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Abstract. Estimating the unknown density from which a given independent sample origi-
nates is more difficult than estimating the mean in the sense that, for the best popular non-
parametric density estimators, the mean integrated square error converges more slowly
than at the canonical rate ofO(1=n). When the sample is generated from a simulation mod-
el and we have control over how this is done, we can do better. We examine an approach
in which conditional Monte Carlo yields, under certain conditions, a random conditional
density that is an unbiased estimator of the true density at any point. By averaging
independent replications, we obtain a density estimator that converges at a faster rate than
the usual ones. Moreover, combining this new type of estimator with randomized
quasi–Monte Carlo to generate the samples typically brings a larger improvement on the
error and convergence rate than for the usual estimators because the new estimator is
smoother as a function of the underlying uniform random numbers.
Summary of Contribution: Stochastic simulation is commonly used to estimate the mathe-
matical expectation of some output random variable X together with a confidence interval
for this expectation. But the simulations usually provide information to do much more,
such as estimating the entire distribution (or density) of X. Histograms are routinely pro-
vided by standard simulation software, but they are very primitive density estimators. Ker-
nel density estimators perform better, but they are trickier to use, have bias, and their
mean square error converges more slowly than the canonical rate of O(1/n) with n inde-
pendent samples. In this paper, we explain how to construct unbiased density estimators
that converge at the canonical rate and even much faster when combined with randomized
quasi–Monte Carlo. The key idea is to use conditional Monte Carlo to hide appropriate in-
formation and obtain a computable (random) conditional density, which acts (under
certain conditions) as an unbiased density estimator. Moreover, this sample density is typi-
cally smoother than the classic density estimators as a function of the underlying uniform
random numbers, so it can get along much better with randomized quasi–Monte Carlo
methods. This offers an opportunity to further improve the O(1/n) rate. We observe rates
near O(1/n2) on some examples, and we give conditions under which this type of rate
provably holds. The proposed approach is simple, easy to implement, and extremely effec-
tive, so it provides a significant addition to the stochastic simulation toolbox.

History:Accepted by Bruno Tuffin, Area Editor for Simulation.
Funding: This work has been supported by an IVADO Research Grant, the Natural Sciences and Engi-

neering Research Council of Canada [Discovery Grant RGPIN-110050], a Canada Research Chair,
and an Inria International Chair to P. L'Ecuyer. F. Puchhammer was also supported by the Spanish
Ministry of Economy and Competitiveness [through the Basque Center of Applied Mathematics’
Severo Ochoa accreditation SEV-2017-0718 and Grants PID2019-104927GB-C22, PID2019-108111RB-
I00], the Basque Government [BERC 2018e2021 and ELKARTEK Programs and Grants ELKARTEK
KK-2020/00049, EXP. 2019/00432], European funding [European Regional Development Fund, Eu-
ropean Social Fund], and the computing infrastructure of i2BASQUE academic network and IZO-
SGI SGIker of the Universidad del Paı́s Vasco.

Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2021.1135.

Keywords: density estimation • conditional Monte Carlo • quasi–Monte Carlo

1. Introduction
Simulation is commonly used to generate n realiza-
tions of a random variable X that may represent a
payoff, a cost, or a performance of some kind and

then to estimate from this sample the unknown expec-
tation of X together with a confidence interval on this
expectation (Asmussen and Glynn 2007, Law 2014).
Simulation books focus primarily on how to improve
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the quality of the estimator of E[X] and of the confi-
dence interval. Estimating a given quantile of the dis-
tribution of X or the sensitivity of E[X] with respect to
some parameter in the model, also with a confidence
interval, are other well-studied topics in the literature.

However, large simulation experiments can provide
a lot more information than just point estimates with
confidence intervals. Running simulations of a com-
plex system for hours with thousands of runs only to
report confidence intervals on a few single numbers is
poor data valorization. A simulation experiment can
give much more useful information than this. In par-
ticular, it can provide an estimate of the entire distri-
bution of X and not only its expectation or a specific
quantile. Moreover, and perhaps more importantly,
users are typically more interested in the whole distri-
bution than on a confidence interval on the mean. The
following examples of typical simulation models
show why.

In many real-life stochastic simulation models, the
prime focus of interested is the distribution of certain
random delays. These delays can be, for example, the
waiting times of calls in a telephone call center, the
waiting times of patients at a walk-in medical clinic or
at the emergency room, the waiting time of passen-
gers at an airport check-in counter, the delivery time
of an order, the travel time in some transportation net-
work, etc. In all these situations, a user is mostly inter-
ested in what the user’s own waiting time is likely to
be. That is, the user is much more interested in the
probability distribution of the waiting time than in hav-
ing a good estimate of the expectation (or global
mean) (Nelson 2008, Smith and Nelson 2015).

When one makes a call to a call center and all agents
are busy, a good forecast of the waiting time is certain-
ly appreciated. Based on this forecast, the caller may
decide that there is enough time to engage in another
activity before getting an answer. The expected wait-
ing time alone is not sufficient to make such a decision
because, for example, it does not tell the probability of
missing the call when going out for x minutes. A dis-
tributional forecast, which provides a density of the
waiting time distribution (perhaps conditional on the
current time and system state) is much more informa-
tive and helpful (Thiongane et al. 2021). This applies to
waiting times in many other types of service systems.
Users are interested in the density (or distribution) of
their waiting time, not just the expectation. When a
manufacturer orders parts from a supplier or a retail
store orders items from the manufacturer or distribu-
tor, an estimate of the density of the time until delivery
(and not just its expectation) gives them a good idea of
what can happen, including the probability that the
parts or items will arrive on time and the distribution
of the delay if there is one. In a large construction pro-
ject that involves many activities of random durations

and precedence constraints, the total time to complete
the project is a random variable X usually modeled by
a stochastic activity network (see Section 4.3). Know-
ing the density of X permits one to assess the risks in
signing contracts that impose various types of penal-
ties when X is too large. In many other situations, X is
a cost or a profit and estimating the density of X is
again more interesting and useful than just the expec-
tation. In a finance application, for example, X may
represent an investment loss over a given month, and
the density of X provides much more information on
the possibilities of large losses (and perhaps bankrupt-
cy) than just the mean. We report numerical experi-
ments for a finance-type example in Section 4.6.

So simulation users are interested in the whole dis-
tribution of the output and not only the mean. One
way to visualize the entire distribution of X is to look
at the empirical cumulative distribution function (cdf)
of the observations. But density estimators (including
histograms) are preferred because they give a better
visual insight on the distribution than the cdf. For this
reason, leading simulation software routinely pro-
vides histograms and enhanced boxplots that give a
rough idea of the distribution of the output random
variables of interest. For example, the standard output
display in SimioTM is a histogram enhanced with a
boxplot, named Simio measure of risk and error (Stur-
rock and Pegden 2010, Smith and Nelson 2015). When
X has a continuous distribution, these histograms and
boxplots are, in fact, just primitive forms of density es-
timators. So why are better density estimators not rou-
tinely offered? Mainly because nonparametric density
estimation is difficult.

If the density of X is assumed to have a known para-
metric form, for example, a normal or gamma distribu-
tion, then one can estimate the parameters from data
in the usual way (e.g., by maximum likelihood), and
things are simple. But, in typical complex models, X
does not have a known and simple form of distribu-
tion. There are semiparametric procedures in which the
density is assumed to belong to a Hilbert space of
functions, which are linear combinations of a finite
number of fixed basis functions, and the coefficients
are estimated by penalized regression. These are
known as smoothing spline models (Gu and Qiu 1993,
Yu et al. 2020). But it is often difficult to select basis
functions that capture the unknown density, and a
good choice depends on the problem. In this paper,
we focus on nonparametric methods in the sense that
we assume no particular form for the density of X. On
the other hand, the input distributions in the simula-
tion model may be parametric (they often are). The
most widely used nonparametric density estimation
methods are the histogram and the kernel density estima-
tor (KDE) (Parzen 1962, Silverman 1986, Wand and
Jones 1995, Scott 2015). Given n independent
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realizations of X, the mean integrated square error
(MISE) between the true density and a histogram with
optimally selected divisions converges only as
O(n−2=3). With the KDE, the MISE converges as
O(n−4=5) in the best case. These rates are slower than
the canonical O(n−1) rate for the variance of the sam-
ple average as an unbiased estimator of the mean. The
slower rates stem from the presence of bias. See for ex-
ample Scott (2015) for details. For a histogram, taking
wider rectangles reduces the variance but increases
the bias by flattening out the short-range density var-
iations. A compromise must be made to minimize the
MISE. The same happens with the KDE with the rect-
angle width replaced by the bandwidth of the kernel.
Selecting a good bandwidth for the KDE is particu-
larly difficult. The bandwidth should ideally vary
over the interval in which we estimate the density; it
should be smaller when the density is larger and/or
smoother and vice versa. This is complicated to imple-
ment. Handling discontinuities in the density is also
problematic. These difficulties discourage the use of
KDEs (instead of histograms) to report simulation re-
sults in general-purpose software.

KDE and other related density estimation meth-
ods were developed mainly for the situation in
which n independent realizations of X are given and
nothing else is known as traditionally assumed in
classic nonparametric statistics, and one wishes to
estimate the density from them (Scott 2015). But, in a
Monte Carlo (MC) setting, in which the n observations
are generated by simulation, there are opportunities to
do better by controlling the way we generate the real-
izations and by exploiting the fact that we know the un-
derlying stochastic model. This is the subject of the pre-
sent paper.

Our approach combines two general ideas. The first
one is to build a smooth estimator of the cdf via condi-
tional Monte Carlo (CMC) and take the corresponding
conditional density to estimate the unknown density.
We call it a conditional density estimator (CDE). Under
appropriate conditions, the CDE is unbiased and has
uniformly bounded variance, so its MISE is O(n−1) for
n samples. This idea of using CMC is mentioned by
Asmussen and Glynn (2007), example 4.3, and further
studied in Asmussen (2018), but only for the special
case of estimating the density of a sum of independent
and identically distributed (i.i.d.) continuous random
variables having a known density. Asmussen (2018)
simply “hides” the last term of the sum, meaning that
the last random variable is not generated, and he takes
a shifted version of the known density of this last vari-
able to estimate the density, the value at risk, and the
conditional value at risk for the sum. His setting is
equivalent to a sum of two independent random vari-
ables: the first one is the partial sum, which is generat-
ed and on which we condition, and the second one is

the last variable, which is not generated. Fu (2006)
mentions this same idea in one of his examples.

Smoothing by CMC before taking a stochastic deriv-
ative has been studied earlier for estimating the deriv-
ative of an expectation (Gong and Ho 1987, L’Ecuyer
and Perron 1994, Fu and Hu 1997) and the derivative
of a quantile (Fu et al. 2009) with respect to a model pa-
rameter. This is known as smoothed perturbation analysis
(SPA). In retrospect, one can say that the CDE at a giv-
en point x is an SPA estimator obtained by viewing the
cdf F(x) as the expectation and x as the model parame-
ter. However, nobody studied this idea for density es-
timation until Asmussen (2018) did it for his special
case.

The main contribution of this paper is to show how
this CDE approach can be used to estimate the density
in a much more general setting than Asmussen (2018),
to give conditions under which it provides an unbi-
ased density estimator, and to examine how effective
it is via experiments on several types of examples. In
most of these examples, X is not defined as a sum of
random variables, and we often have to hide more
than just one random variable to do the conditioning.
A key unbiasedness condition is that the conditional
cdf must be a continuous function of the point x at
which we estimate the density. In other words, the
conditional distribution of X under the selected condi-
tioning must have a density with respect to the Leb-
esgue measure. The variance of the density estimator
may depend strongly on which variables we hide,
that is, on what we are conditioning. We illustrate this
with several examples, and we provide guidelines for
the choice of conditioning. Interestingly, although the
KDE is defined as an average of n randomly shifted
copies of the (fixed) kernel density, the CDE is an av-
erage of n conditional densities, which are generally
different and random.

In addition to being unbiased, the CDE often has
less variation than the KDE as a function of the under-
lying uniform random numbers. As a result, its com-
bination with randomized quasi–Monte Carlo (RQMC)
tends to bring much more improvement than for the
KDE. We observe this in all our experiments. Under
appropriate conditions, it can be proved that combin-
ing the CDE with RQMC provides a density estimator
whose MISE converges at a faster rate than O(n−1), for
instance, O(n−2+ε) for any ε > 0 in some situations. We
observe this fast rate empirically on numerical exam-
ples. This happens essentially when the CDE is a
smooth function of the underlying uniforms. To our
knowledge, this type of convergence rate has never
been proved or observed for nonparametric density
estimation.

The combination of RQMC with an ordinary KDE
was studied by Ben Abdellah et al. (2021), who were
able to prove a faster rate than O(n−4=5) for the MISE
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when the RQMC points have a small number of di-
mensions. They observed this faster rate empirically
on examples. They also showed that the MISE reduc-
tion from RQMC degrades rapidly when the band-
width is reduced (to reduce the bias) or when the
dimension increases. The CDE+RQMC approach stud-
ied in the present paper avoids this problem (there is no
bias and no bandwidth) and is generally much more ef-
fective than the KDE+RQMC combination. We provide
numerical comparisons in our examples.

Other Monte Carlo density estimators were pro-
posed very recently, also based on the idea of esti-
mating the derivative of the cdf but using a likeli-
hood ratio (LR) method instead. The LR method was
originally designed to estimate the derivative of the
expectation with respect to parameters of the distri-
bution of the underlying input random variables
(Glynn 1987, L’Ecuyer 1990). Laub et al. (2019) pro-
pose an estimator that combines a clever change of
variable with the LR method to estimate the density
of a sum of random variables as in Asmussen (2018),
but in a setting in which the random variables can be
dependent. Peng et al. (2018) propose a generalized
version of the LR gradient estimator method, named
GLR, to estimate the derivative of an expectation
with respect to a more general model parameter. Lei
et al. (2018) sketch out how GLR could be used to es-
timate a density. Formulas for these GLR density es-
timators are given in theorem 1 of Peng et al. (2020).
We compare them with the CDE estimators in our
numerical illustrations.

Density estimation has other applications than just
visualizing the distribution of an output random vari-
able (Van der Vaart 2000, Scott 2015). For instance,
when computing a confidence interval for a quantile
using the central limit theorem, one needs a density
estimator at the quantile to estimate the variance
(Serfling 1980; Asmussen and Glynn 2007; Nakayama
2014a, b). See Online Section B.4. Another application
is for maximum likelihood estimation when the likeli-
hood does not have a closed-form expression, so to
maximize it with respect to some parameter θ, the
likelihood function (which in the continuous case is a
density at any value of θ) must be estimated (Van der
Vaart 2000, Peng et al. 2020). A related application is
the estimation of the posterior density of θ given
some data in a Bayesian model (Efron and Hastie
2016).

The remainder is organized as follows. In Section
2, we define our general setting, recall key facts
about density estimators, introduce the general
CDEs considered in this paper, prove some of their
properties, and give small examples to provide in-
sight on the key ideas. We also briefly recall GLR
density estimators. In Section 3, we explain how to
combine the CDE with RQMC and discuss the

convergence properties for this combination. Section
4 reports experimental results with various exam-
ples. Some of the examples feature creative ways of
conditioning to improve the effectiveness of the
method. Additional examples are examined in the
online supplement. Section 5 summarizes the key is-
sues and guidelines on the construction and applica-
tions of the CDE. A conclusion is given in Section 6.
The main ideas of this paper were presented at a Sta-
tistical and Applied Mathematical Sciences Institute
workshop on quasi–Monte Carlo methods in North
Carolina and at a Johann Radon Institute for Com-
putational and Applied Mathematics workshop in
Linz, Austria, both in 2018.

2. Model and Conditional Density
Estimator

2.1. Density Estimation Setting
We have a real-valued random variable X that can
be simulated from its exact distribution, but we do
not know the cdf F and density f of X. Typically, X
is an easily computable function of several other
random variables with known densities. Our goal
is to estimate f over a finite interval [a,b]. Let f̂ n de-
note an estimator of f based on a sample of size n.
We measure the quality of f̂ n by the MISE defined
as

MISE �MISE(̂f n) �
∫ b

a
E[(̂f n(x) − f (x))2]dx: (1)

The MISE is the sum of the integrated variance (IV) and
the integrated square bias (ISB):

MISE � IV+ ISB �
∫ b

a
E(̂f n(x) −E[̂f n(x)])2dx

+
∫ b

a
(E[̂f n(x)] − f (x))2dx:

A standard way of constructing f̂ n when X1, : : : ,Xn

are n independent realizations of X is via a KDE, de-
fined as follows (Parzen 1962, Scott 2015):

f̂ n(x) �
1
nh

∑n
i�1

k
x−Xi

h

( )
,

where the kernel k is a probability density over R, usu-
ally symmetric about zero and nonincreasing over
[0,∞), and the constant h > 0 is the bandwidth, whose
role is to stretch (or compress) the kernel horizontally
to smooth out (or unsmooth) the estimator f̂ n.
The KDE was developed for the setting in which
X1, : : : ,Xn are given a priori, and it is the most popular
estimator for this situation. It can be used as well
when X1, : : : ,Xn are independent observations pro-
duced by simulation from a generative model, but
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then there is an opportunity to do better as we now
explain.

2.2. Conditioning and the Stochastic Derivative
as an Unbiased Density Estimator

Because the density of X is the derivative of its cdf,
f (x) � F′(x), a natural idea would be to take the deriva-
tive of an estimator of the cdf as a density estimator.
The simplest candidate for a cdf estimator is the empir-
ical cdf:

F̂n(x) � 1
n

∑n
i�1

I[Xi ≤ x],

but dF̂n(x)=dx � 0 almost everywhere, so this one can-
not be a useful density estimator. Here, F̂n(x) is an un-
biased estimator of F(x) at each x, but its derivative is
a biased estimator of F′(x). That is, because of the dis-
continuity of F̂n, we cannot exchange the derivative
and expectation:

0 � E
dF̂n(x)
dx

[ ]
� dE[̂Fn(x)]

dx
� F′(x):

A general framework to construct a continuous
estimator of F via CMC is the following. Replace the
indicator I[X ≤ x] by its conditional cdf given filtered
(reduced) information G: F(x | G) �def P[X ≤ x | G],
where G is a sigma field that contains not enough in-
formation to reveal X but enough to compute
F(x | G). Here, knowing the realization of G means
knowing the realizations of all G-measurable ran-
dom variables. Our CDE to estimate f(x) is the condi-
tional density f (x | G) �defF′(x | G) � dF(x | G)=dx, when it
exists. We assume that this estimator can be comput-
ed (or approximated) for (almost) all realizations of
G. Under the following assumption, we prove that
f (x | G) exists almost surely and is an unbiased esti-
mator of f(x) whose variance is bounded uniformly
in x. Because F(· | G) cannot decrease, f (· | G) is never
negative.

Assumption 1. For all realizations of G, F(x | G) is a con-
tinuous function of x over the interval [a,b] and is differen-
tiable except perhaps at a countable set of points
D(G) ⊂ [a,b]. For all x ∈ [a,b], F(x | G) is differentiable at x
with probability one. There is also a random variable Γ de-
fined over the same probability space as F(x | G) such that
E[Γ2] ≤ Kγ for some constant Kγ <∞ and for which
supx∈[a,b]\D(G)F

′(x | G) ≤ Γ:

Proposition 1. Under Assumption 1, E[f (x | G)] � f (x)
and Var[f (x | G)] ≤ Kγ for all x ∈ [a,b].
Proof. We adapt the proof of theorem 1 of L’Ecuyer
(1990). By theorem 8.5.3 of Dieudonné (1969), which is
a form of mean value inequality theorem for nondif-
ferentiable functions, for every x ∈ [a,b] and δ > 0,

with probability one, we have

0 ≤ Δ(x,δ,G)
δ

�def F(x+ δ | G) − F(x | G)
δ

≤ sup
y∈[x,x+δ]\D(G)

F′(y | G) ≤ Γ:

Then, by the dominated convergence theorem,

E lim
δ→0

Δ(x,δ,G)
δ

[ ]
� lim

δ→0
E

Δ(x,δ,G)
δ

[ ]
,

which shows the unbiasedness. Moreover, Var[f (x | G)] �
Var[F′(x | G)] ≤ E[Γ2] ≤ Kγ. w

Suppose now that G(1), : : : ,G(n) are n independent
realizations of G, so F(x | G(1)), : : : ,F(x | G(n)) are inde-
pendent realizations of F(x | G), and consider the CDE

f̂ cde,n(x) �
1
n

∑n
i�1

f (x | G(i)): (2)

Under Assumption 1, it follows from Proposition
1 that ISB(̂f cde,n) � 0 and MISE(̂f cde,n) � IV(̂f cde,n) ≤
(b− a)Kγ=n. An unbiased estimator of this IV is
given by

ÎV � ÎV( f̂ cde,n) �
1

n− 1

∫ b

a

∑n
i�1

f (x | G(i)) − f̂ cde,n(x)
[ ]2

dx:

(3)

In practice, this integral can be approximated by
evaluating the integrand at a finite number of points
over [a,b] and taking the average multiplied by
(b− a).

The variance of the CDE estimator at x is
Var[f (x | G)], where x is fixed and G is random. This
differs from the variance associated with the condi-
tional density f (· | G), which is Var[X | G]. It is well
known that, in general, when estimating E[X], a CMC
estimator never has a larger variance than X itself,
and the more information we hide, the smaller the
variance. That is, if G ⊂ G̃ are two sigma fields such
that G contains only a subset of the information of G̃,
then

Var[E[X | G]] ≤ Var[E[X | G̃]] ≤ Var[X]: (4)

Noting that F(x | G) � E[I[X ≤ x] | G], we also have

Var[F(x | G)] ≤ Var[F(x | G̃)] ≤ Var[I[X ≤ x]]
� F(x)(1− F(x)):

Thus, (4) applies as well to the (conditional) cdf esti-
mator. However, applying it to the CDE is less
straightforward. It is obviously not true that Var[F′(x |
G)] ≤ Var[dI[X ≤ x]=dx] because the latter is zero
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almost everywhere. Nevertheless, we can prove the
following.

Lemma 1. If G ⊂ G̃ both satisfy Assumption 1, then for all
x ∈ [a,b], we have Var[f (x | G)] ≤ Var[f (x | G̃)].
Proof. The result does not follow directly from (4) be-
cause F′ is not an expectation; this is why our proof
does a little detour. For an arbitrary x ∈ [a,b] and a
small δ > 0, define the random variable I � I(x,δ) �
I[x < X ≤ x+ δ]. We have E[I | G] � F(x+ δ | G) − F(x | G),
as in the proof of Proposition 1, and similarly for G̃. Using
(4) with I in place ofX gives

Var[E[I | G]] ≤ Var[E[I | G̃]]: (5)

We have

f (x | G) � lim
δ→0

F(x+ δ | G) − F(x | G)
δ

� lim
δ→0

E[I(x,δ)=δ | G]

and similarly for G̃. Combining this with (5), we
obtain

Var[f (x | G)] � Var[lim
δ→0

E[I(x,δ)=δ | G]]
� lim

δ→0
Var[E[I(x,δ)=δ | G]]

≤ lim
δ→0

Var[E[I(x,δ)=δ | G̃]]
� Var[lim

δ→0
E[I(x,δ)=δ | G̃]] � Var[f (x | G̃)],

in which the exchange of “Var” with the limit (at two
places) can be justified by a similar argument as in
Proposition 1. More specifically, we need to apply the
dominated convergence theorem to E[I(x,δ)=δ | G],
which is just the same as in Proposition 1, and also to
its square, which is also valid because the square is
bounded uniformly by Γ2. This completes the proof. w

This lemma tells us that conditioning on less infor-
mation (hiding more) always reduces the variance of
the CDE (or keep it the same). But, if we hide more,
the CDE may be harder or more costly to compute, so
a compromise must be made to minimize the work-
normalized MISE (which is the MISE multiplied by
the expected time to compute the estimator), and the
best compromise is generally problem-dependent.
When none of G or G̃ is a subset of the other, the var-
iances of the corresponding conditional density esti-
mators may differ significantly, and Lemma 1 does
not apply, so other strategies must be used to select G
when there are multiple possibilities.

In our setting, the most important condition is that
G must satisfy Assumption 1. Any such G provides an
unbiased density estimator with finite variance. When
there are multiple choices, in general, we want to
choose G so that the conditional density tends to be

spread out as opposed to being concentrated in a nar-
row peak. We give concrete examples of this in Sec-
tion 4. This criterion is heuristic. If f is very spiky itself,
then the CDE must be spiky as well because
Var[X | G] ≤ Var[X], and yet Var[f (x | G)] can be very
small, even zero in degenerate cases. Also, a large
Var[X | G] for all G is not sufficient because the large
variance may come from two or more separate spikes,
and this is why we write “spread out” instead of
“large variance.” Roughly, we want the CDE f (· | G) to
be spread out relative to f for all realizations of G.

A more elaborate selection criterion should take into
account the IV of the CDE, its computing cost, and also
the variation of the resulting CDE as a function of the un-
derlying uniform random numbers in case we want to
use RQMC to generate those random numbers (see Sec-
tion 3). For real-life models, it is usually much too hard
to precompute such measures, so the best practice would
be to identify a few promising candidates and either (1)
perform pilot runs to compare their effectiveness and se-
lect one or (2) take a convex combination of the corre-
sponding CDEs as explained in Section 2.4. We believe
that finding a good G always remains largely problem-
dependent, and it sometimes requires creativity. No sim-
ple selection method works universally. On the other
hand, to make good selections, it is useful to understand
certain basic principles. We illustrate this with a variety
of examples in the next section and in Section 4.

2.3. Small Examples to Provide Insight
To illustrate some key ideas, this section provides sim-
ple examples formulated in the special setting in
which X � h(Y1, : : : ,Yd), where Y1, : : : ,Yd are indepen-
dent continuous random variables, each Yj has cdf Fj
and density fj, and we condition on G � G−k defined as
the information that remains after erasing the value
taken by the single input variable Yk. We can write
G−k � (Y1, : : : ,Yk−1,Yk+1, : : : ,Yd). The CDE f (x | G−k) is
related to the density fk and depends on the form of h.
Checking for the continuity of the conditional cdf is
usually easy in this case. Note that this setting is only
a particular case of our framework. In many applica-
tions, X is not defined like this in a way that G−k
would satisfy Assumption 1 for some k. In Section 4,
we examine examples that do not fit this setting, and
we provide more elaborate forms of conditioning.

Our first example is a sum of random variables,
similar to Asmussen (2018). It conveys the CDE idea
in a simple setting. It also shows that selecting which
variable to hide is not straightforward even in this
very simple setting and that the optimal choice may
depend on the value of x at which we estimate the
density. The second example shows how the choice of
G can make a significant difference in performance
and that it is usually better to hide variables having a
larger variance contribution. The third example
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illustrates what we have to do to verify Assumption 1
for a given application. The fourth example shows
that we cannot always obtain an unbiased CDE by
hiding a single variable. The fifth example shows that
it is not always easy to know what is the optimal in-
formation to hide. On the other hand, the CDE can
still work well even if we do not use the optimal G.

Example 1. A very simple situation is when X �
h(Y1, : : : ,Yd) � Y1+⋯ +Yd, a sum of d independent
continuous random variables. By hiding Yk for an ar-
bitrary k, we get

F(x | G−k) � P[X ≤ x | S−k] � P[Yk ≤ x− S−k]
� Fk(x− S−k),

where S−k �def
∑d

j�1, j�k Yj, and the density estimator be-
comes f (x | G−k) � fk(x− S−k). This form also works
when the Yj’s are not independent if we are able to
compute the density of Yk conditional on G−k. It then
suffices to replace fk by this conditional density. As-
mussen (2018) studies exactly this model with inde-
pendent variables and k � d.

When the Yj’s have different distributions and we
want to hide one, which one should we hide? Intuition
may suggest hiding the one having the largest variance.
This simple rule works well in a majority of cases al-
though it is not always optimal. In particular, the optimal
choice of variable Yk may depend on the value of x at
which we estimate the density. To illustrate this, let d � 2,
X � Y1 +Y2, f1(y) � 2y, and f2(y) � 2(1− y) for y ∈ (0, 1).
Then, f(x) > 0 for 0 < x < 2. If we hide Y2, the density esti-
mator at x is f2(x−Y1) and its second moment is
E[f 22 (x−Y1)] � ∫ 1

0
f 22 (x− y1)f1(y1)dy1, whereas if we hide

Y1, the density estimator at x is f1(x−Y2), and its second
moment is E[f 21 (x−Y2)] � ∫ 1

0
f 21 (x− y2)f2(y2)dy2. One

can easily verify that when x is close to zero, these inte-
grands are nonzero only when both y1 and y2 are also
close to zero, and then the second integral is smallest, so
it is better to hide Y1. When x is close to two, the opposite
is true, and it is better to hide Y2. In applications, chang-
ing the conditioning as a function of x adds complications
and is normally not necessary. Using the same condition-
ing for all x, even when not optimal, is usually preferable
because of its simplicity.

Example 2. The following small example provides
further insight into the choice of G. Suppose X is the
sum of two independent uniform random variables:
X � Y1 +Y2, where Y1 ~ U(0, 1), and Y2 ~ U(0,ε),
where 0 < ε < 1. The exact density of X here is f (x) �
x=ε for 0 ≤ x ≤ ε, f(x) � 1 for ε ≤ x ≤ 1, and f (x) �
(1+ ε− x)=ε for 1 ≤ x ≤ 1+ ε. Figure 1 illustrates this
density.

With G � G−1, we have F(x | G−1) � P[X ≤ x | Y2] �
P[Y1 ≤ x−Y2 | Y2] � x−Y2, and the density estimator

is f (x | G−1) � 1 for Y2 ≤ x ≤ 1+Y2 and zero elsewhere.
If G � G−2 instead, then F(x | G−2) � P[Y2 ≤ x−Y1 |
Y1] � (x−Y1)=ε, and the density estimator is f (x |
G−2) � 1=ε for Y1 ≤ x ≤ ε+Y1 and zero elsewhere. In
both cases, Assumption 1 holds, and the density esti-
mator with one sample is a uniform density, but the
second one is over a narrow interval if ε is small.
When ε is small, G � G−2 gives a density estimator
f̂ cde,n, which is a sum of high narrow peaks and has
much larger variance. For this simple example, we
can also derive exact formulas for the IV of the CDE
under MC. For G � G−1, f (x | G−1) � I[Y2 ≤ x ≤ 1+Y2]
is a Bernoulli random variable with mean P[x− 1 ≤
Y2 ≤ x] � f (x), so its variance is f (x)(1− f (x)). Integrating
this over [0, 1+ ε] gives IV � ε=3 for one sample. For a
sample of size n, this gives IV � ε=(3n). For G � G−2, f (x |
G−2) � I[Y1 ≤ x ≤ ε+Y1]=ε has also mean f(x), but its
variance is ε−1f (x)(1− εf (x)), which is much larger than
f (x)(1− f (x)) when ε is small. Integrating over [0, 1+ ε]
gives IV � 1=ε− 1+ ε=3 for one sample, which is also
much larger than ε=3 when ε is small. The takeaway:
It is usually better to condition on lower variance in-
formation and hide variables having a large variance
contribution.

Example 3. In this example, we illustrate how As-
sumption 1 can be verified. Let X be the sum of two
independent normal random variables, X � Y1 +Y2,
where Y1 ~N (0,σ21), Y2 ~N (0,σ22), and σ21 + σ22 � 1, so
X ~N (0, 1). Let Φ and φ denote the cdf and density of
the standard normal distribution. With G � G−2, we
have F(x | G−2) � P[Y2 ≤ x−Y1] �Φ((x−Y1)=σ2), and
the CDE is f (x | G−2) � φ((x−Y1)=σ2)=σ2. Assumption
1 holds with Γ � φ(0)=σ2 and Kγ � Γ2, so this estimator
is unbiased for f (x) � φ(x). Its variance is

Var[φ((x−Y1)=σ2)=σ2]
� E[exp[−(x−Y1)2=σ22]=(2πσ22)] −φ2(x)
� 1

σ22
����
2π

√ E[φ( ��
2

√ (x−Y1)=σ2)] −φ2(x)

� 1

σ2

��������������
2π(1+ σ21)

√ φ
��
2

√
x=

��������
1+ σ21

√( )
−φ2(x):

(6)

Example 4. If X is the min or max of two or more con-
tinuous random variables, then in general, F(· | G−k) is
not continuous, so if we hide only one variable, As-
sumption 1 does not hold. Indeed, if X �max (Y1,Y2),
where Y1 and Y2 are independent, with G � G−2 (we
hide Y2), we have

P[X ≤ x | Y1 � y] � P[Y2 ≤ x | Y1 � y] � F2(x) if x ≥ y;
0 if x < y:

{
If F2(y) > 0, this function is discontinuous at x � y.
The same holds for the maximum of more than two
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variables. One way to handle this is to generate all the
variables and then hide the max and compute its condi-
tional density given the other ones. Without loss of gen-
erality, suppose Y1 is the max and Y2 � y2 the second
largest. Then, the CDE of the max is f (x | G) �
f1(x | Y1 > y2). Note that, for independent random varia-
bles whose cdfs and densities have an analytical form,
the cdf and density of the max can often be computed
analytically. See Section 4.3 for more on this. A very sim-
ilar story holds if we replace the max by the min.

Example 5. Suppose X � Z ·C, where Z ~N(0, 1) and
C is continuous with support over (0,∞). We can hide
Z and generate X ~N(0,C2) conditional on C or do the
opposite. Which one is best depends on the distribu-
tion of C. Here, we have Var[X] � E[Var[X | C]] �
E[C2], and Var[E[X | C]] � 0. So the usual variance de-
composition tells us nothing about what to hide. This
illustrates the fact that there is rarely a simple rule to
find the optimal G.

2.4. Convex Combination of Conditional
Density Estimators

When there are many possible choices of G for a given
problem, one can select more than one and take a con-
vex linear combination of the corresponding CDEs as
the final density estimator. This idea is well known
for general mean estimators (Bratley et al. 1987). More
specifically, suppose f̂ 0,n, : : : , f̂ q,n are q + 1 distinct un-
biased density estimators. Typically, these estimators
are dependent and based on the same simulations.
They could be all CDEs based on different choices of
G (so they do not hide the same information), but
there could be non-CDEs as well. A convex combina-
tion can take the form

f̂ n(x) � β0 f̂ 0,n(x)+⋯ +βq f̂ q,n(x)

� f̂ 0,n(x) −
∑q
ℓ�1

βℓ( f̂ 0,n(x) − f̂ ℓ,n(x)) (7)

for all x ∈ R, where β0+⋯ +βq � 1. This is equivalent

to choosing f̂ 0,n(x) as the main estimator and taking

the q differences f̂ 0,n(x) − f̂ ℓ,n(x) as control variables
(Bratley et al. 1987, problem 2.3.9). With this interpre-
tation, the optimal coefficients βℓ can be estimated via

standard control variate theory (Asmussen and Glynn
2007) by trying to minimize the IV of f̂ n(x) with re-

spect to the βℓ’s. More precisely, if we denote IVℓ �
IV(̂f ℓ,n(x)) and ICℓ,k �

∫ b

a
Cov[̂f ℓ,n(x), f̂ k,n(x)]dx, we ob-

tain

IV � IV f̂ n(x)
( )

�∑q
ℓ�0

β2ℓIVℓ + 2
∑

0≤ℓ<k≤q
βℓβkICℓ,k:

Given the IVℓ s and ICℓ,k s (or good estimates of
them), this IV is a quadratic function of the βℓ’s, which
can be minimized exactly as in standard least squares
linear regression. That is, the optimal coefficients βj
obey the standard linear regression formula. Estimat-
ing the density and coefficients from the same data
yields biased but consistent density estimators, and
the bias is rarely a problem. We follow this approach
for some of the examples in Section 4. Cui et al. (2020)
obtain an equivalent formula from slightly different
but equivalent reasoning.

Given that the best choice of G generally depends
on x, one may also adopt a more refined approach
that allows the coefficients βj to depend on x:

f̂ n(x) � β0(x)̂f 0,n(x) +⋯ + βq(x)̂f q,n(x)

� f̂ 0,n(x) −
∑q
ℓ�1

βℓ(x)(̂f 0,n(x) − f̂ ℓ,n(x)), (8)

where β0(x)+⋯ +βq(x) � 1 for all x ∈ R. The optimal co-
efficients can be estimated by standard control variate
theory at selected values of x and then, for each ℓ ≥ 1,
one can fit a smoothing spline to these estimated values
by least squares. This provides estimated optimal coeffi-
cients that are smooth functions of x, which can be used
to obtain a final CDE. This type of strategy was used in
L’Ecuyer and Buist (2008) to estimate varying control
variate coefficients. The additional flexibility can im-
prove the variance reduction in some situations.

2.5. A Generalized Likelihood Ratio (GLR)
Density Estimator (GLRDE)

The GLR method, originally developed by Peng et al.
(2018) to estimate the derivative of an expectation
with respect to some model parameter, can be
adapted to density estimation as shown in Peng et al.

Figure 1. (Color online) Exact Density of X for theModel in Example 2 with ε � 3=4 (Left) and ε � 1=16 (Right)
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(2020). We summarize briefly here how this method
estimates the density f(x) in our general setting so we
can apply it in our examples and make numerical
comparisons. The assumptions stated differ slightly
from those in Peng et al. (2020). In particular, here we
do not have a parameter θ, the conditions on the esti-
mator are required only in the area in which X ≤ x,
and we add a condition to ensure finite variance.
As in Section 2.3, we assume here that X � h(Y) �
h(Y1, : : : ,Yd), where Y1, : : : ,Yd are independent contin-
uous random variables, and Yj has cdf Fj and density fj.
Let P(x) � {y ∈ R

d : h(y) ≤ x}. For j � 1, : : : ,d, let
hj(y) :� ∂h(y)=∂yj, hjj(y) :� ∂2h(y)=∂y2j , and

Ψj(y) � ∂ log fj(yj)=∂yj − hjj(y)=hj(y)
hj(y) : (9)

Assumption 2. The Lebesgue measure of h−1((x− ε,x+
ε)) in R

d goes to zero when ε→ 0 (this means essentially
that the density is bounded around x).

Assumption 3. The set P(x) is measurable; the functions
hj, hjj, and Ψj are well defined over it; and E[I[X ≤
x] ·Ψ2

j (Y)] < ∞.

Proposition 2. Under Assumptions 2 and 3, the GLRDE
I[X ≤ x] ·Ψj(Y) is an unbiased and finite-variance estima-
tor of the density f(x) at x.

For the proof of Proposition 2 and additional de-
tails, see Peng et al. (2020).

3. Combining RQMC with the CMC
Density Estimator

We now discuss how RQMC can be used with the
CDE and under what conditions it can provide a con-
vergence rate faster than O(n−1) for the IV of the re-
sulting unbiased estimator. For this, we first recall
some basic facts about QMC and RQMC. More de-
tailed coverage can be found in Niederreiter (1992),
Dick and Pillichshammer (2010), and L’Ecuyer (2009,
2018), for example.

For a function g : [0,1)s → R, the integration error by
the average over a point set Pn � {u1, : : : ,un} ⊂ [0,1]s is
defined by

En � 1
n

∑n
i�1

g(ui) −
∫
[0,1]s

g(u)du: (10)

Classic QMC theory bounds this error as follows. Let
v ⊆ S :� {1, : : : , s} denote an arbitrary subset of coordi-
nates. For any point u � (u1, : : : ,us) ∈ [0,1]s, uv denotes
the projection of u on the coordinates in v and (uv,1)
is the point u in which uj is replaced by one for each
j ∈ v. Let gv :� ∂|v|g=∂uv denote the partial derivative of
g with respect to all the coordinates in v. When gv ex-
ists and is continuous for v � S (i.e., for all v ⊆ S), the

Hardy–Krause (HK) variation of g can be written as

VHK(g) �
∑

∅�v⊆S

∫
[0,1]|v|

gv(uv,1)
∣∣ ∣∣duv: (11)

On the other hand, the star-discrepancy of Pn is

D∗(Pn) � sup
u∈[0,1]s

|Pn ∩ [0,u)|
n

− vol[0,u)
∣∣∣∣ ∣∣∣∣,

where vol[0,u) is the volume of the box [0,u). The
classical Koksma–Hlawka inequality bounds the absolute
error by the product of these two quantities, one that
involves only the function g and the other that in-
volves only the point set Pn:

| En | ≤ VHK(g) ·D∗(Pn): (12)

There are explicit construction methods (e.g., digital
nets, lattice rules, and polynomial lattice rules) of
deterministic point sets Pn for which D∗(Pn) �
O((logn)s−1=n) �O(n−1+ε) for all ε > 0. This means
that functions g for which VHK(g) <∞ can be integrat-
ed by QMC with a worst-case error that satisfies
|En| �O(n−1+ε). There are also known methods to ran-
domize these point sets Pn in a way that each random-
ized point ui has the uniform distribution over [0,1)s,
so E[En] � 0, and the O(n−1+ε) discrepancy bound is
preserved, which gives

Var[En] � E[E2
n] �O(n−2+ε): (13)

The classic definitions of variation and discrepancy
given are only one pair among an infinite collection of
possibilities. There are other versions of (12) with dif-
ferent definitions of the discrepancy and the variation
such that there are known point set constructions for
which the discrepancy converges as O(n−α+ε) for
α > 1, but the conditions on g to have finite variation
are more restrictive (more smoothness is required)
(Dick and Pillichshammer 2010).

From a practical viewpoint, getting a good estimate
or an upper bound on the variation of g that can be
useful to bound the RQMC variance is a notoriously
difficult problem. Even just showing that the variation
is finite is not always easy. However, finite variation
is not a necessary condition. In many realistic applica-
tions in which variation is known to be infinite,
RQMC can nevertheless reduce the variance by a large
factor (L’Ecuyer 2009, L’Ecuyer and Munger 2012, He
and Wang 2015). The appropriate explanation for this
depends on the application. In many cases, part of the
explanation is that the integrand g can be written as a
sum of orthogonal functions (as in an ANOVA decom-
position) and a set of terms in that sum have a large
variance contribution and are smooth, low-dimensional
functions for which RQMC is very effective (L’Ecuyer
and Lemieux 2000, L’Ecuyer 2009, Lemieux 2009). Mak-
ing such a decomposition and finding the important
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terms is difficult for realistic problems, but to apply
RQMC in practice, this is not needed. The usual ap-
proach in applications is to try it and compare the
RQMC variance with the MC variance empirically. We
do that in Section 4.

To combine the CDE with RQMC, we must be able
to write F(x | G) � g̃(x,u) and f (x | G) � g̃′(x,u) �
dg̃(x,u)=dx for some function g̃ : [a,b] × [0,1)s. The
function g̃′(x, ·) acts as g in (10). The combined

CDE+RQMC estimator f̂ cde-rqmc,n(x) is defined by

f̂ cde-rqmc,n(x) �
1
n

∑n
i�1

g̃′(x,Ui), (14)

which is the RQMC version of (2). To estimate the
RQMC variance, we can perform nr independent ran-
domizations to obtain nr independent realizations of
f̂ cde-rqmc,n in (14) with RQMC and compute the empiri-
cal IV. By putting together the previous results, we ob-
tain the following.

Proposition 3. If supx∈[a,b]VHK(g̃′(x, ·)) <∞, then with
RQMC points sets Pn with D∗(Pn) �O((logn)s−1=n),
for any ε > 0, we have supx∈[a,b]Var[̂f cde-rqmc,n(x)] �
O(n−2+ε), so the MISE of the CDE+RQMC estimator con-
verges as O(n−2+ε).

Although this is rarely done in practice, it is in-
structive to see how the HK variation of g̃′(x, ·) can
be bounded in our CDE setting so that Proposition 3
applies. For this, we need to show that the integral
of the partial derivative of g̃′(x,u) with respect to
each subset of coordinates of u is finite. In Online
Section A, we do it for Examples 1–3. When the vari-
ation is unbounded, RQMC may still reduce the IV,
but there is no guarantee. The GLRDE in Proposition
2 is typically discontinuous because of the indicator
function, and therefore, its HK variation is usually
infinite.

4. Examples and Numerical Experiments
We now examine larger instructive examples for
which we show how to construct a CDE, summarize
the results of numerical experiments with the CDE
and CDE+RQMC, and make comparisons with the
GLRDE and KDE with MC and RQMC. Section 4.1
gives the experimental framework used for all the nu-
merical experiments. In Section 4.2, we use a three-
dimensional real-life example to provide further
insight on the choice of conditioning and make com-
parisons between methods. In Section 4.3, we estimate
the density of the length X of the longest path be-
tween the source and destination in a stochastic net-
work. This length may represent the total time to
execute a project, the arrival time of a train at a given

station, etc. The length of the shortest path can be han-
dled in a similar way. In Section 4.4, X is the waiting
time of a customer in a queuing system. We consider
a single queue in the example, but similar condition-
ing would apply for larger queueing systems as well.
In Section 4.6, X is the payoff of a financial option. We
show that, by using a clever conditioning with
CDE+RQMC, the MISE can be reduced by huge fac-
tors. More examples are given in the online supple-
ment. In all these examples, estimating the density of
X has high practical relevance. Larger problem instan-
ces can also be handled with the same methods.

4.1. Experimental Setting
Because the CDE is unbiased, we measure its perfor-
mance by the IV, which equals the MISE in this case.
To approximate the IV estimator (3) for a given n, we
first take a stratified sample e1, : : : , ene of ne evaluation
points at which the empirical variance is computed.
We sample ej uniformly in [a+ (j− 1)(b− a)=ne, a+
j(b− a)=ne) for j � 1, : : : ,ne. Then, we use the unbiased
IV estimator

ÎV � (b− a)
ne

∑ne
j�1

V̂ar[̂f n(ej)],

where V̂ar[̂f n(ej)] is the empirical variance of the CDE
at ej, obtained as follows. We repeat the following nr
times, independently: Generate n observations of X
from the density f with the given method (MC or
RQMC) and compute the CDE at each evaluation
point ej. We then compute V̂ar[̂f n(ej)] as the empirical
variance of the nr density estimates at ej for each j. In
all our examples, we use nr � 100 and ne � 128.

To estimate the convergence rate of the IV as a func-
tion of n with the different methods, we fit a model of
the form IV ≈ Kn−ν. For the CDE with independent
points (no RQMC), this model holds exactly with ν �
1. We hope to observe ν > 1 with RQMC. The parame-
ters K and ν are estimated by linear regression in
log-log scale, that is, by fitting the model log IV ≈
logK− νlogn to data. Because n is always taken as a
power of two, we report the logarithms in base two.
We estimate the IV for n � 214, : : : , 219 (six values) to fit
the regression model. We also report the observed
−log 2IV for n � 219 and use e19 as a shorthand for this
value in the tables. We use exactly the same procedure
for the GLRDE. For the KDE, these values are for the
MISE instead of the IV. In all cases, we use a normal
kernel and a bandwidth h selected by the methodolo-
gy described in Ben Abdellah et al. (2021). For some
examples, we tried CDEs based on different choices of
G and a convex combination as in Section 2.4.

We report results with the following types of point
sets:
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1. Independent points (MC).
2. A randomly shifted lattice rule (Lat+s).
3. A randomly shifted lattice rule with a baker’s

transformation (Lat+s+b).
4. Sobol points with a left random matrix scramble

and random digital shift (Sob+LMS).
The short names in parentheses are used in the plots

and tables. For the definitions and properties of these
RQMC point sets, see L’Ecuyer and Lemieux (2000),
Owen (2003), and L’Ecuyer (2009, 2018). They are im-
plemented in stochastic simulation in Java (SSJ) (L’E-
cuyer 2016), which we use for our experiments. The pa-
rameters of the lattice rules were found with the Lattice
Builder software of L’Ecuyer and Munger (2016), using
a fast-CBC construction method with the P2 criterion
and order-dependent weights γv � ρ|v| with ρ ranging
from 0.05 to 0.8, depending on the example (a larger ρ
was used when the dimension s was smaller). The
baker’s transformation sometimes improves the conver-
gence rate by making the integrand periodic (Hickernell
2002), but it can also increase the variation of the inte-
grand, so its impact on the variance can go either way.

4.2. Displacement of a Cantilever Beam
We consider the following (real-life) model for the dis-
placement X of a cantilever beam with horizontal and
vertical loads taken from Bingham (2017):

X � h(Y1,Y2,Y3) � 4ℓ3

Y1wt

�����������
Y2
2

w4 +
Y2
3

t4

√
(15)

in which ℓ � 100, w � 4, and t � 2 are constants (in in-
ches), and Y1 (Young’s modulus), Y2 (the horizontal
load), and Y3 (the vertical load), are independent nor-
mal random variables, Yj ~N (μj,σ

2
j ), that is, normal

with mean μj and variance σ2j . The parameter values

are μ1 � 2:9 × 107, σ1 � 1:45 × 106, μ2 � 500, σ2 � 100,
μ3 � 1000, σ3 � 100. We denote κ � 4ℓ3=(wt) � 5 × 105.
The goal is to estimate the density of X over the inter-
val [3:1707, 5:6675], which covers about 99% of the
density (it clips 0.5% on each side). It is possible to
have X < 0 in this model, but the probability is
P[Y1 < 0] � Φ(−20) � 2:8 × 10−89, which is negligible,
so we can assume that Y1 > 0. This example fits the
framework of Section 2.3 with d � 3. We can hide any
of the three random variables for the conditioning,
and we examine each case.

Conditioning on G−1 means hiding Y1. We have

X � κ

Y1

����������
Y2
2

w4 +
Y2
3

t4

√
≤ x if and only if

Y1 ≥ κ

x

����������
Y2
2

w4 +
Y2
3

t4

√
�defW1(x):

Note thatW1(x) > 0 if and only if x > 0. For x > 0,

F(x | G−1) � P[Y1 ≥W1(x) |W1(x)]
� 1−Φ((W1(x) −μ1)=σ1),

which is continuous and differentiable in x, and

f (x | G−1) � −φ((W1(x) −μ1)=σ1)W′
1(x)=σ1

� φ((W1(x) −μ1)=σ1)W1(x)=(xσ1):
If we condition on G−2 instead, that is, we hide Y2, we
have X ≤ x if and only if

Y2
2 ≤ w4 (xY1=κ)2 −Y2

3=t
4

( )
�defW2(x):

If W2(x) ≤ 0, then f (x | G−2) � F(x | G−2) � P[X ≤ x |
W2(x)] � 0. ForW2(x) > 0, we have

F(x | G−2) � P[X ≤ x |W2(x)]
� P − ��������

W2(x)
√ ≤ Y2 ≤

��������
W2(x)

√ |W2(x)
[ ]

�Φ(( ��������
W2(x)

√ − μ2)=σ2) −Φ(−( ��������
W2(x)

√ +μ2)=σ2),

which is again continuous and differentiable in x, and

f (x | G−2) � φ(( ��������
W2(x)

√ −μ2)=σ2) +φ(−( ��������
W2(x)

√ +μ2)=σ2)
(σ2

��������
W2(x)

√ )=(w4x(Y1=κ)2)
> 0:

If we condition on G−3, the analysis is the same as for
G−2, by symmetry, and we get

f (x | G−3) �
φ
(( ��������

W3(x)
√ − μ3

)
=σ3

)
+φ

(
−
( ��������

W3(x)
√ +μ3

)
=σ3

)
(
σ3

��������
W3(x)

√ )
=(t4x(Y1=κ)2)

> 0

for W3(x) > 0, where W3(x) is defined in a similar way
asW2(x).

For the GLRDE, we write h(Y) � (κ=Y1)S1=2, where
S � Y2

2=w
4 +Y2

3=t
4, and denote Zj � (Yj −μj)=σ2j �

−∂ log fj(Yj)=∂Yj for j � 1, 2, 3. With this notation, we
obtain h1(Y) � −h(Y)=Y1, h11(Y) � 2h(Y)=Y2

1, h2(Y) � (κ=Y1)
(Y2=w4)S−1=2 � h(Y)Y2=(Sw4), h22(Y) � (κ=(Y1w4))(S−1=2−
S−3=2Y2

2=w
4), h3(Y) � (κ=Y1)(Y3=t4)S−1=2 � h(Y)Y3=(St4),

h33(Y) � (κ=(Y1t4))(S−1=2 − S−3=2Y2
3=t

4). With a little cal-
culation, this gives

Ψ1(Y) � Y1Z1 − 2
h(Y) , Ψ2(Y) � −Y2Z2S+Y2

3=t
4

h(Y)Y2
2=w4 ,

Ψ3(Y) � −Y3Z3S+Y2
2=w

4

h(Y)Y2
3=t4

:

In addition to testing the individual estimators de-
rived here, we also tested convex combinations of the
three CDEs and three GLRDEs as explained in Section
2.4 with coefficients βℓ that do not depend on x.

Table 1 summarizes the results. The MISE is about
2−47 for the best CDE+RQMC compared with 2−15:8
for the usual KDE+MC, a gain by a factor of more
than 231 ≈ 2 billion. This is probably much better
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accuracy than required in practice for this particular
application. With RQMC, the convergence rate ν̂ is
around two in all cases with the CDE methods and
much less for GLRDE and KDE. The GLRDE usingΨ2
behaves very badly (the estimates ν̂ with RQMC are
meaningless), but with Ψ1 and Ψ3 (the best choice), it
performs better that the KDE. Note that the denomi-
nator of Ψ2 takes much smaller values on average
than that of Ψ3, and this can explain its larger
variance.

For the CDE with lattice rules, the baker’s transfor-
mation helps significantly for the CDE. Conditioning
on G−2 does not give as much reduction as for the oth-
er choices. To provide visual insight, Figure 2 shows
plots of five realizations of the conditional density for
G−1, G−2, and G−3. The realizations of f (· | G−2) have
high narrow peaks, which explains the larger vari-
ance. The dotted line shows the average of the five
realizations, and the bold black line is the true density.
In Figure 3, we zoom in on part of the estimated den-
sities to show the difference between MC and RQMC.
In each panel, one can see the CDE using MC (solid
line), RQMC (practically superposed with the dashed
line), and the true density (dashed line) estimated
with RQMC using a large number of samples. We
have G−1 with n � 210 on the left and G−2 with n � 216

on the right. In both cases, the RQMC estimate is clos-
er to the true density, and on the left, it oscillates less.
If we repeat this experiment several times, the orange
curve varies much more than the green one across the
realizations.

4.3. A Stochastic Activity Network
In this example, the conditioning for the CDE must
hide more than one random variable. We consider an
acyclic directed graph G � (N ,A), where N is a finite
set of nodes and A � {aj � (αj,βj), j � 1, : : : ,d} a finite
set of arcs (directed links), where aj goes from αj to βj.
There is a source node having only outcoming arcs, a
sink node having only incoming arcs, and each arc be-
longs to at least one path going from the source to the
sink. There can be at most one arc for each pair (αj,βj)
(no parallel arcs). Each arc j has random length Yj.
These Yj are assumed independent with continuous
cdfs Fj, density fj, and can be generated by inversion:
Yj � F−1j (Uj), where Uj ~U(0, 1). The length of the lon-
gest path from the source to the sink is a random vari-
able X, and the goal is to estimate the density of X.

This general model has several applications. The
arcs aj may represent activities having random dura-
tions, and the graph represents precedence relation-
ships between all activities of a project. Activity aj
cannot start before all activities j′ with βj′ � αj are
completed. Then, X represents the duration of the pro-
ject if all activities are started as soon as allowed. This
type of stochastic activity network (SAN) is widely used
in project management for all types of projects (e.g.,
construction, software, etc.), communication, trans-
portation, etc. For example, the graph may represent a
large railway network in which each activity corre-
sponds to a train stopping at a station or a train cover-
ing a given segment of its route or a minimal spacing
between trains, etc. Precedence relationships are need-
ed because railways are shared, there are ordering
and distancing rules between trains, passengers have
connections between trains, trains are merged or split
at certain points, etc. The travel time of one passenger
in this network turns out to be the length X of the

Table 1. Values of ν̂ and e19 with a CDE for Each Choice
of G−k and for the Best Convex Combination (CDE-c), for
the GLRDE with Each Ψj and for the Best Convex
Combination (GLRDE-c), and for the KDE, for the
Cantilever Beam Model

G−1 G−2 G−3 CDE-c Ψ1 Ψ2 Ψ3 GLRDE-c KDE

e19

MC 19.3 14.5 22.8 22.5 14.1 4.5 15.8 16.3 15.8
Lat+s 39.8 25.2 41.6 41.9 23.4 −2.5 26.4 26.5 21.9
Lat+s+b 44.5 23.7 46.8 47.0 23.3 5.7 24.7 25.1 21.0
Sob+LMS 44.0 23.6 45.7 46.1 23.4 2.8 25.5 25.9 21.5

ν̂

MC 0.97 0.98 0.99 0.98 1.02 0.55 0.94 0.95 0.76
Lat+s 1.99 1.95 2.06 2.04 1.38 — 1.51 1.52 1.03
Lat+s+b 2.24 2.08 2.27 2.25 1.37 — 1.24 1.25 0.93
Sob+LMS 2.21 2.03 2.21 2.21 1.32 — 1.31 1.32 0.97

Figure 2. (Color online) Five Realizations of the Density Conditional on G−k (Light Solid Lines, Blue in the Color Version), Their
Average (Dotted Line, Orange in the Color Version), and the True Density (Thick Black) for k � 1 (Left), k � 2 (Middle), and k � 3
(Right) for the Cantilever Example

4 5

0

1

2

x
4 5

0

10

20

30

x
4 5

0

0.5

1

x

L’Ecuyer, Puchhammer, and Ben Abdellah: Density Estimation via Conditioning
1740 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1729–1748, © 2022 INFORMS



longest path in a subnetwork whose source and sink
are the origin and destination of this passenger.

For our numerical experiments, we use a small ex-
ample from Avramidis and Wilson (1996, 1998), who
show how to use CMC to estimate E[X] and some
quantiles of the distribution of X. L’Ecuyer and Le-
mieux (2000) and L’Ecuyer and Munger (2012) use
this same example to test the combination of CMC
with RQMC to estimate E[X]. The network is depicted
in Figure 4 and the cdfs Fj are given in Avramidis and
Wilson (1996). Much larger networks can be handled
in the same way. We estimate the density of X over
[a,b] � [22, 106:24], which covers about 95% of the
density.

Here, X is defined as the maximum length over
several paths, and if we hide only a single random
variable Yj to implement the CDE, we run into the
same problem as in Example 4: Assumption 1 does
not hold because F(· | G) has a jump. This means that
we must hide more information (condition on less).
Following Avramidis and Wilson (1996, 1998), we se-
lect a uniformly directed cut L, which is a set of activi-
ties such that each path from the source to the sink
contains exactly one activity from L, and let G repre-
sent {Yj, j ∈ L}. In Figure 4, {1, 2}, {11, 13},
{5, 6, 7, 9, 10}, and {2, 3, 5, 8, 9, 13} are all valid choices
of L. The corresponding conditional cdf is

F(x | G) � P X ≤ x | {Yj : j ∈ L}[ ] �∏
j∈L

P[Yj ≤ x−Pj]

�∏
j∈L

Fj(x−Pj),

(16)

where Pj is the length of the longest path that goes
through arc j when we exclude Yj from that length.
The conditional density is

f (x | G) � d
dx

F(x | G) �∑
j∈L

fj(x−Pj)
∏

l∈L, l�j
Fl(x−Pj):

Under this conditioning, if the Yjs are continuous vari-
ables with bounded variance, Assumption 1 holds, so
f (x | G) is an unbiased density estimator with uniform-
ly bounded variance.

For our numerical experiments, we use the same
cut L � {5, 6, 7, 9, 10} as Avramidis and Wilson (1996),
indicated in light blue in Figure 4, even though there
are other cuts with six links, which could possibly per-
form better because they hide more links. We could
also compute the CDE with several choices of L and
then take a convex combination. This approach scales
nicely and works in exactly the same way for very
large networks with thousands of links. A simple ad-
aptation also works for a stochastic max-flow prob-
lem, in which we want the density of the capacity of
the minimal cut having the smallest capacity (L’E-
cuyer et al. 2022).

The GLRDE method described in Section 2.5 does
not work for this example. Indeed, with X � h(Y) de-
fined as the length of the longest path, for any j, the
derivative hj(Y) is zero whenever arc j is not on the
longest path, so we would need to select an arc j that
is guaranteed to be on the longest path. But there is no
such arc in general. We could perhaps apply a modi-
fied GLRDE that selects a cut instead of a single coor-
dinate Yj, but this is beyond the scope of this paper.

Table 2 and Figure 5 summarize our results. We see
that, for n � 219, the CDE outperforms the KDE by a
factor of about 20 with MC and by a factor of about
28 ≈ 250 with RQMC.

Figure 3. (Color online) The CDEUnder MC (Solid Line, Red in the Color Version), Under RQMC (Light Solid Line Almost Su-
perposed to the Dashed Line, Green in the Color Version) and the True Density (Black, Dashed) for G−1 with n � 210 (Left) and
for G−2 with n � 216 (Right) for the Cantilever Example

Figure 4. (Color online) A Stochastic Activity Network with
the Cut L � {5, 6, 7, 9, 10} Formed by the Dashed Arrows
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4.4. Density of Waiting Times in a Single Queue
We adapted this example from Peng et al. (2020),
mainly to compare our approach with the GLRDE
proposed in their paper. What we use here is not ordi-
nary CMC, but extended CMC, in which we condition
on different information for each customer. This type
of strategy would work for much larger queueing sys-
tems and many other types of systems that involve
random delays. To estimate the density of the waiting
times in a queueing system, the general idea is to hide
sufficient information for each customer in the system
so that its exact waiting time is unknown, but it has a
density conditional on the known information, and
we can compute this density easily. This is often easy
to do even for large queueing systems. The hidden in-
formation can be the arrival time of the customer, the
departure time of the previous customer, or some-
thing similar, selected so that we can compute the
conditional density.

4.4.1. Model with Independent Days. We consider a
single-server first in, first out queue in which custom-
ers arrive from an arbitrary arrival process (not neces-
sarily stationary Poisson) and the service times are
independent with continuous cdf G and density g. If
W denotes the waiting time of a “random” customer,
we want to estimate p0 � P[W � 0] and the density f of
W over (0,∞).

We first consider a system that starts empty and
evolves over a fixed time horizon τ, which we call a
day. Let Tj be the arrival time of the jth customer,
T0 � 0, Aj � Tj −Tj−1 the jth interarrival time, Sj the
service time of customer j, and Wj the waiting time of
customer j. Because the system starts empty, we have
W1 � 0, and the Lindley recurrence gives us that Wj �
max (0, Wj−1 + Sj−1 −Aj) for j ≥ 2. At time τ, the arrival
process stops, but service continues until all custom-
ers already arrived are served. The number of custom-
ers handled in a day is the random variable
N �max{j ≥ 1 : Tj < τ}. The cdf of W can be written as
F(0) � p0, and for x > 0, F(x) � P[W ≤ x] � E[I(W ≤ x)].
The sequence of waiting times of all customers over
an infinite number of independent successive days is
a regenerative process that regenerates at the begin-
ning of each day, so we can apply the renewal reward
theorem, which gives

F(x) � E[I(W ≤ x)] � E I[W1 ≤ x]+⋯ +I[WN ≤ x][ ]
E[N] :

(17)

Because E[N] does not depend on x, we see that, for
x > 0, the density f(x) is the derivative of the numer-
ator with respect to x, divided by E[N].

To obtain a differentiable cdf estimator, we want to
replace each indicator in the numerator by a condi-
tional expectation. One simple way of doing this is to
hide the service time Sj−1 of the previous customer;
that is, replace I[Wj ≤ x] by
Pj(x) � P[Wj ≤ x |Wj−1 −Aj] � P[Sj−1 ≤ x+Aj −Wj−1]

� G(x+Aj −Wj−1) for x ≥ 0:

This gives Pj(0) � G(Aj −Wj−1) (there is a probability
mass at zero), whereas for x > 0, we have
P′
j (x) � dPj(x)=dx � g(x+Aj −Wj−1), and then, because

N does not change when we change x,

f (x) � E[D(x)]
E[N] where D(x) �∑N

j�1
g(x+Aj −Wj−1):

(18)

Note that we are not conditioning on the same infor-
mation for all terms of the sum, so what we do is not
exactly CMC, but extended CMC (Bratley et al. 1987).
It nevertheless provides the required smoothing and an
unbiased density estimator for the numerator of (17). In
a multiserver queue, such as a call center with a large
number of agents, one possibility would be to hide the
arrival time Aj of the call and compute the density of its
waiting time conditional on the other information.

Often, for example, if the arrival process is Poisson,
E[N] can be computed exactly, in which case we only
need to estimate E[D(x)], and we get an unbiased

Table 2. Values of ν̂ and e19 for the SAN Example

ν̂ e19

CDE MC 0.96 25.6
Lat+s 1.31 30.9
Lat+s+b 1.17 29.6
Sob+LMS 1.27 29.9

KDE MC 0.78 20.9
Lat+s 0.95 22.7
Lat+s+b 0.93 22.0
Sob+LMS 0.74 21.9

Figure 5. (Color online)MISE vs n in Log-Log Scale for the
SAN Example
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density estimator. Otherwise, the denominator E[N]
can be estimated in the usual way, and we are then in
the standard setting of estimating a ratio of expecta-
tions (Asmussen and Glynn 2007), for which we have
unbiased estimators for the numerator and the de-
nominator. We simulate n days, independently (with
MC) or with n RQMC points, to obtain n realizations
of (N,D(x)), say (N1,D1(x)), : : : , (Nn,Dn(x)). The ratio
estimator (CDE) of f(x) is

f̂ (x) �
∑n

i�1Di(x)∑n
i�1Ni

:

It can be computed at any x ∈ [0,∞). For independent
realizations (with MC), the variance of f̂ (x) can be
estimated using the delta method for ratio estimators
(Asmussen and Glynn 2007):

nVar[̂f (x)] → Var[Di(x)] +Var[Ni]f 2(x) − 2Cov[Di(x),Ni]f (x)
(E[Ni])2

asymptotically when n→∞. This variance can be esti-
mated by replacing the unknown quantities in this ex-
pression by their empirical values. This is consistent
because the n pairs (Di(x),Ni), i � 1, : : : ,n are indepen-
dent. Alternatively, a confidence interval on f(x) can
also be computed with a bootstrap approach (Choquet
et al. 1999).

In the RQMC case, the pairs (Di(x),Ni) are no longer
independent. Then, to obtain an estimator of f(x) for
which we can estimate the variance, we make nr
independent replicates of the RQMC estimator of the
pair (E[D(x)],E[N]), say (D̄1(x), N̄1), : : : , (D̄nr(x), N̄nr),
where each (D̄j(x), N̄j) is the average of n pairs
(Di(x),Ni) sampled by RQMC. We estimate the densi-
ty f(x) by the ratio of the two grand sums

f̂ rqmc,nr(x) �
∑nr

j�1 D̄j(x)∑nr
j�1 N̄j

:

To estimate the variance, we use that

Var[̂f rqmc,nr(x)]

≈ Var[D̄j(x)] +Var[N̄j]f 2(x) − 2Cov[D̄j(x), N̄j]f (x)
nr(E[N])2 ,

and we replace all the unknown quantities in this ex-
pression by their empirical values.

Here, the required dimension of the RQMC points
is the (random) total number of interarrival times Aj

and service times Sj that we need to generate during
the day. It is approximately twice the number of cus-
tomers that arrive during the day. This number is un-
bounded, so the RQMC points must have unbounded
(or infinite) dimension, and one must be able to gener-
ate the points without first selecting a maximal dimen-
sion. Recurrence-based RQMC point sets have this

property; they can be provided, for instance, by ordi-
nary or polynomial Korobov lattice rules (L’Ecuyer
and Lemieux 2000, 2002), which are available in the
hups package of SSJ (L’Ecuyer 2016).

4.4.2. Steady-State Model. In a slightly different set-
ting, we can assume that the single queue evolves in a
steady state over an infinite time horizon under the
additional assumptions that the Ajs are i.i.d. and the
Sjs are also i.i.d. Again, we want to estimate the densi-
ty of the waiting timeW of a random customer. In this
case, the system regenerates whenever a new custom-
er arrives in an empty system. The regenerative cycles
can be much shorter, on average, than for the previous
case unless the day is very short or the utilization fac-
tor of the system is close to one. The CDE has exactly
the same form apart from the different definition of
regenerative cycle. In this case, n represents the num-
ber of regenerative cycles, Ni is the number of custom-
ers in the ith cycle, and Di(x) is the realization of D(x)
over the ith cycle.

In both settings, one could also hide Aj instead of
Sj−1. The density estimator is similar and easy to de-
rive. Intuition says that this should be a better choice
if Aj has more variance than Sj−1.

4.4.3. The GLRDE Estimator. Peng et al. (2020), in sec-
tion 4.2.2, show how to construct a GLRDE for the
density of the sojourn time of customer j in this single-
queue model. The density of the waiting time can be
estimated as follows. If the service times Sj are lognor-
mal with parameters (μ,σ2), we can write

X �Wj �max (0, Wj−1 + Sj−1 −Aj)
�max (0, Wj−1 + exp [σZj−1 +μ] −Aj) �: h(Y),

where Zj−1 has the standard normal density φ, and
Y � (Y1,Y2,Y3) � (Zj−1,Aj,Wj−1). When Wj > 0, taking
the derivative of h with respect to Y1 � Zj−1 gives
h1(Y) � exp [σZj−1 +μ]σ � Sj−1σ, h11(Y) � Sj−1σ2, and
these derivatives are zero when Wj � 0. We also have
∂logφ(x)=∂x � −x, and therefore, for x > 0, f (x) �
E[L(x)]=E[N], where L(x) �∑N

j�1 I[Wj ≤ x] ·Ψj and
Ψj � −(Zj−1 + σ)=(Sj−1σ). We can do n runs to estimate
each of the two expectations in the ratio. This provides
a very similar density estimator as with the CDE in
(18), but here L(x) is discontinuous in x, whereas D(x)
in (18) is continuous.

4.4.4. Numerical Results. For a numerical illustration,
suppose the time is in minutes, let the arrival process be
Poisson with constant rate λ � 1, and the service times
Sj lognormal with parameters (μ,σ2) � (−0:7, 0:4). This
gives E[Sj] � e−0:5 ≈ 0:6065 and Var[Sj] � e−1(e0:4 − 1) ≈
0:18093. For RQMC, we use infinite-dimensional
RQMC points defined by Korobov lattice rules
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(L’Ecuyer and Lemieux 2000) selected with Lattice
Builder (L’Ecuyer and Munger 2016) using order-
dependent weights γk � 0:005k for projections of order
k. We do not use Sobol points because, with the
available software, there is an upper bound on
the dimension.

4.4.4.1. Finite-Horizon Case. For the finite-horizon
case, take τ � 60, so E[N] � 60, we only need to esti-
mate the numerator, and we have an unbiased density
estimator all over [0,∞). The results for (a,b] � (0, 2:2]
are in Table 3. Because of the large and random di-
mensionality of the required RQMC points and, more
importantly, the discontinuity of the derivative of the
CDE with respect to the underlying uniforms (because
of the max, the HK variation is infinite), it was unclear
if RQMC could bring any significant gain for this ex-
ample. The good surprise is that, although RQMC
does not improve ν̃ significantly, it improves the IV it-
self by a factor of about 27:5 ≈ 180 for n � 219, which is
quite significant. We also see that CDE beats GLRDE
by a factor of about 500 with MC and about 200
with RQMC.

4.4.4.2. Steady-State Case. We performed a similar
experiment using regenerative simulation for the
steady-state model. The density is similar but not ex-
actly the same as in the finite-horizon case. The results
are in Table 4. They are similar to those of the finite-
horizon case with similar empirical convergence rates,
and the IV for n � 219 is again about 180 times smaller
with CDE+RQMC compared with CDE+MC. The IV
for GLRDE with n � 219 is roughly 300 times larger
than with CDE with MC and 200 times larger than
with CDE with RQMC. The only important difference
is that here, the IV is about 30 times larger than in the
finite-horizon case for all the methods. The explana-
tion is that, in the finite-horizon case, we simulate n
runs with about 60 customers per run, whereas in the
steady-state case, we have about 2.5 customers per re-
generative cycle on average, so we simulate about 25
times fewer customers. Interestingly, the fact that we
use many more coordinates of the RQMC points
in the finite-horizon case (on average) makes no sig-
nificant difference. A similar observation is made by

L’Ecuyer and Lemieux (2000), section 10.3, who com-
pared finite-horizon runs of 5,000 customers each, on
average, with regenerative simulation in the context
of estimating the probability of a large waiting time
using RQMC. The reason why RQMC performs well
even for a very large time horizon is that the integrand
has low effective dimension in the successive-
dimensions sense (as defined by these authors). Online
Appendix C provides additional plots for this example.

4.5. Making a Change of Variable
In many situations, X � h(Y) for a random vector Y,
and hiding a single coordinate of Y does not provide a
very effective CDE. But sometimes, after an appropri-
ate change of variable Y � g(Z), hiding one coordinate
of the random vector Z can provide a much more ef-
fective CDE. We use this technique in Section 4.6. We
describe it here in a separate section because it can be
useful for a much wider range of applications.

Specifically, let Z−j denote the vector Z with Zj (the
jth coordinate) removed and let γ(z) � γ(z;Z−j) �
h(g(z;Z−j)) denote the value of h(Y) as a function of Zj � z
when Z−j is fixed. We assume in the following that,
for almost any realization of Z−j, γ(z;Z−j) is a mono-
tone nondecreasing and differentiable function of z so
that γ−1(x) � inf {z ∈ R : γ(z) ≥ x} is well defined for
any x. We also assume that Zj has density φ and is in-
dependent of Z−j (to simplify). Conditional on Z−j, we
have

P[x < h(Y) ≤ x+ δ | Z−j] � P[x < γ(Zj) ≤ x+ δ | Z−j]
� P[z < Zj ≤ z+Δ | Z−j] ≈ φ(z)Δ,

where z � γ−1(x) and z+Δ � γ−1(x+ δ). Taking the
limit gives

f (x | Z−j) � lim
δ→0

P[z < Zj ≤ z+Δ | Z−j]
δ

� lim
δ→0

φ(z)Δ
δ

� φ(z)
γ′(z) �

φ(γ−1(x))
γ′(γ−1(x)) ,

assuming that the latter is well defined. In case there
are closed-form formulas for γ−1 and γ′, this CDE can
be evaluated directly. Otherwise, z � γ−1(x) can often
be computed by a few iterations of a root-finding al-
gorithm. Because γ and its inverse γ−1 depend on Z−j,

Table 3. Values of ν̂ and e19 for the Single Queue
Example, Finite-Horizon Case

ν̂ e19

CDE MC 1.00 24.8
Lat+s 0.99 32.3
Lat+s+b 1.02 32.3

GLRDE MC 1.00 15.8
Lat+s 1.03 24.6
Lat+s+b 1.08 25.0

Table 4. Values of ν̂ and e19 for the Single Queue
Example, Steady-State Case

ν̂ e19

CDE MC 0.99 19.9
Lat+s 1.04 27.6
Lat+s+b 1.08 27.8

GLRDE MC 0.99 11.5
Lat+s 1.20 20.1
Lat+s+b 1.21 20.4
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this could mean inverting a different function for each
sample realization. Our next example shows that the
approach could nevertheless bring a huge benefit.

4.6. A Function of a Multivariate Normal Vector
We consider a multivariate normal vector Y �
(Y1,: : : ,Ys)t (where t means transposed) defined via
Yj � Yj−1 +μj + σjZj with Y0 � 0, the μj and σj > 0 are
constants, and the Zj are independent N (0, 1) random
variables with cdf Φ and density φ. Let X � S̄ �
(S1+⋯ +Ss)=s, where Sj � S0eYj for some constant
S0 > 0. We want to estimate the density of X over
some interval (a,b) � (K,K+ c), where K ≥ 0 and c > 0.
This is the same as estimating the density of
max (0, S̄ −K), which may represent the payoff of a
financial contract, for example (Glasserman 2004).
A simple way to define the CDE here is to hide Zs.
The conditional cdf is P[X ≤ x | Z−s] � P[Zs ≤W(x)] �
Φ(W(x)), where

W(x) � (ln [sx− (S1+⋯ +Ss−1)=S0] − lnS0 −Ys−1 −μs)=σs:

Taking the derivative with respect to x gives the unbi-
ased CDE

f (x | Z−s) � ∂

∂x
P[S̄ ≤ x | Z−s] � φ(W(x))W′(x)

� φ(W(x))s
[sx− (S1+⋯ +Ss−1)=S0]σs : (19)

Unfortunately, this sequential CDE is usually rather
spiky because hiding only this Zs does not remove
much information, and then the conditional density
has a large variance.

We now describe a less obvious but more effective
conditioning approach. The goal is to hide a variable
that contains more information. For this, we generate
the vector Y using a Brownian bridge construction in
which the Zjs are used in a different way as follows (Ca-
flisch et al. 1997, Glasserman 2004). Let μ̄j � μ1+⋯ +μj
and σ̄j � σ1+⋯ +σj for j � 1, : : : , s. With this construc-
tion, we first sample Ys � μ̄s + σ̄sZs. Then, given Ys � ys,
we put j2 � �s=2�, and we sample Yj2 from its normal
distribution conditional on Ys � ys, which is normal with
mean ysμ̄j2=μ̄s and variance (σ̄s − σ̄j2)σ̄j2=σ̄s. This uses
the fact that, if X1 and X2 are independent and normal,
then conditional on X1 +X2 � x̄, X1 is normal with mean
x̄E[X1]=E[X1 +X2] and variance Var[X1]Var[X2]=Var
[X1 +X2]. Then, we put j3 � �j2=2� and we sample Yj3
conditionally on Yj2 , and then we put j4 � �(j2 + s)=2�
and we sample Yj4 conditionally on (Yj2 ,Ys) and so on
until all the Yj’s are known.

For the CDE, we hide again Zs, but now Zs has
much more impact on the payoff because all the Yjs
depend on Zs. This makes the conditional density
much less straightforward to compute, but we can
proceed as follows. To avoid sampling Zs, we sample

Y1, : : : ,Ys−1 conditional on Zs � zs � 0, which gives,
say, Y0

1, : : : ,Y
0
s−1 and then write X as a function of z �

zs conditional on these values, that is, conditional on
Z−s � (Z1, : : : ,Zs−1). We have Ys � Y0

s + σ̄sZs and
Yj � Y0

j + (μ̄j=μ̄s)σ̄sZs. Then,

X � S̄ � S0
s

∑s
j�1

eYj � S0
s

∑s
j�1

exp [Y0
j +Zs(μ̄j=μ̄s)σ̄s]:

This fits the framework of Section 4.5 with j � s,

γ(z) � S0
s

∑s
j�1

exp [Y0
j + z(μ̄j=μ̄s)σ̄s] and

γ′(z) � S0
s

∑s
j�1

exp [Y0
j + z(μ̄j=μ̄s)σ̄s](μ̄j=μ̄s)σ̄s:

The CDE at x � γ(z) is then f (x | Z−s) � φ(z)=γ′(z). We
call it the bridge CDE.

To compute this density at a specified x, we need
z � γ−1(x). We have no explicit formula for γ−1 in this
case, but we can compute a root of γ(z) − x � 0 numer-
ically. To evaluate the density at the ne evaluation
points e1, : : : , ene in (a, b), we first compute x∗ � γ(0)
and let j∗ be the smallest j for which ej ≥ x∗. We com-
pute z � wj∗ such that γ(wj∗ ) � ej∗ . This can be done via
Newton iteration, zk � zk−1 − (γ(zk−1) − ej∗ )=γ′(zk−1),
starting with z0 � 0. Then, for j � j∗ + 1, : : : ,ne, we use
again Newton iteration to find z � wj such that
γ(wj) � ej, starting at z0 � wj−1. We do the same to find
z � wj such that γ(wj) � ej for j � j∗ − 1, : : : , 1, starting at
z0 � wj+1. This provides the point wj required to evalu-
ate the conditional density at ej for each j. We must re-
peat this procedure for each realization of Z−j because
the function γ depends on Z−j. However, the gain in
accuracy is more significant than the cost of additional
computations. This conditioning differs from the sim-
pler ones used by Boyle et al. (1997) and Heidergott
et al. (2015) for barrier options.

For a numerical illustration, we take S0 � 100, s �
12, μj � 0:00771966, and σj � 0:035033 for all j, and K �
101. We estimate the density of the payoff over
[a,b] � [101, 128:13]. To approximate the root of γ(z) −
x � 0 for the bridge CDE, we use five Newton itera-
tions; doing more makes no significant difference. The
results are in Table 5 with additional plots in the on-
line supplement. RQMC with the bridge CDE per-
forms extremely well. For example, for Sob+LMS, the
MISE with n � 219 is approximately 2−46:9, which is
about 219 (half a million) times smaller than for the
same CDE with MC, and it decreases as O(n−2). With
a KDE, the MISE with n � 219 is about 221 ≈ 2 million
times larger with the same Sobol points and 226 ≈ 67
million times larger with MC. With the sequential
CDE, RQMC is ineffective, and the IV of the MC esti-
mator is also quite large as expected. To illustrate the
behavior of the sequential and bridge CDEs, Figure 6
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plots five single realizations of each, using the same
horizontal scale. The sequential CDE has many more
spiky realizations than the bridge CDE, and this ex-
plains why the latter performs much better.

The method introduced here works not only for a
Brownian motion but for more general Lévy pro-
cesses as well. Some popular models in finance use
a Lévy subordinator process to produce a random
clock speed to model stochastic volatility and a geo-
metric Brownian process that evolves at that ran-
dom speed. This includes the variance-gamma (VG)
and the normal inverse Gaussian processes, for exam-
ple. For these models, we can generate the subordi-
nator as usual using a bridge method to obtain the
random times at which the Brownian process is
evaluated and then apply the method that we just
described to the resulting Brownian process. For
the VG process, a more effective alternative could
be to use the double gamma bridge sampling method
described in Avramidis and L’Ecuyer (2006) and
hide the first variable as we have done here. Yet an-
other approach would be to do a monotone map-
ping between the Lévy process and a Brownian mo-
tion as explained in L’Ecuyer et al. (2008), estimate
the density in the Brownian representation as we
did here, and transform this density to the original

Lévy process via the change of variable that corre-
sponds to the mapping.

4.7. More Examples
Additional examples are given in the online supple-
ment. In the first one, X is a sum of independent nor-
mal random variables with known density, and the
purpose is to see how each estimator behaves as a
function of the dimension (the number of summands)
and of the relative variance of the one we hide. The
second one is a (real-life) six-dimensional example in
which X is the buckling strength of a steel plate. The
third one is a multicomponent system in which each
component fails at a certain random time, and we
want to estimate the density of the failure time of the
system. In the fourth one, we explain how accurate
density estimation is useful to compute a confidence
interval on a quantile or on the expected shortfall.
This, alone, has many applications.

5. Summary and Guidelines
Here, we provide a summary of the main conditions
and some guidelines for applying the method. The
primary task is to select the information G on which
we condition or, equivalently, to decide what we hide.
The main constraint is that G must be selected in a
way that Assumption 1 is satisfied at least in the re-
gion in which we want to estimate the density. The
key condition for this is that the conditional density
must be well defined in that region. In particular, the
conditional CDF should never have jumps. A second
requirement is that the conditional density can be cal-
culated efficiently for all realizations of G (almost sure-
ly). There are often many possible choices of G for
which these conditions are satisfied. The set of admis-
sible choices is highly problem-dependent; it depends
on the model and also on the variable X of interest.

In many cases, one must hide more than just a sin-
gle input random variable. The hidden information
can also be dynamically selected in the sense that it

Table 5. Values of ν̂ and e19 for the Asian Option with
Sequential and Bridge CDE Constructions

ν̂ e19

Sequential KDE MC 0.78 20.4
Sob+LMS 0.76 20.6

Sequential CDE MC 1.00 19.9
Lat+s 1.07 20.3
Lat+s+b 1.01 20.1
Sob+LMS 1.00 20.0

Bridge CDE MC 1.04 27.9
Lat+s 1.60 40.0
Lat+s+b 1.74 45.0
Sob+LMS 2.01 46.9

Figure 6. (Color online) Five Realizations of the Density Estimator (Light Solid Lines), Their Average (Dotted Line, Orange in the
Color Version), and the True Density (Thick Black Line) for the Sequential CDE (Left) and the Bridge CDE (Right) for the Asian
Option Example
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may depend on the sample realization (for example, if
X is the max of several independent random variables,
one may generate all the variables and hide the max).
Sometimes, it becomes much easier to apply the meth-
od after making an appropriate multivariate change
of variable. This may require creativity as we show in
our examples.

When there are many choices for G, finding the opti-
mal one (e.g., to minimize the work-normalized MISE)
can be difficult in general because the MISE depends
on many factors, but just finding a good one is usually
much easier and sufficient. For comparable computing
times, the best choices are often those for which the
variance of the conditional density is the largest. As a
rule of thumb, it is usually better to condition on lower
variance information and hide variables having a large
variance contribution. The optimal choice also de-
pends (in general) on the point x at which we want to
estimate the density. In principle, one could optimize
by using different conditioning for different intervals,
but it is usually not worth the additional complica-
tions. When several good choices of G are available, se-
lecting a few of them and taking a convex combination
of the corresponding estimators can provide a more
robust CDE than selecting only one G.

When we want to combine the CDE with RQMC,
additional properties come into play: we want to se-
lect G and also the formulation of the estimator as a
function g̃′ of the vector U of underlying uniform ran-
dom numbers in a way that the assumption of Propo-
sition 3 is satisfied (if possible) and the variation of
this function g̃′ is not too large. Proving these condi-
tions in practice may be difficult, but one can always
try RQMC empirically. Experience shows that it can
often reduce the variance significantly, in particular,
when the effective dimension of g̃′ is small. This is il-
lustrated in our examples.

6. Conclusion
We examine a simple and very effective approach for
estimating the density of a random variable generated
by simulation from a stochastic model by using a com-
putable conditional density. The resulting CDE is un-
biased, and its MISE converges faster than for other
popular density estimators such as the KDE. We also
show how to further reduce the IV and even improve
its convergence rate by combining the CDE with
RQMC. Our numerical examples show that this com-
bination can be very efficient. It sometimes reduces
the MISE by factors of more than a million. The CDE
approach also outperforms the recently proposed
GLRDE method, and CDE+RQMC outperforms both
GLRDE+RQMC and KDE+RQMC in all our exam-
ples. RQMC tends to bring a larger improvement to
the CDE than the KDE or GLRDE because the

estimator usually has less variation as a function of
the underlying uniforms.

The examples in the paper were selected to provide
insight on key issues. We tried to avoid unnecessary
complications in the models. But it would not be
too difficult to derive CDEs for larger and more compli-
cated versions of these models. We outlined some pos-
sibilities in the text. Suggested future work includes
experimenting this methodology in more complicated
applications, designing and exploring different types of
conditioning and perhaps adapting the Monte Carlo
sampling strategies to make the method more effective
for specific applications (e.g., by changing the way X is
defined in terms of the basic input random variates). Its
application to quantile and expected shortfall estima-
tion also deserves further study.
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