. Soc., Ser. A 45:360–370.

