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This study concerns a generic model-free stochastic optimization problem requiring the minimization of a risk function de%ned on a
given bounded domain in a Euclidean space. Smoothness assumptions regarding the risk function are hypothesized, and members of the
underlying space of probabilities are presumed subject to a large deviation principle; however, the risk function may well be nonconvex
and multimodal. A general approach to %nding the risk minimizer on the basis of decision=observation pairs is proposed. It consists of
repeatedly observing pairs over a collection of design points. Principles are derived for choosing the number of these design points on the
basis of an observation budget, and for allocating the observations between these points in both prescheduled and adaptive settings. On
the basis of these principles, large-deviation type bounds of the minimizer in terms of sample size are established.

INTRODUCTION

There are by now many areas of engineering and opera-
tions research in which optimization problems are precisely
posed and completely modeled but are di0cult or impossi-
ble to resolve, either analytically or through conventional
numerical analysis procedures. For example, the authors
have encountered such situations in their studies of queue
tuning, replacement strategies in reliability, intervention
theory for epidemics, and optimization of machine learning
codes for games and decisions. In these settings, models are
available, and one uses Monte Carlo (MC) simulation in
conjunction with some sort of sequential optimization
procedure. However, the procedures o5ered here are of
the “machine learning” genre and thus have the additional
potential of being applicable to actual experimental setups
where one explores a noisy response surface in the absence
of a model.

Abstractly, the problems we have in mind involve
minimizing a risk function over a given bounded real
vector-valued domain. The stochastic optimization meth-
ods to solve this problem can be classi%ed into two main
categories:

(a) The methods based on functional estimation, which
construct an estimate of the risk function over its en-
tire domain, and then optimize the estimate.

(b) The small-steps iterative methods, which start at
some initial design point, and change it by small
amounts at successive iterations, on the basis of lo-
cal information, such as a gradient estimator at each
iteration.

We %nd in category (b) the stochastic approximation
(SA) algorithm, with its several variants (e.g., Benveniste
et al. 1990, Kushner and Clark 1978, Kushner and V�azquez-
Abad 1996, Kushner and Yin 1997, L’Ecuyer and Yin 1998).

In the best situations, SA converges to the optimizer at
the same rate, in terms of the total computing budget, as
the MC method, which estimates the risk at a single point.
However, it is under several assumptions, such as unimodal-
ity and local convexity near the optimizer, that an “optimal”
gain sequence is chosen and that one has an “e0cient”
gradient estimator, e.g., unbiased with bounded vari-
ance (see L’Ecuyer and Yin 1998 for more details and
slightly milder versions of these conditions). For cer-
tain classes of “smooth” systems, techniques such as
perturbation analysis, score function or likelihood ratio
methods, or %nite di5erences with common random num-
bers and careful synchronization can provide a gradient
estimator with the required e0ciency (see Glasserman
1991, Glynn 1990, L’Ecuyer 1991, L’Ecuyer and Perron
1994, Rubinstein and Shapiro 1993). But these methods are
often hard to implement and do not always apply. Then, one
can often make do with straightforward %nite di5erences
and the less e0cient Kiefer-Wolfowitz SA algorithm or its
Spall (1992) variation. Another major di0culty with SA
is the choice of the gain sequence. The algorithm perfor-
mance is extremely sensitive to it, and the optimal choice
involves the Hessian of the risk function, which is typically
unknown and hard to estimate. Finally, and perhaps more
importantly, if the risk function has many local minima
or Fat areas, convergence may occur far away from the
optimizer.
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Approaches based on functional estimation (i.e., category
(a)) are sometimes called stochastic counterpart methods,
because they optimize a statistical estimate (i.e., the coun-
terpart) of the risk function. Once the estimate has been
constructed, it can be optimized by any deterministic opti-
mization algorithm. For certain classes of problems where
the risk depends on the probability law only, an estimator
of the entire risk function can be obtained from a simulation
at a single argument by using a likelihood ratio (Rubinstein
and Shapiro 1993). This estimator may easily become un-
stable if the search domain is too large (as illustrated in, e.g.,
L’Ecuyer 1993 and Rubinstein and Shapiro 1993), so one
would usually partition the search domain into smaller sub-
sets, concentrate the sampling e5ort in the most promising
areas, and so on. However, this likelihood ratio method is
not universally applicable. A di5erent functional estimation
method for when a threshold parameter is sought is proposed
by L’Ecuyer and V�azquez-Abad (1997).

In principle, the techniques of nonparametric regression,
which seek to approximate an unknown function over its
entire domain solely on the basis of noisy observations
at selected domain points, are applicable to the stochastic
counterpart approach. MQuller (1985,1989) explicitly follows
the stochastic counterpart idea within the framework of the
kernel regression technique. The nonparametric regression
model is essentially that of stochastic optimization; there are
a number of di5erences between the goals of his work and
ours. In particular, MQuller restricts attention to optimization
over a %nite real interval and postulates moment conditions
rather than large deviation principles, as will be done here.
Whereas he, too, chooses a %xed-design viewpoint, only one
observation per value is postulated. It is not easy to com-
pare results because his convergence rates are couched in
terms of the presumed order of the kernel function, and the
criterion is di5erent. Nevertheless, the rates of convergence
are similar to ours in the nonadaptive setting. It is likely
that a theory parallel to that of the present paper could be
developed through the nonparametric regression principles,
which have been nicely summarized in the text by HQardle
(1989) and the monograph by Prakasa Rao (1983).

The foundations of the present study include non-
parametric=non-Bayesian bandit theory, stemming from
Robbins (1952). It builds upon “o5-line bandit” concepts
in Yakowitz and Mai (1995) and a global stochastic ap-
proximation scheme in Yakowitz (1993). Lai and Yakowitz
(1995) also investigate a %nite-decision-space model using
related methodology. The hypotheses there are weaker (no
smoothness assumptions) and the convergence correspond-
ingly slower. Dippon and Fabian (1994) give a globally
optimal algorithm combining nonparametric regression
with stochastic approximation. Since the particular estima-
tor is a partition-type rule, there is some overlap with the
low-dispersion approach to follow. To our knowledge, the
adaptive algorithm (§5) is new.

The present investigation similarly impinges on a line
of study referred to as ordinal optimization by Ho and
Larson (1995), and also the ranking and selection methods

described in Chapter 9 of Law and Kelton (1991). These
investigations fall into the bandit problem domain in that
the goal is to choose the best—or alternatively, a set of k
decisions, one of which is best—on the basis of observed
parameter=outcome pairs. In contrast to our developments,
in many bandit investigations such as the preceding two ref-
erences, the decision set is %nite. Like our study, however,
the discussion in Law and Kelton does give an assured qual-
ity of decision but under the hypotheses that the observa-
tions are Gaussian.

Further developments of the preceding line of inquiry are
to be found in the literature of ranking and selection, within
the framework of design and analysis of experiments (e.g.,
recent books of Bechhofer et al. 1995 or Mukhopadhyay and
Solansky 1994). These studies di5er from ours in that the
decision space is %nite and without any topological charac-
teristics, the methodology is dependent on Gaussian theory,
and the question of how many simulations to make is of
major concern. Nevertheless, this literature could supple-
ment or replace our techniques for selecting the best grid
point. The aims of our adaptive approach (§5) do have some
overlap with two-stage sampling procedures (e.g., Matej-
cik and Nelson 1995), which are also adaptive and intended
to seek the point showing the most promise. On the other
hand, the two-stage procedures have a di5erent motivation
(namely, inferring the process variance and number of sim-
ulations needed for a given performance level).

The methodology to be related exploits the concept of
a low-dispersion point set used in quasirandom optimiza-
tion to minimize the upper bound on discretization error
(Niederreiter 1992 gives an overview and historical account
of these ideas). The approach studied in this paper combines
the ideas of quasirandom search for continuous determin-
istic global optimization and o5-line machine learning for
stochastic optimization over a %nite set. These two tech-
niques are explained in Niederreiter (1992) and Yakowitz
and Mai (1995), respectively. The general outline is simple:
Choose m points from the decision domain and perform r
simulations to estimate the function at each of those points;
then select the point with the least value of the function es-
timator. Questions of interest include:
• Assuming that N represents the total number of sim-

ulations that we are ready to perform, i.e., the computing
budget, how should we choose m as a function of N?
• How should we select the m evaluation points within

the decision domain?
• If the optimization error is de%ned as the di5erence

between the risk at the selected point and the minimal risk
over its entire domain, then at what rate does this error
converge to zero with increasing computing budget, and
under what conditions?
•Can the performance be improved by adaptive allocation

of observations to the grid points?
We study those questions in this paper under the follow-

ing assumptions. First, the probability law for the sample-
mean of the risk estimator obeys an exponential bound
as a function of sample size. This “moderate-deviation”
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assumption is satis%ed by a collection of normal random
variables with uniformly bounded variances, or any family
of random variables with support on a bounded interval. As
to be documented, it holds for a great many other random
variables if the range of error is restricted to some su0-
ciently small interval. Second, we adopt a Lipschitz smooth-
ness assumption near the optimizer.

We show that the risk of our decision strategy converges
to zero in probability, and provide an assured rate for this
convergence. Major features are:
• The method requires no gradient estimator, only simu-

lated realizations.
• The optimization is nonparametric: It does not require

or use detailed information about the model structure and
can therefore be used directly in an experimental or on-line
control setting. (Of course, if used in the simulation mode,
a model must be speci%ed in order to get the observations.)
• It is a global optimization method: It converges to the

optimizer no matter how many local minima there are.
• The minimizer can be on the boundary as well as in the

interior of the search domain.
This methodology is attractive because it is general and easy
to implement. Moreover, it could be used to tune an actual
system on-line without the need to perform modeling at all.
It thereby constitutes a competitor to Kiefer-Wolfowitz SA
and to other nonparametric machine learning methodologies.

1. THE OPTIMIZATION PROBLEM

We want to solve the problem

min
�∈T

(
J (�) =

∫
V
L(�; !)P�(d!)

)
; (1)

where T is a compact region in the s-dimensional real space,
{P�; �∈T} is a family of probability measures over the
sample space V, and L is a real-valued measurable function
de%ned over T×V. No closed-form expression is available
for the function J . Suppose it can be estimated only by
averaging i.i.d. replicates of L(�) =L(�; !).

Let �∗ be an optimal solution to (1), i.e., a value of �
where the minimum is achieved, and let J ∗ = J (�∗) be the
optimal value. Given that we have a computing budget al-
lowing N simulation runs, or allowing N learning observa-
tions if on-line, suppose we perform r runs at each point of
the set Sm = {�m;1; : : : ; �m;m}⊂T, where m=mN is a non-
decreasing function of N and (in terms for the Foor func-
tion) r= �N=m	. Let

J ∗N = min
16i6m

J (�m; i)

be the optimal value of J over the set of evaluation points
Sm, and �∗N a value of �∈ Sm where this minimum is attained.
The di5erence J ∗N − J ∗ is what we lose by minimizing J
over Sm instead of over T. For each �m; i in Sm, let

Ĵ (�m; i) =
1
r

r∑
j=1

Li; j; (2)

where Li;1; : : : ; Li; r are i.i.d. replicates of L(�m; i) simulated
under P�m; i . Let

�̂∗N = arg min
�m; i∈Sm

Ĵ (�m; i) (3)

be the point of Sm with the best empirical performance (in
case of ties, choose any of the co-leaders). The point �̂∗N is
the one selected by the algorithm to “approximate” �∗. What
matters to us is not the distance between �∗ and �̂∗N , but the
di5erence between the values of J at those points. Thus the
performance of the algorithm is measured by the error:

XN = J (�̂∗N ) − J ∗: (4)

This error is a random variable and will be bounded only in
a probabilisitc sense. We are interested in its convergence
rate to zero.

The error is a sum of two components: the discretization
error J ∗N − J ∗ and the selection error J (�̂∗N )− J ∗N . The latter
is (stochastically) reduced by increasing r and the former
by increasing m. So for a given N , there is a tradeo5 to be
made. If m is large and r small, the discretization error is
small, but one is likely to select a “bad” point in Sm, because
of large errors in the estimators Ĵ (�m; i). Alternatively, if m
is small and r is large, the chances are good that �̂∗N is the
best value among the points of Sm, i.e., that J (�̂∗N ) = J ∗N ; but
because Sm is too sparse, the optimal value J ∗ might be quite
a bit lower than J ∗N . Theorem 1 (in Section 3) will give us
a good tradeo5 by increasing m at a rate just high enough
so that the probability that the selection error exceeds the
discretization error diminishes to 0.

2. LOW-DISPERSION POINT SETS

We now examine how to choose Sm. Let ‖ · ‖p be the Lp
norm on Rs, for 16p6∞. For example, p= 2 gives the
Euclidean norm and p=∞ gives the sup norm de%ned by
‖(x1; : : : ; xs)‖∞ = max(|x1|; : : : ; |xs|). We assume that T is
compact in Rs. Let Bp(�; t) = {x∈Rs | ‖x − �‖p6t}, the
closed ball of radius t centered at �. The dispersion (or
covering radius) of a set of points Sm = {�m;1; : : : ; �m;m} in
T, with respect to the Lp norm, is de%ned as

dp(Sm;T) = sup
�∈T

min
16i6m

‖�− �m; i‖p: (5)

It is the minimal value of t such that the balls Bp(�m;1; t); : : : ;
Bp(�m;m; t) cover T. De%ne

Hp(t) = sup
�∈Bp(�∗ ; t)∩T

(J (�) − J (�∗)): (6)

PROPOSITION 1. For 16p6∞; the discretization error is
bounded by

J ∗N − J ∗6Hp(dp(Sm;T)): (7)

PROOF. Since �∗ ∈T, there is at least one point �m; i0 ∈ Sm
such that ‖�∗− �m; i0‖p6dp(Sm;T). By the de%nition of Hp,
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one has J (�m; i0 )−J (�∗)6Hp(dp(Sm;T)). But J ∗N6J (�m; i0 ),
and the conclusion follows.

The upper bound (7) is tight in the sense that one can
easily construct functions for which it is reached, for any
given p. To minimize this bound, low-dispersion point
sets are wanted. The bound also suggests that convergence
should occur faster if Hp(t) is small and Fat near t= 0,
because a small Hp(t) means that J (�) is close to J (�∗) all
over the ball Bp(�∗; t), so the discretization error is small
whenever Sm has a point in that ball. Note that Hp(t) is
increasing in p, whereas dp(Sm;T) is decreasing in p, and
there is no general rule telling which value of p gives the
smallest upper bound. This is why we do not stick to a
particular value of p in this paper.

Two simple choices for the point set Sm are (1) a
rectangular grid, and (2) a random set of points. In the
following examples, we look at what the dispersion is in
these two cases, when T is the s-dimensional unit hyper-
cube. We then look at the discretization error when the
function is locally quadratic near the optimizer (a common
assumption in optimization).

EXAMPLE 1. Let d∞(Sm) =d∞(Sm; [0; 1]s) denote the dis-
persion of Sm over the s-dimensional unit hypercube, with
the sup norm. Let k = �m1=s	 and

S ′m =
{

(x1; : : : ; xs) | xj

∈
{

1
2k

;
3
2k

; : : :
2k − 1

2k

}
for each j

}
∪[;

where [ is a set of m− ks arbitrary points in T. With this
set, one has

d∞(S ′m) =
1
2k

=
1

2�m1=s	 : (8)

Sukharev (1971) shows that no other set Sm gives a lower
value of d∞(Sm) (see also Niederreiter 1992, theorem 6:8).
The dispersion of S ′m with the Lp norm is

dp(S ′m) =dp(S ′m; [0; 1]s) =
s1=p

2�m1=s	 : (9)

EXAMPLE 2. Suppose that random points are generated in-
dependently and uniformly over T = [0; 1]s, and let Sm be
the set that contains the %rst m points. Then, with probabil-
ity one, d∞(Sm;T) =O((lnm=m)1=s). This result is proved
by Deheuvels (1983). The implication is that for large m,
random selection is slightly worse than rectangular grids or
better pattern strategies.

EXAMPLE 3. Again let T = [0; 1]s. Suppose that J has a
quadratic upper bound, in the sense that J (�) − J (�∗)6
K(‖�−�∗‖2)2 for some constant K . Then, Hp(t)6 \Hp(t) =
Kt2s1−2=p for 26p¡∞ and H∞6 \H∞(t) =Kt2s. If we
use this with the point set S ′m, we obtain from (9) the

upper bound on the discretization error

\Hp(dp(S ′m)) =
Ks

4�m1=s	2 (10)

for p¿2. In this particular case, using any p¿2 in (7)
gives the same bound. More generally, if J (�) − J (�∗)6
K(‖�− �∗‖2)q one gets the upper bound

\Hp(dp(S ′m)) =K
( √

s
2�m1=s	

)q
(11)

for p¿2.

In s¿2 dimensions, choosing Sm to minimize d2(Sm)
over the unit hypercube is a hard unresolved problem
and the optimal value of d2(Sm) is also unknown. Since
d2(Sm)¿d∞(Sm), (8) gives a lower bound on d2(Sm). For
the s-dimensional unit torus [0; 1)s, the point sets with
the lowest dispersion known, up to 22 dimensions, are the
Voronoi’s principal lattices of the 7rst type (see Conway
and Sloane 1988, p. 115). For more about low-dispersion
point sets, see also Niederreiter (1992) and the references
given there.

3. ASSUMPTIONS AND MAIN RESULTS

The next proposition provides a large deviation result for
the selection error. We then build on this to obtain conver-
gence rate results for the error XN and study the question of
how fast m should increase as a function of N . We need the
following deviation assumption regarding replicated obser-
vations.

ASSUMPTION A1 (NOISE 1). There are positive numbers R;
�1; and �; such that for all r¿R; for all 0¡�¡�1 and �∈T;

P



∣∣∣∣∣∣
1
r

r∑
j=1

Lj − J (�)

∣∣∣∣∣∣¿�


6 e−r��2 ; (12)

where L1; : : : ; Lr are r i.i.d. replicates of L(�) under P�.

This assumption obviously holds with R= 1 and � not de-
pending on �1 if L(�) is normal with sup�∈T Var[L(�)]¡∞.

It is well known that other random variable families
satisfy Assumption A1. From Ellis (1985, p. 247) we have
that if the moment generating function is %nite for all real
values, then for any particular � and for  2(�) the variance
of L1,

P�



∣∣∣∣∣∣
1
r

r∑
j=1

Lj − J (�)

∣∣∣∣∣∣¿�


6e−r�2=(2 2(�))+O(r�3); (13)

so to assure validity of A1, it su0ces to take � a little smaller
than one-half the inverse of the largest (over T) variance
of L(�). From Shwartz and Weiss (1995, p. 20–22) one
sees that the Poisson and exponential families also satisfy
A1. Petrov (1975, p. 249) gives leading constants in the



YAKOWITZ, L’ECUYER, AND V �AZQUEZ-ABAD / 943

rate of convergence of (13) that are valid whenever the tails
of the characteristic function of L(�) are bounded away, in
absolute value, from 1. Feller (1966, p. 520) also gives a
related bound.

PROPOSITION 2. Under Assumption A1; with � and �1 as
de7ned there; one has that for some N0 and all N¿N0;

P[J (�̂∗N ) − J ∗N¿2�]6me−r��2 ; for 0¡�6�1=2: (14)

PROOF. Note that if |Ĵ (�m; i) − J (�m; i)|6� for i= 1; : : : ; m,
then J (�̂∗N ) − J ∗N62�. Therefore, for N su0ciently large,

P[J (�̂∗N ) − J ∗N¿2�]

6P[|Ĵ (�m; i) − J (�m; i)|¿� for some i]

6
m∑
i=1

P[|Ĵ (�m; i) − J (�m; i)|¿�]

6me−r��2 ;

where the last inequality follows from Assumption A1.

COROLLARY 1. Under Assumption A1 and its notation; one
has that for some N0; for all N¿N0 and 06�6�1=2;

P[XN¿2� + Hp(dp(Sm;T))]6me−r��2 ; (15)

for all p¿1; where Hp is de7ned in (6).

PROOF. Write the error XN as the sum of its two (non-
negative) components J ∗N − J ∗ and J (�̂NN ) − J ∗N . The %rst
component is bounded by (7) and the probability that the
selection error exceeds 2� is bounded by (14), which yields
the result.

The quality of the bound (15) as a function of N depends
on the behavior of Hp(t) as a function of t, of dp(Sm;T) as
a function of m, and of m as a function of N . To proceed
further, we thus need assumptions about the rate of increase
of J around the optimizer and about the dispersion. For
an arbitrary Lp norm, 16p6∞, we make the following
postulate:

ASSUMPTION A2 (SMOOTHNESS). One has Hp(t)6K1t q for
t6t0; for some positive constants K1; q; and t0.

ASSUMPTION A3 (DISPERSION). One has dp(Sm;T)6
K2=�m1=s	; where K2 is a constant.

The constants K1 and K2 in the assumptions may depend
on s, but not on m. Assumption A2 holds in particular for
q= 1 if J has a bounded gradient near �∗ and for q= 2
if it is locally quadratic. If T is the unit hypercube [0; 1]s,
Example 1 shows how to select Sm so that A3 holds with
K2 = 1=2 for p=∞ and with K2 = s1=p=2 for 16p6∞.

For each positive integer N and each constant C¿0,
let m∗

N (C) be the largest integer m such that m6C · (N=
lnN )s=(s+2q) and �N=m	¿C−1−2q=s�m1=s	2qlnN . Observe

that

m∗
N (C) ∼ C ·

(
N

lnN

)s=(s+2q)

; (16)

and

�(m∗
N (C))1=s	−q ∼ C−q=s

(
N

lnN

)−q=(s+2q)

:

As indicated by the next theorem, the latter expression is
an upper bound on the rate of convergence in probability of
the error XN , when m=m∗

N (C). This bound improves as q
increases and deteriorates as s increases.

THEOREM 1. Let Assumptions A1–A3 be in force for a given
p and suppose that m=m∗

N (C). Then; there are two con-
stants K0 and N0 (which may depend on s and q) such that
for all N¿N0;

P[XN¿K0(N=lnN )−q=(s+2q)]6C(lnN )−s=(s+2q): (17)

PROOF. Presume N0 is su0ciently large that, for �1 as in
Assumption A1 and N¿N0,

K0(N=lnN )−q=(s+2q)¡�1=2;

regardless of what K0, to be speci%ed later, turns out to
be. Let K3 be the constant satisfying �K2

3 = s=(s+ 2q), and
let �=K3�m1=s	−qC1=2+q=s. From A2 and A3, we have that
Hp(dp(Sm;T))6K1K

q
2 �m1=s	−q. So, this choice of � makes

the selection error decrease at the same rate as the discretiza-
tion error, and therefore gives a good tradeo5 in rates for
the sum of these two errors. Let K4 = 2K3C1=2+q=s + K1K

q
2 .

Now, from (15) and by our choice of m,

P[XN¿K4�m1=s	−q]6 P[XN¿2� + Hp(dp(Sm;T))]

6me−��2�N=m�

6me−�K2
3 ln N

6C · (N=lnN )s=(s+2q)e−(ln N )s=(s+2q)

= C · (lnN )−s=(s+2q):

Because �m1=s	−q ∼ C−q=s(N=lnN )−q=(s+2q), there are con-
stants K0 and subsequently N0 (depending on k0) such that
K4�m1=s	−q6K0(N=lnN )−q=(s+2q) for all N¿N0, and this
completes the proof.

EXAMPLE 4. Suppose that the assumptions hold for q= 2.
Then the convergence rate is Op((N=lnN )−2=(s+4)). This
gives Op((N=lnN )−2=5) with m∼ (N=lnN )1=5 in one
dimension, Op((N=lnN )−1=3) with m∼ (N=lnN )1=3 in two
dimensions, and so on.

EXAMPLE 5. Consider the random function

L(�) = (�1 − 0:5) sin(10 �1) + (�2 + 0:5) cos(5�2)

+N (0; 1); (18)

where N (0; 1) is a standard normal random variable,
and �= (�1; �2)∈ [0; 1]2. Suppose we want to minimize
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Figure 1. A mesh plot of the objective function J (�).

J (�) =E[L(�)] over the set [0; 1]2. In dimension s= 2, this
problem can easily be solved by %nding the values of the
objective function

J (�1; �2) = (�1 − 0:5) sin(10 �1) + (�2 + 0:5) cos(5 �2)

(19)

over a closely spaced uniform grid. By this means, we
found that the optimal value of J (·) is approximately
J ∗ =−1:5020. Figure 1 is a mesh diagram of this objective
function.

In our computational study related to Theorem 1, we took

m∗
N (C) = �10(N=lnN )1=3	;

and at each point, made r= r(N ) = �N=m∗
N 	 replications.

The point set used was S ′m de%ned in Example 1, with
m always equal to a square, namely m= �√m∗

N (C)	2.
After all this rounding, the nominal values of N = 100, 500,
1,000, 5,000, 10,000, and 20,000 turned out to require only
the numbers Ñ =m(N )r(N ) of observations, shown in the
leftmost column of Table 1. At each such value, we repeated
the estimation of �∗N 10 times. That is, in 10 independent
experiments, �̂∗N was computed. The second column gives
the number of these replications for which tolerance was ex-
ceeded, that is, for which J (�̂∗N )− J ∗N¿(N=ln(N ))−1=3. The
next two columns give the average selection and discretiza-
tion errors, respectively. Then comes the empirical standard
deviation of J (�̂∗N ). The next column gives the numerical

value of the tolerance. The %nal column is the number of
points m. The average value of J (�̂∗N )− J ∗ can be obtained
easily by adding up columns 3 and 4. One can see from the
table that the actual discretization error is not monotonically
decreasing in m even if the upper bound in (7) is. After
looking at the graph of the function in Figure 1, this is
certainly not surprising. Even for a very small m, one can
be lucky in having a point � in S ′m for which J (�) is very
close to J ∗. Nonetheless, for this example, selection and
discretization errors are reasonably commensurate.

Theorem 1 does not give the fastest possible convergence.
One could substitute in place of lnN in (17) a function
growing more slowly in N , such as

√
lnN . On the other

hand, if one takes m∗
N (C) ∼ Ns=(s+2q) and �=m−q=s, there is

no assurance that convergence occurs; the probability bound
me−��2�N=m� grows with N . In short, there does not seem to
be much ground for improvement in (17).

Our analysis does not give convergence rates of mean
squared error performance under the noise Assumption A1.
On the other hand, we have noted in the case of Gaussian
or bounded observations L(�), that (12) holds for all �¿0
and all r.

PROPOSITION 3. Let Conditions A2 to A3 hold for some
p¿1; and A1 hold for some 7xed � and for all �¿0. If
m∗
N (C) ∼ C · Ns=(2s+2q); then

E[X2
N ] =O(N−q=(q+s)): (20)

PROOF. Because E[X2
N ]6E[(J (�̂∗N )−J ∗N )2]+E[(J ∗N−J ∗)2],

it su0ces to bound each of these two expectations. As
in the proof of Theorem 1, Hp(dp(Sm;T))6K�m1=s	−q.
Squaring this bound and using (7) shows that E[(J ∗N −
J ∗)2] =O(N−q=(q+s)). The selection error was shown in
Proposition 2 to satisfy P[|J (�̂∗N )− J ∗N |¿2�]6me−��2�N=m�.
Then, with m=m∗

N (C),

E[(J (�̂∗N ) − J ∗N )2] =
∫ ∞

0
P[(J (�̂∗N ) − J ∗N )2¿x]dx

6
∫ ∞

0
me−��N=m]x=4dx

=
4m

��N=m	 =O(m2=N )

= O(N−q=(q+s)):

Table 1. Computational illustration of the stochastic optimizer: nonadaptive case.

Observation: L(�) = (�1 − 0:5) ∗ sin(10 ∗ �1) + (�2 + 0:5) ∗ cos(5 ∗ �2) + N (0; 1)

Ñ # Bad Ave(J (�̂∗
N ) − J ∗

N ) J ∗
N − J ∗  ̂(J (�̂∗

N )) (N=lnN )−1=3 m

75 2 0.2510 0.1402 0.2282 0.3584 25
396 3 0.1269 0.0249 0.1658 0.2316 36
931 2 0.1230 0.0446 0.1090 0.1904 49

4,719 3 0.0649 0.0082 0.0993 0.1194 81
9,700 4 0.0560 0.0417 0.0439 0.0973 100

19,118 1 0.0414 0.0438 0.0549 0.0791 121
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In the case that s= 1 and q= 2, this bound turns out to
be O(N−2=3).

4. INCREASING N DYNAMICALLY AND
LOW-DISPERSION SEQUENCES

In the setting of the previous sections, we were interested in
how the error decreases with the computing budget N , as-
suming that N was %xed at the beginning of the experiment.

Suppose now that we do not %x the computing budget in
advance, but reserve the right to stop at any value of N . For
example, after N simulation runs, we may decide to go on
for N ′−N additional runs. Of course, the data taken during
the %rst N runs ought to be used e5ectively within the larger
set of runs, and this imposes strong restrictions on the choice
of the point sets Sm as a function of N . More speci%cally,
suppose that after N runs, the set of evaluation points is
Sm = {�1; : : : ; �m}, with rN; i runs at point �i, for i= 1; : : : ; m,
so that rN;1 + · · ·+ rN;m =N . Then, the (N + 1)th run must
be either at a new point �m+1, so m increases by 1 and the
rN; i’s for i6m stay unchanged, or at one of the previous
points �i, in which case only this rN; i increases by one and
m is unchanged.

What we need now is an in7nite sequence of points
�1; �2; : : : in T such that for any %nitem, the set Sm = {�1; : : : ;
�m} has low dispersion (relative to the size of m). Such a se-
quence is called a low-dispersion sequence. For T = [0; 1]s,
Niederreiter (1992, Theorem 6:9) gives the following low-
dispersion sequence for the sup norm. De%ne

x1 = 1; xm = (log2(2m− 3)) mod 1 for m¿2; (21)

where xmod 1 denotes the fractional part of x. In dimen-
sion 1, the low-dispersion sequence is de%ned by �i = xi for
all i. For s¿1, consider a sequence �1; �2; : : : such that for
any integer k¿1, for m= k s, the set Sm = {�1; : : : ; �m} is
precisely the set of all points of the form �= (u1; : : : ; us)
with uj ∈{x1; : : : ; xk} for 16j6s. The order of the �i in the
sequence does not matter, as long as they satisfy the above
condition for all k¿1. This sequence satis%es

lim
m→∞m1=sd∞(Sm; [0; 1]s) =

1
ln 4

: (22)

For s= 1, this is asymptotically optimal, in the sense that
no other sequence can have a lower value for this limit. For
s¿1, the smallest possible value of this limit is unknown, but
it cannot be smaller than 1=2. Therefore, one cannot achieve
much better than for the above sequence, with respect to the
sup norm.

The sequential version of our optimization algorithm, us-
ing a low-dispersion sequence �1; �2; : : : ; operates as follows.
De%ne m=m∗

N as a function of N in the same way as in the
previous section. As N increases to N+1, if m∗

N+1 =m∗
N +1,

perform a simulation run at the new evaluation point �m+1

where m + 1 =m∗
N+1. Otherwise (i.e., if m∗

N+1 =m∗
N =m),

perform an additional run at the point �i with the smallest
number of runs rN; i so far, for i6m (in case of ties, break
them arbitrarily).

Developments and bounds in the preceding section, un-
der the stated assumptions, still hold in this setting at times
preceding acquisition of new evaluation points. This is be-
cause the dispersion dp(Sm;T) is still O(m−1=s), so Theorem
1 applies.

5. STOCHASTIC OPTIMIZATION WITH ADAPTIVE
SAMPLE SIZES

In what we have seen so far, one performs (approximately)
the same number of runs at each point of Sm. Thus the
stochastic optimization in nonadaptive. It can be undertaken
without regard to the observed values. But as the number of
observations increases, from examination of the data it often
becomes pretty clear which are the more promising points
of Sm. Through sequential sampling (i.e., selection of the
points �n ∈ Sm on the basis of preceding observations), there
is hope for improvement over rates derived in the preceding
section.

At promising points, one should collect more observa-
tions because it is with nearly optimal points that sampling
noise is more likely to lead to selection error. By contrast,
if J (�m; i) is far from J ∗N , it would take a relatively large
error in Ĵ (�m; i), for �m; i to be mistaken for the optimal point.
It is thus natural to adaptively concentrate the sampling ef-
fort on those more promising points. In the analysis to fol-
low, an adaptive stochastic optimization method is o5ered
which was motivated by these ideas and is consistent with
criteria followed in earlier portions of this paper.

We give a re%nement of Proposition 2 for the case where
the number r of replications is not the same for all design
points. Let ri denote the number of replications at �m; i, and
de%ne 'i = J (�m; i) − J ∗N , for i= 1; : : : ; m. (In our adaptive
scheme to follow, the 'i’s will be estimated by their sample
means.)

PROPOSITION 4. Let � be an arbitrary positive number.
Under the same assumptions as in Proposition 2; one has

P[J (�̂∗
N ) − J ∗N¿�]6

m∑
i=1

exp[−ri(�=16)('i + �)2]: (23)

PROOF. Suppose that i∗ satis%es J ∗N = J (�m; i∗). Take
[ = {i : 16i6m and 'i¿�}. If �m; i is chosen as �̂∗N , by
de%nition (3) it must be that Ĵ (�m; i∗)¿ Ĵ (�m; i), which
implies

(Ĵ (�m; i∗) − J (�m; i∗)) + (J (�m; i) − Ĵ (�m; i))

¿ Ĵ (�m; i) + (J (�m; i) − Ĵ (�m; i)) − J (�m; i∗)

= J (�m; i) − J (�m; i∗)¿0: (24)

A necessary condition for (24) is that

|Ĵ (�m; i∗) − J (�m; i∗)| + |J (�m; i) − Ĵ (�m; i)|

¿J (�m; i) − J (�m; i∗): (25)
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If i∈[, then from the above, and recognition that
J (�m; i∗) = J ∗N , and that J (�m; i) − J (�m; i∗)¿� (from the
de%nition of [), we have

|Ĵ (�m; i∗) − J (�m; i∗)| + |J (�m; i) − Ĵ (�m; i)|

¿J (�m; i) − J (�m; i∗) = 'i¿�:

For this to happen, one of the terms on the left must be
at least half as large as the right side. That is, either

|Ĵ (�m; i) − J (�m; i)|¿'i=2¿('i + �)=4; (26)

or

|Ĵ (�m; i∗) − J (�m; i∗)|¿�
2

= ('i∗ + �)=2; (27)

because 'i∗ = 0. Let us designate the event that (26) holds
by E(i) if i �= i∗, and the event that (27) holds by E(i∗).
From the preceding developments, we conclude that the
event “J (�̂∗N − J ∗N ¿ �” occurs only if E(i) occurs for some
i∈[∪{i∗}. Then, under Assumption A1, and using the fact
that the probability of a union of events does not exceed
the sum of the probabilities of the events themselves, and
because i∗ �∈[, we have that

P[J (�̂∗N )¿J ∗N + �]

6P
[∪i∈[∪{i∗}E(i)

]
6

m∑
i=1

P[E(i)]

6
m∑
i=1

exp(−('i + �)2�ri=16):

The setting for this section is that somehow one has
selected the total number, call it N , of observations to be
made in the stochastic minimization e5ort. We will let
n= 1; 2; : : : ; N indicate the current number of observations
(replications) that have been collected up to the present
decision time. The decision to be made is which value
�∈ Sm is to be selected for the next (i.e., (n + 1)st) obser-
vation. The basis of the adaptive stochastic minimization
considered here is to choose the numbers of replications
ri sequentially, for increasing n, on the basis of previous
choices of �∈ Sm, so as to minimize the probability bounds
given by (23). The next proposition gives the optimal repli-
cation allocation for minimizing the bound of Proposition 4,
provided the numbers 'i = J (�m; i) − J (�m; i∗) and � are
somehow known. Following that, a strategy for inferring
needed values will be o5ered. For economy of notation in
the next development, we de%ne

Ki = ('i + �)2�=16: (28)

PROPOSITION 5. For given positive constants K1; : : : ; Km; the
minimizer of

m∑
i=1

exp[−riKi] (29)

over nonnegative real vectors (r1; : : : ; rm) subject to
`m
i=1ri =N is given by

ri =
lnKi

Ki
+

N −∑m
j=1 (lnKj)=Kj

Ki
∑m

j=1 1=Kj
: (30)

PROOF. The relation (30) follows by writing the %rst order
optimality conditions, using a Lagrange multiplier. For ∇
representing the gradient with respect to (r1; : : : ; rm), we have
that for some number (,

∇
m∑
i=1

exp[−riKi] + ((1; : : : ; 1) = 0:

The solution requires that

Ki exp[−riKi] = (

for all i. Taking the logarithm and solving for ri, one obtains

ri = (lnKi − ln ()=Ki:

Combining this with the constraint `m
j=1rj =N to eliminate

ln (, (30) follows after easy manipulations.

We de%ne the approximation

'̂i = Ĵ (�m; i) − Ĵ (�̂∗n);

where Ĵ (�m; v) is the running sample average of observations
taken up through the nth decision time at the point �m; v ∈ Sm.
At the optimum in the previous proposition, riKi − lnKi is
the same for all i. This motivates the following methodology
for the case of %xed m: At each sample time n, choose the
test point �m; i for which

riK̂i − ln K̂i = ri('̂i + �)2�=16 − ln (('̂i + �)2�=16) (31)

is minimal. Following this selection strategy, aside from
sampling error and integer discretization, at each time the al-
location will be optimal with respect to the probability bound
criterion. (It will be argued later that with Sm %xed, asymp-
totically in n the sampling error becomes negligible.) By
contrast, the nonadaptive strategy allots just as many repli-
cations to “bad” points as to promising ones. Principles for
using plug-in estimators in place of the 'i’s will be o5ered
after we consider an example under idealized conditions.

EXAMPLE 6. If J (�) has at least two derivatives, then in
the neighborhood of any minimum, J (�) will resemble a
quadratic. Thus the following idealized example, presum-
ing the 'i’s are known, is heartening. (In the computational
experiment afterward, we will compare the nonadaptive
strategy against the adaptive scheme with plug-in estimates
of the 'is, for the quadratic in this example.)

Take s= 1; T = [0; 1]; J (�) = �2; �= 1=m2, and with-
out loss of generality, �= 16. According to the nonadaptive
(NA) strategy, ignoring sampling error, we have that for all
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i; ri =N=m; �m; i = i=m, and so our best bound is

*NA(N; �) = PNA[J (�̂∗N ) − J ∗N¿�]

6
m−1∑
i=0

exp(−(N=m)[(i + 1)=m]4)¿exp(−N=m5):

For analytic convenience, in investigating our adaptive
(A) strategy, we will ignore the logarithmic term and ap-
proximate (31) by the (suboptimal) rule: Sample next at
�m; j for j the minimizer over 16i6m of

riKi = ri('i + �)2: (32)

Proposition 4 yields the bound

*A(N; �) = PA[J (�̂∗N ) − J ∗N¿�]

6
m∑
i=1

exp(−riKi)6m exp(−N=(m4Q)); (33)

where m4Q= `m
v=11=Kv, or Q= 1=`m

v= 1v
−4, which is

bounded in m.
Consequently, the terms in the adaptive exponents pick up

a factor of m in growth, over the nonadaptive counterparts,
in these error bounds. To the extent that these upper bounds
are tight, the probability of misclassi%cation ought to be
signi%cantly smaller in the adaptive case.

6. COMPUTATIONAL CONSIDERATIONS AND
EXPERIMENTS FOR THE ADAPTIVE CASE

Toward assessing error of approximation by using the alias
'̂i in place of 'i as in (31), suppose that for some arbitrary
�¿0 and all 16i6m,

|Ĵ (�m; i) − J (�m; i)|¡�: (34)

We have

|'̂i − 'i| = |(Ĵ (�m; i) − Ĵ (�̂∗n)) − (J (�m; i) − J (�m; i∗))| (35)

6 |Ĵ (�m; i) − J (�m; i)| + |Ĵ (�̂∗n) − J (�m; i∗)|: (36)

But under (34)

Ĵ (�̂∗n)¿J (�̂∗n) − �¿J (�m; i∗) − �;

and by the choice of �̂∗n ,

Ĵ (�̂∗n)6Ĵ (�m; i∗)6J (�m; i∗) + �:

Thus the %nal term in (36) is bounded by �, and if the event
(34) holds, then |'̂i−'i|¡2� for every i. The probability of
the event (34) failing is majorized by

P
[
max
i

| Ĵ (�m; i) − J (�m; i)|¿�
]
6

m∑
v=1

exp[−rv��2];

thanks to Assumption A1 and because the probability of a
union of events is bounded by the sum of probabilities of
the events. Because rv would increase without bound by our

selection rule if n were unbounded, the estimates are weakly
consistent, in this sense.

On another computational matter, we suggest that the
criterion (31) be approximated by selection of �m; i with in-
dex i the minimizer of

ri('̂i + �)2 (37)

for the next point to be observed. This rule is equivalent to
ignoring the logarithmic term in the ideal rule, (31). The ad-
vantage of this latter formula is that the (usually unknown)
large-deviation parameter � cancels out. Because the
factor ri grows without bound and because K̂i is almost
surely bounded under Assumption A1, it is evident that
the logarithmic term in (30) is asymptotically (in n) neg-
ligible. If the model is prescribed, then in principle—and
sometimes in fact—one can compute � and consequently
use (30) exactly. The monograph of Ellis (1985) gives the
needed procedures. In any case, since (37) is suboptimal,
conclusions in the examples to follow are no worse than
what would be expected under (31).

In summary, the data-driven approximations for imple-
menting the adaptive stochastic optimization scheme are:

(1) Approximate 'i = J (�m; i)− J ∗N by the corresponding
sample means, Ĵ (�m; i) − Ĵ ∗n where we have de%ned
Ĵ ∗n = min16v6m Ĵ (�m; v) = Ĵ (�̂∗n).

(2) Use the convenient criterion: arg mini ri('̂i + �)2 in
place of (31), thereby avoiding the task of guessing
or bounding �.

It is hoped that the computational examples o5ered below
are somewhat representative of the performance that can be
anticipated.

EXAMPLE 7. Some comparative simulation experiments are
reported here. We test the two target functions J (�) = �2,
as in Example 6 and J (�) = � sin(50�), with results re-
ported in Tables 2 and 3, respectively. In these computa-
tions, T = [0; 1].

Each observation is additively corrupted by a N (0; 1)
observation. For the adaptive rule, the threshold � in (31) is
taken to be the tolerance (N=ln(N ))−2=5, in accordance with
Theorem 1. The program begins by making one observa-
tion at each point in Sm and thereafter follows the adaptive
strategy.

Each entry in these tables is based on 10 replications. The
entries labelled “Ave” are the sample averages (over the
10 replications) of the of selection errors J (�̂∗N )− J ∗N at the
declared best design points, and following that are the dis-
cretization errors J ∗N − J ∗. The column labelled  ̂(J (�̂∗N ))
provides the sample standard deviations. We have also
included the values of the allowed error threshold as in
Theorem 1, Equation (17), for the values N . We examined
the actual errors in the replication blocks and the column la-
belled “# Bad” records the number of replications in which
this threshold was exceeded. In the listing, in the Tables,
“A” designates adaptive and “NA” stands for nonadaptive.
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Table 2. Comparison of the performances of the nonadaptive and adaptive stochastic
optimizers: I. Quadratic case.

Observations: L(�) = �2 + N (0; 1)

N Method # Bad Ave(J (�̂∗
N ) − J ∗

N ) J ∗
N − J ∗  ̂(J (�̂∗

N )) (N=lnN )−2=5 m

100 NA 1 0.069 0.0100 0.1111 0.2919 10
100 A 2 0.142 0.0100 0.2030 0.2919 10
500 NA 2 0.079 0.0021 0.0882 0.1729 22
500 A 0 0.079 0.0021 0.0681 0.1729 22

1,000 NA 0 0.057 0.0010 0.0514 0.1367 31
1,000 A 0 0.021 0.0010 0.0301 0.1367 31
5,000 NA 0 0.059 0.0002 0.0214 0.0781 70
5,000 A 0 0.014 0.0002 0.0110 0.0781 70

Table 3. Comparison of the performances of the nonadaptive and adaptive stochastic
optimizers: II. Ampli%ed sine function case.

Observations: L(�) = � sin(50�) + N (0; 1)

N Method # Bad Ave(J (�̂∗
N ) − J ∗

N ) J ∗
N − J ∗  ̂(J (�̂∗

N )) (N=lnN )−2=5 m

100 NA 6 0.250 0.3812 0.226 0.2919 10
100 A 3 0.130 0.3812 0.219 0.2919 10
500 NA 5 0.169 0.2668 0.179 0.1729 22
500 A 1 0.037 0.2668 0.115 0.1729 22

1,000 NA 3 0.039 0.0517 0.062 0.1367 31
1,000 A 1 0.013 0.0517 0.041 0.1367 31
5,000 NA 0 0.045 0.0010 0.075 0.0781 70
5,000 A 0 0.014 0.0010 0.011 0.0781 70

In our simulations, we began by sampling at each point in
Sm once, and thereafter reverting to the adaptive search.

In scanning the results of these experiments, there is clear
evidence that with increasing sample size, adaptation is re-
ducing the number of exceedances. Since the scaling of the
error thresholds is arbitrary, these numbers are only sug-
gestive. What is more suggestive is that (aside from the
N = 100 case) the sample averages of the selection errors
are smaller for the adaptive rule, which would indicate that
whatever scaling of tolerance is used, adaptation has the ad-
vantage. Even in the case of the highly oscillatory ampli%ed
sine function, it is selection rather than discretization error
that dominates, for larger N , and thus improvement through
adaptive sample sizes results in increased accuracy of the
declared optimizer.

EXAMPLE 8. Here we return attention to the two-dimensional
computation comprising Example 5. The simulation and
setup is as described there. The di5erence here is that the
adaptive stochastic minimizer is used. Approximately the
same range of N is employed. The number of m = m(N )
of test points is taken to be approximately 10N 2=5, in accor-
dance with the dispersion theory (the approximation being
that m must be a perfect square). In the table, a choice �̂∗N is
deemed “bad” if it represents an exceedance of (N=lnN )−2=5.
This is more stringent than the tolerance used in the non-
adaptive example, but from extension of ideas in Example
6, convergence can be assured in the quadratic case.

In comparing Table 4 with the corresponding summary
of the nonadaptive case (Table 1) we see that in this case,
adaptation leads to markedly improved performance. The

Table 4. Computational illustration of the adaptive stochastic optimizer: adaptive case.

Observations: L(�) = (�1 − 0:5) sin(10 �1) + (�2 + 0:5) cos(5�2) + N (0; 1)

N # Bad Ave(J (�̂∗
N ) − J ∗

N ) J ∗
N − J ∗  ̂(J (�̂∗

N )) (N=lnN )−2=5 m

100 3 0.1677 0.0446 0.1884 0.2919 49
500 1 0.0828 0.0417 0.0862 0.1729 100

1,000 1 0.0607 0.0249 0.0520 0.1367 144
5,000 0 0.0113 0.0070 0.0148 0.0781 289

10,000 1 0.0137 0.0208 0.0277 0.0611 361
20,000 0 0.0055 0.0064 0.0114 0.0476 484
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number of exceedances at larger N has fallen, despite
the reduced tolerance and despite more grid points be-
ing used at each level. The increase in grid-point den-
sity has led to lowering the discretization error J ∗N − J ∗.
At the higher levels of N , the average selection error
J (�̂∗N )−J ∗N has fallen way below the corresponding entries of
Table 1.

It is noted that in the adaptive case (only), as the
process continues, the points with good criterion values
are picked increasingly often. Consequently, one could
implement this procedure on line and anticipate that
the average performance converges to optimal, as time
goes on.

7. CONCLUSIONS

The objective of the present paper is to explore the inFu-
ence of smoothness assumptions in the context of stochastic
minimization. Notions of dispersion and deviation the-
ory have served these ends; the %ndings have included
prescriptions for the numbers and (nonadaptive) locations
of sampling points within a continuous risk-function do-
main in a Euclidean space. As noted, these %ndings impinge
on developments in the area of ranking and selection; thus
our techniques can deal with minimization of a noisy func-
tion over a continuum of values, and our results do not
depend on normality assumptions. Because the concepts are
based on “model-free” or “machine-learning” approaches,
the methodology here is appropriate for on-line experimen-
tation and optimization as well as stochastic optimization
through simulation.

Both %xed and adaptive sampling strategies have been
considered. The latter case impinges on the literature of
nonparametric bandit theory and stochastic approxima-
tion. Thus in contrast to the latter discipline, we can assure
global convergence without unimodality assumptions. To
our knowledge, bandit theory has not included topological
assumptions, as we have here, and as a consequence, rates
and bounds established in the present work are superior to
developments in the literature. Theory and experimentation
clearly show that in some situations, adaptive selection
gives improved performance.

Remaining issues include extension to steady-state mod-
els and to examination and weakening of assumptions,
particularly those used for the adaptive selection criterion.
Finally, for the case as in §4, of dynamically increasing the
set Sm, there is the intriguing issue of how to place new
points � adaptively, as evidence of promising decision re-
gions accumulates. In learning theory, a central and largely
unresolved problem is how to use past values to select
promising regions. The adaptive methodology suggests a
novel way to automate this task: One constructs a dense
grid dynamically as in §4 over the entire search region.
The ri('̂i + �)2 criterion should, theoretically, automatically
allot replications where values seem promising and ignore
other domains. More investigation of this insight will be
undertaken.
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