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On the interaction between stratification and
control variates, with illustrations in a call
centre simulation
P L’Ecuyer* and E Buist

GERAD, CIRRELT and DIRO, Université de Montréal, Canada

Variance reduction techniques (VRTs) are often essential to make simulation quick and accurate enough to be useful. A
case in point is simulation-based optimization of complex systems. An obvious idea to push the improvement one step
further is to combine several VRTs for a given simulation. But such combinations often give rise to new issues. This
paper studies the combination of stratification with control variates. We detail and compare several ways of doing
the combination. Nontrivial synergies between the two methods are exhibited. We illustrate this with a telephone call
centre simulation, where we combine a control variate with stratification with respect to one of the uniform random
variates that drive the simulation. It turns out that using more information in the control variate degrades the
performance (significantly) in our example. This seemingly paradoxical behaviour is not rare and our theoretical
analysis explains why.
Journal of Simulation (2008) 2, 29–40. doi:10.1057/palgrave.jos.4250035
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1. Introduction

The use of simulation to optimize decision parameters in

complex stochastic systems is increasingly frequent. This

simulation-based optimization typically requires thousands

or millions of simulation runs for a complex model, where

each run takes a significant amount of time. Consider for

instance a telephone call centre for which we want to

optimize the number of agents who talk with customers over

the phone, and the working schedules of these agents, under

constraints on the quality of service and on admissible

schedules. Large call centres are complex stochastic systems

that can be analysed realistically only by simulation;

tractable queuing models oversimplify reality and are not

very reliable. When simulation is combined with an

optimization algorithm, simulation speed is a key issue

because optimization often requires huge numbers of

simulation runs at different parameter settings (Atlason

et al, 2004; Cez̧ik and L’Ecuyer, 2008). In that context,

straightforward (or naive) Monte Carlo simulation is often

too slow to be practical.

Fortunately, proper use of variance reduction techniques

(VRTs) such as control variates (CVs), stratification,

conditional Monte Carlo, common random numbers,

importance sampling, etc., can improve simulation effi-

ciency, sometimes by a large factor (Bratley et al, 1987;

Fishman, 1996; Glynn, 1994). For larger improvements, an

obvious idea is to use two or more VRTs at the same time.

However, this often complicates things in an unexpected

way. Such combinations are studied in Cheng (1986), Booth

and Pederson (1992), Avramidis and Wilson (1996), and

Hickernell et al (2005), for example, in specific settings.

The aim of this paper is to examine some issues that arise

when combining two specific VRTs and to show how to

handle these issues. We do this via an example of a call

centre simulation, to make things more concrete for the

reader, but our development applies more generally. We

study the combination of CVs with stratification with respect

to a continuous input variable. In this case, the optimal CV

coefficient turns out to be a function of the input variable on

which we stratify. We focus on how to approximate this

function in practice.

The next section discusses how stratification with respect

to uniform random numbers driving the simulation can be

used to reduce the variance. We then study the combination

of a CV with stratification, which is non-standard and

requires some care. Then, we give an example of a simple call

centre on which we perform numerical experiments to

compare the various ways of making the combination. The

simulations were made with contact centres, a specialized

simulation tool for ContactCentres (Buist and L’Ecuyer,

2005) developed in Java with the SSJ library (L’Ecuyer and

Buist, 2005). A preliminary version of this paper was

presented at the 2006 Winter Simulation Conference

(L’Ecuyer and Buist, 2006).
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Centre-Ville, Montreal, Quebec, Canada, H3C 3J7.
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2. Stratification

Stratified sampling consists in partitioning the set of possible

outcomes in a finite number of strata, estimating the

quantity of interest separately in each stratum, and

computing a weighted average of these estimators, where

the weights are the (known) probabilities of the correspond-

ing strata, to obtain the overall estimator. This is easy to

implement if we can design strata for which we know the

exact probabilities and from which we know how to generate

samples uniformly. Bratley et al (1987, p 295) give an

example with three strata. For large and complex simula-

tions, it may not be obvious a priori how to achieve this. One

way of stratifying a simulation is as follows.

Recall that all the randomness in a simulation typically

comes from a sequence of independent U(0, 1) (uniform over

the interval (0, 1)) random variates. Select d of those uniforms,

preferably some whose values are deemed to have a large

impact on the result. Partition the d-dimensional unit hypercube

[0, 1)d into k rectangular boxes of the same shape and size; these

boxes will correspond to the k strata. Each one has probability

1/k. To generate a sample uniformly from stratum s, we

generate a point U uniformly in box s and take the d

coordinates of U as the values of the d selected uniforms. All

other random variates in the simulation are generated as usual,

independently of the realizations of the d selected uniforms.

Suppose each simulation run provides an estimator X for

m ¼ E½X �. Suppose also that we have ns observations in

stratum s for each s, where the ns’s are positive integers such

that n¼ n1þyþ nk. If Xs;1; . . . ;Xs;ns denote the ns i.i.d.

copies of X in stratum s, the (unbiased) stratified estimator of

m is (Cochran, 1977):

�Xs;n ¼
1

k

Xk
s¼1

m̂s where m̂s ¼
1

ns

Xns
i¼1

Xs;i ð1Þ

is the sample mean in stratum s. Let ss
2¼Var[X|S¼ s], the

conditional variance of X given that we are in stratum s.

Then,

Var½ �Xs;n� ¼
1

k2

Xk
s¼1

s2s=ns ð2Þ

and an unbiased estimator of this variance is

S2s;n ¼
1

k2

Xk
s¼1

ŝ2s=ns ð3Þ

where ŝs
2 is the sample variance of Xs;1; . . . ;Xs;ns , assuming

that nsX2.

Stratification with proportional allocation takes ns¼ n/k

for all s. Then, (2) simplifies to

Var½ �Xsp;n� ¼
1

nk

Xk
s¼1

s2s ð4Þ

where �Xsp, n denotes the corresponding version of (1). The

optimal allocation, which minimizes the variance (2) with

respect to n1,y, nk under the constraints that ns40 for

each s and n1þyþ nk¼ n for a given n, is easily found

by using a Lagrange multiplier; we must take ns proportional

to ss/k: ns*¼ nss/s�k where s�¼Ss¼ 1
k ss/k. (We neglect

the rounding of ns* to an integer and assume that ns42.)

If �Xso, n denotes the estimator with optimal allocation,

we have Var[�Xso,n]¼ s�2/n. Putting these pieces together,

the variance can be decomposed as follows (Cochran,

1977):

Var½ �Xn� ¼ Var½ �Xsp;n� þ
1

nk

Xk
s¼1

ðms � mÞ2 ð5Þ

¼ Var½ �Xso;n� þ
1

nk

Xk
s¼1

ðss � �sÞ2þ 1

nk

Xk
s¼1

ðms � mÞ2 ð6Þ

The first sum in the last line represents the variability due to

the different standard deviations among strata and the

second sum represents the variability due to the differences

between stratum means. Proportional allocation eliminates

the last sum while optimal allocation eliminates the first. For

a given total sample size n, a larger k generally gives more

variance reduction, because the strata are smaller so there is

less variability within the strata. When k-N, we have s�-R
[0, 1)d s(u)du where s2(u)¼Var[X|U¼ u]. Usually, s�40, in

which case the marginal variance reduction converges to

zero. On the other hand, with a larger value of n/k (a smaller

k), we have a more accurate estimator of the variance of the

stratified estimator.

3. Combining with a control variate

CVs for simulation are discussed, for example, by

Lavenberg and Welch (1981) and Glynn and Szechtman

(2002). Here we study how to combine a CV with stratifi-

cation. To keep the notation simple, we now assume that

d¼ 1 and we consider a single control variable, but all our
development can be generalized easily to d41 and to a

vector of CVs. The one-dimensional uniform random vector

U is denoted by U. Any random variable A whose

expectation a ¼ E½A� is known can be used as a CV.

Preferably, A should be strongly correlated (positively or

negatively) with X. Without the stratification, the CV is used

by subtracting from the original estimator X the difference

A � E½A� multiplied by some constant coefficient b. The
(unbiased) CV estimator is

Xc ¼ X � b½A� a�

The optimal coefficient b is

b� ¼ Cov½A;X �=Var½A� ð7Þ

and we have Var[Xc]¼ (1�r2[X,A])Var[X] when b¼ b*,
where r[X,A] is the linear correlation between X and A. This

30 Journal of Simulation Vol. 2, No. 1
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b* can be estimated from preliminary (pilot) simulation runs

or from the same runs as X; in the latter case, this gives a

slightly biased estimator, but the bias is negligible when the

number n of runs is large.

Things become somewhat more complicated if we

combine the CV with stratification, because both b* and
the expected value of A generally depend on the strata, or on

the value taken by the random variate on which we stratify.

We examine and compare various ways of handling this,

assuming that we are stratifying on U as in the previous

subsection. We can apply the CV on the stratified average
�Xs, n, or on each stratum average m̂s, or on the individual
observations Xs, i. All these methods are equivalent to

replacing Xs, i by

Xsc;s;i ¼ Xs;i � bs;iðAs;i � es;iÞ ð8Þ

with different choices of bs, i and es, i, where As, i is the value

of the CV for the observation Xs, i, in stratum s. Let

as ¼ E½As;i�, the expected value of A given that we are in

stratum s, and aðuÞ ¼ E½AjU ¼ u�, the expected value of A
conditional on U¼ u. In (8), when U¼ us, i, we can take es, i
as either a, as or a(u). We can also take bs, i as either a

common constant b, or a different constant bs in each

stratum s, or a function of u, b (u). We examine and compare
these possibilities.

If bs, i does not depend on more information than es, i, then

(8) is unbiased; otherwise it can be biased. So if es, i¼ as, we

cannot take bs, i¼b(U), whereas if es, i¼ a, we must

have bs, i¼ b (a constant). To show unbiasedness, we take

the conditional expectation given the stratum s if es, i¼ as
and given U if es, i¼ a(U). For example, if es, i¼ a(U)

and bs, i¼bs, then E½bsðAs;i � aðUÞÞ� ¼ E ½E½bsðAs;i � aðUÞÞj
U�� ¼ E½bs E½ðAs;i � aðUÞÞjU�� ¼ 0, but this no longer works

if we take as together with b(U).
Table 1 summarizes the different combinations. Each

table entry gives the ‘correction term’ bs, i(As, i�es, i) used

in (8) for the given combination. The dashed entries

correspond to biased estimators. On each row, the best

estimator is the one on the diagonal. As we shall see later,

none of these three diagonal entries always give a smaller

variance than the other two, even if we use the optimal CV

coefficient in each case. We will examine each of them in

more detail.

A common coefficient b, with es, i¼ as. We define �As, n as the

weighted average of the n replicates of A, in the same way as
�Xs, n in (1):

�As;n ¼
1

k

Xk
s¼1

1

ns

Xns
i¼1

As;i

Then, E½ �As;n� ¼ ða1 þ 
 
 
 þ akÞ=k ¼ a: Using �As, n as a CV

with a single coefficient b and es, i¼ as gives the estimator

�Xsc;n ¼ �Xs;n � bð �As;n � E½ �As;n�Þ ¼ �Xs;n � bð �As;n � aÞ ð9Þ

For the choice of b, a first (naive) approach is to use the b*
defined earlier, as if there was no stratification. However,

this b* is no longer optimal, as we now show.

The estimator (9) has variance

Var½ �Xsc;n� ¼ Var½ �Xs;n� � b2Var½ �As;n�
� 2bCov½ �Xs;n; �As;n� ð10Þ

Differentiating with respect to b and equaling the derivative
to zero, we find that the variance is minimized by taking

b ¼ b�sc ¼
Cov½ �Xs;n; �As;n�
Var½ �As;n�

¼
Pk

s¼1 Cov½Xs;i;As;i�=nsPk
s¼1 Var½As;i�=ns

ð11Þ

Here, Cov[Xs, i, As, i] and Var[As, i] are the conditional

covariance and variance given that we are in stratum s.

Our second combined estimator uses (9) with b¼ bsc* . This
bsc* . generally differs from b* and it also depends on the

allocation used for the stratification. As a result, minimizing

Var[ �Xsc, n] requires finding bsc* . and the optimal allocation
(the ns’s) simultaneously (which is not necessarily easy). If we

restrict ourselves to proportional allocation, the ns’s simplify

and we obtain

b�sc ¼ b�scp ¼
Pk

s¼1 Cov½Xs;i;As;i�Pk
s¼1 Var½As;i�

Taking bs, i¼ bs with es, i¼ as. We now consider a different

CV coefficient bs in each stratum. We replace Xs, i by

Xsc, s, i¼Xs, i�bs(As, i�as) for each s and i, so the average m̂s is
replaced by

m̂sc;s ¼ m̂s � bsðÂs � asÞ ð12Þ

where Âs is the average of the As, i’s in stratum s. We assume

that we can compute

as ¼ k

Zs=k

ðs�1Þ=k

aðuÞdu ð13Þ

with negligible error (eg by numerical integration). The

variance in stratum s becomes

s2sc;s ¼ s2s þ b2sVar½As;i� � 2bsCov½Xs;i;As;i� ð14Þ

and the optimal bs for stratum s is

b�sc;s ¼
Cov½Xs;i;As;i�
Var½As;i�

ð15Þ

Table 1 The different possibilities for bs,i(As,i�es,i)

b bs b(U)

a b(As,i�a) — —
as b(As,i�as) bs(As,i�as) —
a(U) b(As,i�a(U)) bs(As,i�a(U)) b(U)(As,i�a(U))

P L’Ecuyer and E Buist—Interaction between stratification and control variates 31
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With bs¼bsc, s* , the variance in stratum s is reduced to

Var½Xsc;s;i� ¼ ð1� r2½Xs;i; ðAs;i � asÞ�ÞVar½Xs;i�

¼ Var½Xs;i� � r2½Xs;i; ðAs;i � asÞ�Var½Xs;i� ð16Þ

The overall variance here with bsc, s* cannot be larger (and is

usually smaller) than if we impose bs¼b for all s, because we
have the flexibility to optimize the constant bs in each

stratum. The difference can be large if the bsc, s* are far

from being equal between strata. After estimating the

variance with bsc, s* within each stratum, we can find

the allocation that minimizes the overall controlled variance.

Note that the optimal allocation with the CV, obtained

using the ssc, s’ s, differs from the optimal allocation without

CV, obtained with the ss’s defined earlier.
Taking es, i¼ a(u). Once we know us, i, the realization of U

for the observation Xs, i, we can take es, i¼ a(us,i) instead of

as. The CV coefficient bs, i can be any of the three

possibilities: b, bs, or b(u). Clearly, the more flexibility we
have, the better we can do, so an optimal choice of b(u) (a
function of u) is always at least as good as an optimal choice

of bs (a function of s), and the latter is always at least as
good as an optimal b (a single constant). Note that the

optimal values of these coefficients are not the same (in

general) with es, i¼ a(u) than with es, i¼ as.

Let C(u)¼A�a(u). Suppose the CV coefficient can be a

function of U, bs, i¼ b(U). Let s2(u)¼Var[X|U¼ u],

Xsc(u)¼X�b(u)C(u) (the controlled estimator conditional

on U¼ u),

s2scðuÞ ¼ Var½XscðuÞ�
¼ s2ðuÞ þ b2ðuÞVar½AjU ¼ u�
� 2bðuÞCov½X;AjU ¼ u�

(its conditional variance), mðuÞ ¼ E½X jU ¼ u�; ms ¼ E½Xs;i�,
and let Us, i denote a random variable uniformly distributed

over [(s�1)/k, s/k). The variance of the controlled estimator
in stratum s is

Var½XscðUs;iÞ� ¼ E½Var½XscðUs;iÞjUs;i�� þ Var½E½XscðUs;iÞjUs;i��
¼ E½s2scðUs;iÞ� þ Var½mðUs;iÞ�

¼ k

Zs=k

ðs�1Þ=k

s2scðuÞdu þ k

Zs=k

ðs�1Þ=k

ðmðuÞ � msÞ2du

ð17Þ

The choice of b(u) affects only the first term in (17), that

is, the expectation of the conditional variance. The

optimal allocation takes ns proportional to (Var[Xsc
(Us, i)])

1/2. Regardless of the allocation, the variance of

the CV estimator is minimized by taking b(u)¼bsc* (u),

where

b�scðuÞ ¼
Cov½CðuÞX jU ¼ u�
Var½CðuÞjU ¼ u� ¼ E½CðuÞX jU ¼ u�

E½C2ðuÞjU ¼ u
: ð18Þ

With this optimal coefficient, the variance in stratum s is

reduced to

Var½XscðUs; iÞ� ¼ E½s2scðUs;iÞ� þ Var½mðUs;iÞ�
¼ E½ð1� r2½Xs;i ; ðAs;i � aðUs;iÞÞjUs;i �Þs2ðUs;iÞ� þ Var½mðUs;iÞ�
¼ Var½Xs;i � � E½r2½Xs;i; ðAs;i � aðUs;iÞÞjUs;i �s2ðUs;iÞ�

ð19Þ

If we impose the additional constraint that b (u) must

be a constant bs within each stratum, we have ssc
2 (u)¼

ssc, s
2 (u)¼Var[X�bsC(u)|U¼ u] and the optimal bs for

stratum s is

~bscu;s ¼
Cov½CðUs;iÞ;Xs;i�
Var½CðUs;iÞ�

¼ E½CðUs;iÞXs;i�
E½C2ðUs; iÞ� ð20Þ

Here the CV estimator is unbiased and the last equality

holds because E½CðUs;iÞ� ¼ 0. Obviously, with this

additional constraint, we cannot get a smaller variance than

with bsc*(u). And by imposing bs¼ b for all s, we can only do
worse.

In practice, the function bsc*(u) can be approximated by
approximating the two functions q1(u)¼E[C(u) X|U¼ u]

and q2(u)¼E[C2(u)|U¼ u]. These functions can be

estimated from a sample {(Ui,Ci,Xi), i¼ 1,y, n} of n

realizations of (U,C(U),X), and fitting a curve q̂1 to the

points (Ui,Ci(Ui)Xi) and another curve q̂2 to the points

(Ui,Ci
2(Ui)). For example, we can fit a polynomial by

interpolation or by least squares, or use a smoothing spline

(de Boor, 1978).

To determine the optimal allocation, we need a good

approximation of Var[Xsc(Us, i)] for each s. This requires

approximations of the functions ssc
2 (u), m(u), and ms. Since

m¼
R
0
1 m(u)du¼Ss

k
¼ 1ms/k, this demands more information

than estimating m. A possible shortcut might be to just use

the variance estimates and the optimal allocation for the case

where the CV coefficient is constant in each stratum. In

practice, this should rarely introduce a significant error,

especially when k is large.

Is es, i¼ a(u) always better than es, i¼ as? For es, i¼ a(u), we

have an ordering between b*, bs* and b*(u) in terms of

variance reduction; we know that more flexibility in the

choice of CV coefficient can only decrease the variance. But

is a(u) with b*(u) always better than as with bs*? At first sight,
one might think yes, because a(u) exploits more information

than as (Cs¼A�as is the conditional expectation of

C(U)¼A�a(U) given that we are in stratum s). But on

closer examination, we find that using a(u) might sometimes

do worse! The following counterexample, suggested by

Roberto Szechtman (private communication), shows that

with the optimal CV coefficients, Var[Xsc(Us, i)] can be either

larger or smaller than Var[Xsc, s, i].

32 Journal of Simulation Vol. 2, No. 1
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Example 1

Suppose X¼A. With bs¼bsc, s* ¼ 1, we get Xsc, s, i¼ as,

so Var[Xsc, s, i]¼ 0. On the other hand, Var[Xsc(Us, i)]¼
Var[X�b(u)C(u)] and we also have bsc*(u)¼ 1. With this

coefficient, we have Var[Xsc(Us, i)]¼Var[a(Us, i)]40 when-

ever E½XjU� ¼ E½AjU� is not a constant inside stratum s. In

this situation, Var[Xsc(Us, i)]4Var[Xsc, s, i]. The larger the

variation of E½X jU� inside the stratum, the larger the

variance of the second CV estimator. So the second

estimator has a larger variance when there are fewer strata.

When the number of strata increases to infinity, the variance

of the second estimator converges to zero, which makes

sense because the two estimators are identical in the limit.

For an example where Var[Xsc(Us, i)]oVar[Xsc, s, i], take

X¼A�a(U). Then, bsc*(u)¼ 1 and Xsc(Us, i)¼ 0, which has
zero variance, whereas Var[Xsc, s, i]40.

To compare (14) with (17) in general, with the stratum-

dependent CV and coefficient, the variance in stratum s is

s2sc;s ¼E½Var½X � bsðA� asÞjUs;i �� þ Var½E½X � bsðA� asÞjUs;i��
¼E½Var½X � bsðA� aðUs;iÞÞjUs;i �� þ Var½mðUs;iÞ
� bsðaðUs;iÞ � asÞ�

ð21Þ

With es, i¼ a(u) and the optimal coefficient function bsc*(u),
the variance in stratum s is

Var½XscðUs;iÞ� ¼ E½s2scðUs;iÞ� þ Var½mðUs;iÞ� ð22Þ

The estimator with a(U) has a smaller variance than the one

with as in stratum s if and only if (22) is smaller than (21).

Comparing the corresponding terms of (21) and (22), we

always have

E½Var½X � bsðA� aðUs;iÞÞjUs;i��
XE½Var½X � b�scðUs;iÞðA� aðUs;iÞÞjUs;i��
¼ E½s2scðUs;iÞ�

but we may have Var[m(Us, i)�bs(a(Us, i)�as)]pVar[m(Us, i)].

In our numerical example later in this paper, it turns out that

ssc, s
2 oVar[Xsc(Us, i)] for this reason. In fact, by comparing

(16) and (19), we see that taking a(U) gives a smaller

variance than as in stratum s if and only if As, i–a(Us, i) is

more strongly correlated with Xs, i than As, i–as.

From a practical viewpoint, it is easier to estimate the

constants bsc, s* for a few strata than fitting a continuous

function bsc*(u). And sometimes, it even gives a smaller

variance. This will be illustrated in our numerical examples.

On the other hand, when the number of strata is large, fitting

the function might be easier than estimating the numerous

constants bsc, s* . In the limit when the number of strata goes

to infinity, the two schemes converge to each other.

4. Practical issues

We summarize the required steps to implement the

combined methods discussed so far, focusing on the case

where es, i¼ as and bs, i¼bsc, s* . The other schemes

are obtained via easy adaptations. In each case, there are

actually many ways of implementing the procedure; some

require pilot runs (eg to estimate the optimal allocation in

the stratification, and to estimate the optimal CV coefficient

independently of the production runs) and there is also more

than one way of doing the pilot runs. In the preceding

analysis, we took a one-dimensional uniform U and a single

CV, but our development extends directly to d-dimensional

vectors of uniforms and to vectors of CVs. If d41, s

becomes the index of a d-dimensional box, and the integrals

in (13) and (17) are over this box instead of over the interval

[(s�1)/k, s/k]. If the CV is a vector, then b is also a vector,
the covariances become matrices and vectors, and the

correlation in (16) and (19) is replaced by a coefficient of

determination between Xs, i and the CV vector (Glynn and

Szechtman, 2002).

The combined variance reduction method can be applied

as follows.

1. Select d and define the d-dimensional boxes on which to

stratify. Most often, d would not exceed 1 or 2. When

d41, the boxes can be narrower in the dimension(s)

deemed more important.

2. (Optional) Perform pilot runs to estimate the optimal

allocation and optimal CV coefficients. See the discussion

below.

3. Perform the ns simulation runs in stratum s, for each s.

With proportional allocation, ns¼ n/k for each s.

Estimate each CV coefficient bsc, s* from these runs if this

was not done via pilot runs.

4. Compute the combined estimator. The variance within

each stratum can be estimated in the standard way for CV

estimators (Glynn and Szechtman, 2002). The overall

variance is simply a weighted average of the variances

within strata, given by (2). This variance estimate can be

used to compute a confidence interval for the mean.

If we decide to skip the pilot runs in step 2, we can simply

use proportional allocation for the stratification, and

estimate the optimal CV coefficients using data from the

production runs of step 3. This would introduce a bias,

especially if we do this estimation separately for each

stratum and if the ns’s are small. In the latter case, the

estimators of bsc, s* will also be noisy. When there are many

strata, a good idea is to approximate Cov[Xs, i,As, i|Us, i¼ u]

and Var[As, i|Us, i¼ u] by smooth functions of u, as discussed

earlier with the functions q1(u) and q2(u) and then integrate

these approximations over each box to obtain estimates of

the two terms Cov[Xs, i,As, i] and Var[As, i] in (15). These
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smooth approximations can be obtained by least-squares

fitting, for example.

The advantage of performing pilot runs in step 2 is to

give an unbiased estimator. These pilot runs are simulation

runs that are independent from those in step 3. They

are used only to estimate the variances and covariances

that determine the optimal allocation and optimal CV

coefficients. This can be achieved via smooth approximating

functions of u, as we just discussed. For a given total

computing budget, skipping the pilot runs and using the

entire budget for step 3 usually provides a smaller mean

square error, despite the small bias.

How should we choose the uniforms on which we stratify,

in practice? The idea is to pick one or two uniforms that

have a large impact on the overall variance. We want to

make the last term in (5) as large as possible. Our case study

in the next section will give an illustration. As another

example, suppose that our estimator is a function of the

sample path of a Brownian motion {B(t), tX0} over a given

time interval [0,T]. Then we may use one uniform to directly

generate B(T), a second uniform to generate B(T/2)

conditionally on (B(0),B(T)), and then generate the rest of

the path conditionally on these three values. L’Ecuyer and

Lemieux (2000) explain how to do that. We can stratify on

these two uniforms, perhaps using narrower intervals for the

first one. These two uniforms already provide a rough sketch

of the sample path, and they typically account for a

significant fraction of the variance (see L’Ecuyer and

Lemieux (2000) for further details on this).

The choice of A can be guided by the examination of (16)

and (19): we want to maximize the squared correlations in

these expressions. Interestingly, one referee suggested that it

might be a good idea to stratify on the CV itself (or the

uniform used to generate it). But this choice always gives

zero variance reduction in (19), because a(Us, i)¼As, i in that

case! The correlation in (16) is also likely to be small. What

we should look for instead is a CV (scalar or vector) that is

highly correlated with X and conditional on U. Intuitively,

this CV should bring information relevant to the prediction

of X in addition to what is already known from U.

5. A simple model of a call centre

5.1. The Model

Telephone call centres, and more generally contact centres

where mail, fax, e-mail, and Internet contacts are handled in

addition to telephone calls, are important components of

large organizations (Gans et al, 2003). To illustrate the VRT

ideas in this paper, we consider a simple model of a call

centre where agents answer incoming calls. Real-life call

centres often receive different call types and have separate

groups of agents with different combinations of skills that

enable them to handle only a subset of the call types. To

simplify the presentation, we assume a single agent type and

a single call type, but the model is otherwise inspired by real-

life centres. The techniques examined in this paper should

behave in a similar way with more complex centres and other

similar types of queuing systems.

Each day, the centre operates for m hours. The number of

(identical) agents answering calls and the arrival rate of calls

vary during the day; we assume that they are constant within

each hour of operation but depend on the hour. Let nj be the

number of agents in the centre during hour j, for

j¼ 0,y,m�1. If more than njþ 1 agents are busy at the

end of hour j, calls in progress are completed but new calls

are answered only when there are fewer than njþ 1 agents

busy. After the centre closes, ongoing calls are completed

and calls already in the queue are answered, but no

additional incoming call is taken.

The calls arrive according to a Poisson process with

piecewise constant rate, equal to Rj¼Blj during hour j,

where the lj are constants and B is a random variable with

mean 1 that represents the busyness factor of the day. We

suppose that B has the gamma distribution with parameters

(a0, a0), that is, with mean E½B� ¼ 1 and Var[B]¼ 1/a0. This
type of arrival process model is motivated and studied by

Whitt (1999) and Avramidis et al (2004).

Incoming calls form an FIFO queue for the agents. A call

abandons (and is lost) when its waiting time exceeds its

patience time. The patience time of calls are assumed to be

i.i.d. random variables with the following distribution: with

probability p the patience time is 0 (so the person hangs up if

no agent is available immediately), and with probability 1�p

it is exponential with mean 1/v. The service times are i.i.d.

gamma random variables with parameters (a, g), that is, with
mean a/g and variance a/g2.
For a given time period (an hour, a day, a month, etc) and

a given threshold s0, the fraction of calls arriving during that

period and whose waiting time is less than s0 seconds

(including those who abandoned before s0 seconds) is called

the service level for that period, whereas the fraction of calls

having abandoned is called the abandonment ratio. The

service level is widely used as a measure of quality of

service in call centres. For certain types of call centres that

provide public service, it is regulated by law: The call centre

operators may be charged a large fine if their service level

goes below a given target; for example, 0.80 over each month

for s0¼ 20 seconds.
Here, we estimate these performance measures over an

infinite time-horizon, that is, on average over an infinite

number of days. Let A be the number of arriving calls

during the day, G(s0) the number of those calls waiting less

than s0 seconds (including those who abandoned before

s0 seconds) for a given threshold s0, and L the number

of calls having abandoned. The expected number of arrivals

during the day is a ¼ E½A� ¼
Pm�1

j¼0 lj . Its variance is

Var½A� ¼ Var½E½AjB ¼ b�� þ E½Var½AjB ¼ b�� ¼ a þ a2=a0:
Define gðs0Þ ¼ E½Gðs0Þ�=a and l ¼ E½L�=a. These two

quantities represent the steady-state service level, and
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abandonment ratio, respectively. Since a is known, here we

will estimate only E½Gðs0Þ� and E½L�.
We simulate the model for n days. For each day i, let Ai be

the number of arrivals, Gi(s0) the number of calls who waited

less than s0 seconds and Li the number of calls having

abandoned. In what follows, we use Xi to represent either

Gi(s0) or Li, and m ¼ E½X � to represent any of the two

performance measures. A standard (or crude) unbiased

Monte Carlo estimator of m is

�Xn ¼
1

n

Xn
i¼1

Xi

with variance Var[�Xn]¼Var[Xi]/n. We can estimate Var[Xi]

by the empirical variance and a confidence interval can be

computed as usual, using the normal approximation.

For our numerical illustrations, we take the following

parameter values, where the time is measured in seconds:

a0¼ 10, p¼ 0.1, n¼ 0.001, a¼ 1.0, g¼ 0.01 (so the mean

service time is 100s), and s0¼ 20. The centre starts empty and
operates for 13 one-hour periods. The number of agents and

the arrival rate in each period are given in Table 2.

We stratify on the uniform random variate U used to

generate the busyness factor B by inversion: B¼FB
�1(U).

As a CV, we use the number A of arrivals during the

day. The mean and variance of A are a ¼ E½A� ¼ 1660

and Var[A]¼ 1660þ 16602/10¼ 277220. The expected

number of arrivals conditional on U¼ u is a(u)¼ aFB
�1(u)

and the expected number of arrivals given that we are in

stratum s is

as ¼ E½As;i�

¼ k

Zs=k

ðs�1Þ=k

aðuÞdu ¼ ak

Zs=k

ðs�1Þ=k

F�1
B ðuÞdu

¼ ak

ZF�1
B

ðs=kÞ

F�1
B

ððs�1=kÞ

bfBðbÞdb

where fB(b) is the density of B.

5.2. Variance estimates for different schemes

We perform a numerical experiment whose aim is to provide

accurate estimates of all the terms in the variance decom-

position (6) and other relevant constants, for each scheme.

Instead of estimating these terms by the empirical variance

of a few pilot runs, as we would normally do in an

application, we did the following extensive (and more

accurate) computations. We simulated 104 replications at

U¼ uj¼ (jþ 0.5)/1000, for j¼ 0,y, 999. For each value of

uj, we computed the busyness factor Bj¼FB
�1(uj), performed

the runs, and then computed estimates of m(uj), s
2(uj), and

Cov[X,A|U¼ uj] based on the 10
4 runs, for each j. We then

fitted a cubic smoothing spline to these points to obtain

accurate approximations of the functions m(u), s2(u),
Cov[X,A |U¼ u], and bsc*(u). Note that Var[A|U] can be

computed exactly, since A has a known Poisson distribution

conditional on u.

We integrated these functions numerically to approximate

ms, ss
2, Var[As,i], Cov[Xs, i,As, i], bsc, s* , and bscp* , for each

relevant pair (s,k), as well as all other relevant constants

such as m,s2, Cov[X,A], and b*. The value of Var½A� ¼
E½Var½AjU�� þ Var½E½AjU�� is known, but Var[A|S¼ s], the

conditional variance of A given that we are in stratum s, must

be estimated too. Based on these computations, we were able

to compute all the numbers reported in Table 3 for the service

level G(s0) and in Table 5 for L, the number of lost calls. We

also have mE1418.660 for G(s0) and mE60.504 for L.

Figure 1 shows the behaviour of the optimal CV

coefficient bsc*(u). for the estimation of E½G�ðs0Þ�, as a

function of u. This coefficient is decreasing in U and has

the same sign as Cov[C,X|U¼ u]. It is positive for small U

and negative for large u. This can be explained as follows:

when U is small, the load on the system is small and the

agents are not very busy, so a small increase in the number

of arrivals tends to increase G(s0), which makes the

covariance positive. When U is large, on the other hand,

the agents are occupied most of the time, so a few more

arrivals increases the waiting time of several calls and tends

to decrease the number of calls answered within s0 seconds,

whence a negative covariance. Therefore, the CV must

correct the estimator in a different direction depending on

the value of u. When uE0.99, the load on the system is so

high that new arrivals do not affect much the number of calls

waiting less than s0; in the limit, this number is zero (a

constant) so Cov[X,C|U¼ u]-0 while Var[C|U¼ u]¼
FB
�1(u)-N. Thus, bsc*(u) converges to 0 when u-1.

Figure 2 displays the function s2(u)¼Var [X|U¼ u] as a

function of u, again for the estimation of X¼G(s0). When U

increases (ie the arrival rate increases), the conditional

variance first increases until it hits a sharp peak at uE0.99,

and then it decreases abruptly to zero. This decrease to zero

is again due to the fact that when the arrival rate is too high

Table 2 Number of agents nj and arrival rate lj (per hour) for 13 one-hour periods in the call center

j 0 1 2 3 4 5 6 7 8 9 10 11 12

nj 4 6 8 8 8 7 8 8 6 6 4 4 4
lj 100 150 150 180 200 150 150 150 120 100 80 70 60
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(when U is too close to 1), practically no call is served within

the time limit s0. The graph of mðuÞ ¼ E½Gðs0ÞjU ¼ u� as a
function of u, in Figure 3, confirms this abrupt convergence

of m(u) to 0 when u-1. This function increases for U up to

about 0.86, and then it starts to decrease.

We made a similar experiment for the estimation of E½L�,
the expected number of lost calls. Figure 4 shows the

behaviour of bsc*(u), which is always positive and increasing
in this case (the correlation between L and A, conditional on

u, is always positive). The functions s2(u), m(u), and
Cov[X,A|U¼ u], have a very similar shape as bsc*(u).
Tables 3 and 5 report the values of the different terms in

the variance decomposition, as a function of the number of

strata, k. The following five schemes are considered; they all

use the estimator in (8), with some CV C¼As, i�es, i and

coefficient bs, i:

(1) no CV, only stratification (bs, i¼ 0);
(2) the CV C¼A�as with constant coefficient bs, i¼ b*;
(3) the CV C¼A�as with constant coefficient bs, i¼ bsc*;
(4) the CV C¼A�as with coefficient bs, i¼bsc, s* in each

stratum;

(5) the CV C¼A�a(U) with coefficient bs, i¼ bsc*(U).

The values of k range from 1 to 1000. The extreme case of

k¼ 1 corresponds to no stratification. We also consider the
limit when k-N. The (almost) exact means can be

computed via E½X � ¼
R 1
0 mðuÞdu; they are E½Gðs0Þ� � 1419

and E½L� � 60:5 (recall that the mean number of arrivals

is 1660).

Note that scheme (1) with k¼ 1 is the classical Monte
Carlo estimator. Schemes (2)–(4) with k¼ 1 are all equivalent
and they correspond to using CV only, without stratification.

When k-N, the variance with proportional allocation

becomes E½Var½X jU��, while the variance with optimal

allocation converges to (
R
0
1s(u)du)2, which provides a lower

bound on the best that can be achieved by increasing k and

using optimal allocation. The variance of the means and the

variance of standard deviations across strata converge to

Var[m(U)]. and Var[s2(U)], respectively. The constant bscp*
for scheme (3) converges to the ratio E½Cov½X;AjU��=
E½Var½AjU��. The two CV schemes (4) and (5) are equivalent
in the limit, as discussed earlier.

The variation of the means across strata, (1/k)Ss¼ 1
k (ms–m)

2,

depends only on k and not on the CV scheme; it is given in

the second line of the table. It increases with k, first very

quickly and then slowly. This term represents the variance

that is eliminated by doing stratification with proportional

allocation, compared with no stratification at all; see

Equation (5).

The term (1/k)Ss¼ 1
k (ss–s�)

2, which represents the

gain of optimal allocation over proportional allocation,

usually first increases with k for k up to 2–10 (depending

on the scheme), and then decreases with k. One exception

to this is scheme (4). The decrease is important for some

of the schemes (eg (1), (2), (5)) and less important for

others. This decrease could be explained intuitively by the

fact that the number of strata increases, the variances

within the strata (the ss’s) tend to get smaller and so their
variation decreases.
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Figure 1 The function bsc*(u) for the number of calls waiting
less than s0, approximated by smoothing cubic splines on 1000
points.
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Figure 2 The function s2(u) for the number of calls waiting
less than s0, approximated by smoothing cubic splines on 1000
points.
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The variance of the stratified estimators decreases with the

number of strata for all the schemes and both types of

allocations (proportional and optimal).

With scheme (1) (no CV), the stratification with propor-

tional allocation reduces the variance per run from 77246 to

8616 with k¼ 10, and to 2354 when k-N (in the limit).

With optimal allocation, it is reduced further to 5701 with

k¼ 10 and to 2013 when k-N. Thus, we gain by a factor of

more than 38.

With schemes (2) and (3), the CV brings practically no

additional gain to stratification with proportional allocation.

For scheme (2), it even increases the variance when k is less

than about 100. This is explained by the fact that b* (whose
value is 0.390 here) is not really optimal for this scheme. The

optimal coefficient bscp* (given in the table) depends on k and

it becomes close to b* (but not equal) when k-N. With the

optimal allocation, the CV gives some gain when k is large.

But it also increases the variance when k is small in scheme

(3); this is because the coefficient bscp* that we use is optimal

only for the proportional allocation. Without stratification

(k¼ 1), these schemes reduce the variance by a factor of 2.

Scheme (4) gives the best results, with both proportional

and optimal allocations. The performance is also good

even for small values of k, which is quite interesting: there

is no need to use a large number of strata (at least for

this particular example). For this scheme, each coefficient bsc, s*
is optimized to reduce ss independently across

strata, and the CV works on both components of

s2s ¼ E½Var½X jUs;i�� þ Var½E½X jUs;i��. The ss’s tend to be

smaller and their variation is also smaller.

Scheme (5), in which the CV and its coefficient are

functions of U, is not doing better than Scheme (4). When

k-N the two schemes become equivalent, so there is

not much difference between them when k is large. But for

small k, scheme (5) gives a much larger variance with

both the proportional and optimal allocations. We found

this result rather surprising at first. However, it can be

explained by the fact that second term of (22) is much

larger than that of (21) in some strata, in this example, when

k is small. The last two columns of Table 4 compare

these two terms, which represent the values of VAR½E
½Xsc;s;ijUs;i�� for the two schemes, in each stratum, for k¼ 20.

Table 3 Terms of the variance decomposition for G(s0) with k strata, for various estimation schemes

Scheme k 1 2 3 10 20 50 100 500 1000 N

1
k

P
s¼ 1
k (ms�m)2 0 44 610 55 448 68 600 71 803 73 868 74 514 74 928 74986 75 096

nVar[�Xn] 77 444 77 444 77 444 77 444 77 444 77 444 77 444 77 444 77444 77 444
(1) nVar[�Xsp,n] 77 444 32 834 21 995 8844 5641 3575 2930 2515 2457 2347

nVar[�Xso,n] — 30 933 20 476 5778 3537 2516 2247 2071 2046 2010
1
k

P
s¼ 1
k (ss�s�)2 0 1901 1519 3066 2103 1060 682 444 412 337

nVar[�Xn] 35 291 77 358 83 389 82 180 79 979 78 302 77 719 77 296 77245 77 188
(2) nVar[�Xsp,n] 35 291 32 748 27 941 13 580 8177 4433 3205 2368 2259 2092

nVar[�Xso,n] — 30 280 19 580 5297 3103 2042 1749 1546 1517 1480
1
k

P
s¼ 1
k (ss�s�)2 0 2468 8360 8283 5073 2391 1456 822 742 612

nVar[�Xn] 35 291 73 348 77 097 76 783 77 004 77 401 77 435 77 281 77241 77 188
(3) nVar[�Xsp,n] 35 291 28 738 21 649 8183 5201 3533 2921 2353 2255 2092

nVar[�Xso,n] — 28 734 19 971 6460 4102 2722 2150 1633 1562 1479
1
k

P
s¼ 1
k (ss�s�)2 0 4 1678 1724 1099 811 771 720 694 614

bsc
* 0.390 0.196 0.074 �0.210 �0.243 �0.108 0.057 0.299 0.342 0.392

nVar[�Xn] 35 291 53 078 59 966 70 427 73 534 75 595 76 240 76 644 76692 76 786
(4) nVar[�Xsp,n] 35 291 8468 4517 1827 1732 1727 1726 1715 1706 1690

nVar[�Xso,n] — 5470 2606 1180 1124 1098 1090 1074 1069 1060
1
k

P
s¼ 1
k (ss�s�)2 0 2999 1912 647 608 629 636 641 637 630

nVar[�Xn] 76 786 76 786 76 786 76 786 76 786 76 786 76 786 76 786 76786 76 786
(5) nVar[�Xsp,n] 76 786 32 176 21 337 8186 4983 2917 2272 1857 1799 1690

nVar[�Xso,n] — 30 293 19 762 4873 2599 1565 1293 1114 1090 1060
1
k

P
s¼ 1
k (ss�s�)2 0 1883 1576 3313 2384 1352 979 744 709 630
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We see that the values are much larger for scheme (5)

than for scheme (4), especially for the strata where U is

close to 0 or 1. The term E½Var½Xsc;s;ijUs;i�� is smaller for
scheme (5) than for scheme (4), but only by a very small

amount.

The results for L, given in Table 5, are similar. In

particular, scheme (4) (clearly) remains the best performer,

especially for small or moderate k. Some minor changes are

that here, scheme (2) does not increase the variance

compared with scheme (1), and the variation of the standard
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Figure 3 The function m(u) for the number of calls waiting less
than s0, approximated by smoothing cubic splines on 1000
points.
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Figure 4 The function bsc*(u) for the number of lost calls,
approximated by smoothing cubic splines on 1000 points.

Table 4 Terms of the decomposition (21) and (22) for each stratum, for G(s0) with k¼ 20 strata

E[Var[Xsc,s,i|Us,i]] Var[E[Xsc,s,i|Us,i]]

s ms Scheme (1) Scheme (5) Scheme (4) Scheme (5) Scheme (4)

1 766 743 21 22 12250 369
2 963 915 31 31 1314 0.021
3 1069 998 54 54 670 0.012
4 1149 1060 85 85 449 0.019
5 1218 1101 133 133 339 0.019
6 1278 1144 183 183 276 0.023
7 1334 1186 251 251 234 0.031
8 1385 1228 335 335 207 0.030
9 1433 1281 434 434 185 0.043
10 1479 1339 565 566 167 0.034
11 1523 1429 721 721 155 0.074
12 1565 1530 921 921 140 0.104
13 1605 1684 1175 1176 125 0.099
14 1643 1889 1496 1497 112 0.168
15 1677 2199 1934 1936 87 0.341
16 1707 2653 2515 2517 57 0.517
17 1728 3367 3330 3334 20 0.834
18 1732 4547 4528 4537 10 1.909
19 1692 6647 6373 6393 555 8.679
20 1427 10009 8706 8750 48508 543
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deviations across strata is a decreasing function of k for all

the schemes.

6 Conclusion

We have studied how to combine stratification with respect

to a few uniform random numbers that drive the simulation,

with one or more CVs. Our variance analysis and empirical

results have exhibited some unexpected behaviour in the

combination. Among the different combination schemes

that we have discussed, based on our analysis and

experimentation, we recommend scheme (4), with a moder-

ate value of k. If we prefer a large k, then the optimal CV

coefficients should probably be estimated by approximating

the variances and covariances by smooth functions of u, via

least squares. In our empirical experiments with other

examples, this scheme never performed much worse (and

usually better) than the other schemes. Our detailed example

provides insight by showing how the different variance and

covariance components vary as functions of design para-

meters such as the number of strata, as functions of the

uniform on which we stratify, and with the combination

scheme. It also provides ideas on how to implement the

method in practice.
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