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ABSTRACT

Monte Carlo simulation is an incredibly versatile tool for
studying complex stochastic systems. By replicating the
simulation several times independently, one can in principle
estimate performances measures of the system to arbitrary
accuracy. Decisions and operating rules can also be opti-
mized via simulation. A major drawback, however, is that
the method converges very slowly and often requires an
excessive amount of computing time.

Efficiency improvement methods provide ways of either
reducing the required computing time for a given target
accuracy, or of obtaining an estimator with better accuracy
for a given computational budget. Variance reduction is
the primary way of improving efficiency. Key ideas for
variance reduction were already introduced in the early
days of the Monte Carlo method, in the late forties, at Los
Alamos. Since then, enormous progress has been made in
our understanding of these methods.

This paper is a guided tour of five different methods that
can make a huge difference in the accuracy of simulation
estimators. They can reduce the variance (or improve the
efficiency) by an arbitrary large factor. In some situations,
this type of efficiency improvement is essential for the sim-
ulation approach to be viable. We discuss common random
numbers and their synchronization for comparing similar
systems, for derivative estimation, and for optimization,
importance sampling for rare-event simulation, exploiting
auxiliary information via control variates, smoothing esti-
mators via conditional Monte Carlo, and reducing the noise
via generalized antithetic variates or quasi-Monte Carlo.
We give examples where a clever use of these methods can
make a huge difference in the required computing time for
a given target accuracy.

INTRODUCTION

Suppose we want to estimate µ = E[X ] for some random
variable X having a very complicated distribution that we can
only simulate. With the Monte Carlo method, we generate
n independent realizations of X , take their average X̄n and
sample variance S2

n, and use this information to compute a
confidence interval on µ . For a given n, the accuracy of the
method depends on σ2 = Var[X ]. In this paper, we focus
on ways of constructing an alternative estimator having the
same expectation as X , but with much smaller variance.
Other factors can also be taken into account to measure the
quality of an estimator; for example the bias (when it differs
from zero) and the computational cost of the estimator (e.g.,
in terms of CPU time) (Glynn and Whitt 1992). Here, we
assume that there is no bias, we disregard the computational
cost (or assume that it does change much when we change
the estimator), and we focus on the variance. The efficiency
of an estimator is often defined as the inverse of the product
of the mean square error by the expected computing cost.
With our simplifications, if becomes equivalent to one over
the variance.

A selection of five variance reduction methods are discussed
here: common random numbers (CRN), importance sam-
pling (IS), control variates (CV), conditional Monte Carlo
(CMC), and randomized quasi-Monte Carlo (RQMC). For
each of these methods, the variance can be reduced by an
arbitrary large factor, and one can construct examples where
the variance can be reduced to zero. Each of them has also
been shown to provide a very large efficiency improvement
(by a factor in the thousands or millions or more) in at least
one realistic application. There are also situations (e.g., in
rare-event simulation) where no meaningful estimator could
be obtained without these techniques. Additional numerical
illustrations will be given in the talk.

There are of course other useful variance reduction (or ef-
ficiency improvement) methods than these five. To probe
further, we refer the reader to Fishman (1996), Glasser-
man (2004), Glynn (1994), L’Ecuyer (1994), and L’Ecuyer
(2008).
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COMMON RANDOM NUMBERS

Simulation is used frequently to compare the performance
of similar systems, often for the purpose of optimization.
In that context, we often want to estimate differences of
the form µ2− µ1 by ∆ = X2−X1, where µk = E[Xk] for
k = 1,2. This estimator has variance

Var[∆] = Var[X1]+Var[X2]−2Cov[X1,X2],

which is minimized by maximizing the covariance between
X1 and X2. If Xk has (fixed) distribution function Fk for
k = 1,2, then a classical result of Fréchet (1951) tells us
that the covariance is maximized by taking Xk = F−1

k (U)
where U ∼U(0,1) is a common random variable, uniformly
distributed over the interval (0,1). For complex simulations,
generating Xk by inversion from a single uniform like this is
typically impractical, because Fk is much too complicated.
What can be done, however, is to use exactly the same
streams of uniforms to drive the simulation for the two
systems, try to use them for the same purpose in both systems
(this is called synchronization), and generate all random
variates by inversion. This technique is known as common
random numbers (CRN). An intuitive interpretation is that by
sharing the same “random noise”, the observed differences in
performance will be due mainly to real differences between
the two systems, and not to the different choice of random
numbers. If for each uniform U j used in the simulation, both
X1 and X2 are monotone function of U j in the same direction
(increasing or decreasing), and they are not independent,
then one can prove that Cov[X1,X2] > 0. The variance is
then guaranteed to be reduced. There are situations where
we want to compare not only two, but hundreds or even
thousands or millions of similar systems. These systems
usually differ by the values taken by some decision variables.

An interesting setting is when the performance of interest
is a mathematical expectation which is a smooth function
of some parameter θ , say µ(θ), and we want to estimate
the derivative µ ′(θ) = ∂ µ(θ)/∂θ (or the gradient, if θ is
a vector). This occurs frequently for sensitivity analysis
with respect to θ if we have doubts about the exact value
of θ , or within an optimization procedure in which θ is a
continuous decision variable (L’Ecuyer 1991, L’Ecuyer and
Perron 1994, L’Ecuyer and Yin 1998, Fu 2006)). Gradient
estimates are also required for the implementation of hedging
strategies of a financial portfolio by trading the underlying
assets (Glasserman 2004; Chapter 7).

Suppose µ(θ) = E[X(θ ,U)] for some random variable
X(θ) = X(θ ,U) that depends on θ and on a vector U
of independent uniform random variables, and which can
be generated by simulation. We estimate µ ′(θ) by the finite

difference

D(δ ) =
X(θ +δ ,U2)−X(θ ,U1)

δ

for some small δ > 0, where U1 and U2 are two vectors of
uniforms.

Proposition 1 The following is proved is L’Ecuyer
and Perron (1994) and L’Ecuyer (2008):

(i) If U1 and U2 are independent, then

δ
2Var[D(δ )]→ 2Var[X(θ)]

when δ→ 0. This means that the variance of D(θ) increases
to infinity at rate 1/δ 2.

(ii) If U1 = U2 = U (CRNs), if X(θ ,U) is continuous in θ and
differentiable almost everywhere, and if D(δ ) is uniformly
integrable (uniformly in θ ), then Var[D(δ )] remains bounded
when δ → 0.

(iii) Suppose now that U1 = U2 = U but that X(θ ,U) is
not continuous in θ . If the probability that X(·,U) is
discontinuous in the interval (θ ,θ +δ ) converges to 0 as
O(δ β ) when δ → 0, and if X2+ε(θ) is uniformly integrable
for some ε > 0, then Var[D(δ )] = O(δ β−2−ε), for any ε > 0,
when δ → 0.

Note that the ratio of variances (and the efficiency improve-
ment factor) between any two of these cases can become
arbitrary large when δ → 0. For example, if the bound
in (ii) and Var[X(θ)] are both equal to 1, and if we take
δ = 10−4, then Var[D(δ )] is 2×108 (200 millions) times
larger with (i) than with (ii). This means that we would
need 200 millions times more simulation runs to reach the
same accuracy with independent random numbers (case i)
than with CRNs (case ii).

When case (ii) holds, we can sometimes take the stochastic
derivative X ′(θ) = limδ→0 D(θ) as an (unbiased) estimator
of µ ′(θ) (L’Ecuyer 1990, Glasserman 1991; 2004). This is
the best possible situation, provided that this X ′(θ) is not
too difficult to compute. Glasserman (1991, 2004) provides
several examples. Sometimes, we may intentionally change
the definition of X(θ) to make it continuous and benefit from
(ii), e.g., by replacing some of its components by conditional
expectations (see the section on CMC). For example, if X(θ)
counts the customer abandonments in a queueing system, we
may replace each indicator of abandonment (which takes the
value 0 or 1) by its conditional expectation (the probability
that this customer abandons) given its waiting time.

Case (iii) shows that using common random numbers can still
provide very substantial benefit even we cannot make X(θ)
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continuous. L’Ecuyer (2008) studies further refinements of
case (iii) and gives examples. L’Ecuyer and Buist (2006)
study a model of a large telephone call center for which
X(θ) is the number of incoming calls who had to wait
less than 20 seconds on a given day, and θ is a parameter
(e.g., the mean) of the service time distribution. In that
case, X(θ) can only take integer values, so it cannot be
continuous unless it is a constant, in which case D(θ) = 0.
L’Ecuyer and Buist (2006) prove that with well-synchonized
common random numbers, (iii) applies with β = 1. In their
empirical results with δ = 10−3, the variance is reduced
by a factor of about 30,000 compared with independent
random numbers.

Their example also illustrates the importance and difficulties
of synchronization. There are four types of random numbers
in their model; they are used to generate the following
random variables: (a) the busyness factor of the day, in the
morning (this factor determines the time-varying arrival rate
for the day); (b) the interarrival times between successive
calls; (c) the call durations, or service times; and (d) the
patience times (as soon as the waiting time of a call reaches
its patience time, the call abandons). It is important to
underline that when simulating the model for two different
values of θ , the random numbers are not always used in
the same order. For example, a given service time may
be generated before a given arrival in one case, and after
that arrival in the other case. Moreover, some customers
may abandon in one case (so there is no need to generate
their service time) and not in the other case. And a call
may start its service immediately upon arrival in one case
(so there is no need to generate its patience time) and
not in the other case. To maintain the synchonization,
we use four different streams of random numbers, one
stream for each type. Modern simulation tools like Arena,
Simul8, Witness, or SSJ (for example) provide such multiple
streams of random numbers, with multiple substreams for
each stream, and tools to rewind back to the start of the
current stream or substream, or to jump ahead to the next
substream (L’Ecuyer and Buist 2005, L’Ecuyer 2004b). It
was also found empirically in L’Ecuyer and Buist (2006)
that it was best to generate service times and patience times
for all customers, even when it was not needed; this gave
a better synchronization. For comparison, if patience times
were generated only for the customers who did not start
their service immediately upon arrival, the variance was
about 40 times larger! Also, if a single stream was used for
all types of random numbers (with no attempt to maintain
synchronization), the variance was about 400 times larger
(which is still better than independent random numbers by
a factor of 75).

Another important situation where CRNs are crucial is
for solving an optimization problem where the objective

function and/or the constraints contain mathematical ex-
pectations that cannot be computed exactly for each setting
of the decision variables, but can only estimated by sim-
ulation. Performing independent simulations to compare
the performance at different settings of interest is typically
much too noisy to be effective. One class of methods, called
sample-average optimization, operates as follows. Suppose
(conceptually) that we simulate the model n times at all
possible parameter settings (which is usually an infinite set),
using CRNs across the different parameter settings, and that
we estimate all expectations by the sample average over
these n runs. After fixing all the (common) random numbers
of the n runs, the sample averages become deterministic
functions of the decision variables, which means that we
have obtained a deterministic optimization problem. This
sample-average problem can be solved (at least in princi-
ple) by our favorite optimization method. To evaluate the
sample-average functions (and perhaps their gradients) at
any given setting, we must run the simulation at that setting,
using well-synchronized CRNs across these settings. Under
certain conditions on the model, one can prove that both
the optimal value and the optimal solution of the sample-
average problem converge to those of the original problem
when n→ ∞. This convergence can actually be character-
ized by central-limit theorems and other useful properties
(Rubinstein and Shapiro 1993, Ruszczynski and Shapiro
2003).

This type of approach has been used successfully for ex-
ample to optimize the staffing and scheduling of agents in
a large call center with multiple types of agents (Cez̧ik and
L’Ecuyer 2006, Avramidis et al. 2007). In that setting there
can be thousands of integer-valued decision variables, and
the sample-average problem is solved via linear or integer
programming. This requires simulating the system at mil-
lions of configurations, with CRNs. There is no chance
that doing this with independent random numbers would
provide a good solution in reasonable time.

IMPORTANCE SAMPLING

Importance sampling (IS) consists in changing the proba-
bility laws of the input random variables of a simulation,
usually with the aim of concentrating the sampling effort
in the most important areas of the sample space. It is the
primary way of dealing with rare event simulation, i.e.,
situations where certain types of rare events have an im-
portant impact on the performance of interest (Juneja and
Shahabuddin 2006). To be specific, suppose we want to
estimate µ = E[h(Y)] for some function h : Rd→R, where
Y is a continuous random vector with density π(y) over the
d-dimensional real space Rd . If g is any another density
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such that g(y) > 0 whenever h(y)π(y) 6= 0, then we can
write

µ = Eπ [h(Y)] =
∫

Rd
h(y)π(y)dy

=
∫

Rd
[h(y)π(y)/g(y)]g(y)dy

= Eg[h(Y)π(Y)/g(Y)] (1)

where Eπ denotes the mathematical expectation under the
density π and similarly for g. This means that if Y is
generated from density g, then

Xis = h(Y)π(Y)/g(Y) (2)

is an unbiased estimator of µ . Here, the original estimator
X = h(Y) is multiplied by the likelihood ratio L(Y) =
π(Y)/g(Y). For discrete random variables, just replace the
densities by probability mass functions.

If h cannot take negative values, it is always possible (in
theory) to reduce the variance to zero by taking g(y) propor-
tional to h(y)π(y). It turns out that the right proportionality
constant, so that g integrates to 1, is 1/µ . Then the estima-
tor is always equal to µ . Implementing this in practice is
usually more difficult than estimating µ in the first place,
but it provides a guideline on how to select a g that could
reduce the variance, by approximating the optimal one. In
a nutshell, we want to inflate the density by a factor that
is approximately proportional to h(y). As a special case,
when estimating the probability of a rare event, the optimal
g is the original density conditional on the occurence of
the rare event. This idea generalizes to the simulation of
Markov chains in general, with arbitrary state spaces. This
is studied in another paper by L’Ecuyer and Tuffin (2007),
in these proceedings.

There are several types of real-life situations where the
probability that an event of interest (that has an impact
on the performance) occurs in the simulation is extremely
small, for example smaller than 10−9 or even less. Then,
with standard Monte Carlo, we would need to perform an
excessively large number of runs to obtain any kind of
meaningful estimator. In this rare-event simulation context,
the main viable approaches are IS, together with another
class of methods called splitting (Ermakov and Melas 1995,
Glasserman et al. 1999, Garvels 2000, L’Ecuyer et al. 2007).
Concrete examples where arbitrary small probabilities can be
estimated very easily under the appropriate change of density
can be found in Glasserman (2004), Juneja and Shahabuddin
(2006), L’Ecuyer (2008), elsewhere in these proceedings,
and in many other places. The variance reduction factor
can be arbitrary large.

For a specific numerical illustration, suppose an insurance
firm receives money continuously at rate c > 0, and receives
claims (that they must pay) according to a Poisson process
with rate λ > 0. The claim sizes are i.i.d. random variables
with density f . The firm starts with an initial amount R(0),
and we want to estimate the probability that its amount
in hand (the reserve) eventually becomes negative. This is
the ruin probability and it should be very small. Besides
the fact that ruin rarely occurs, another important difficulty
with standard Monte Carlo is that we can never be sure
that ruin will not occur unless we simulate over an infinite
time horizon. This is of course totally unpractical.

It turns out that a good IS scheme in this case is to replace
the density f (x) of C j by fθ (x) = f (x)eθx/M f (θ) and to
increase the rate of the Poisson process to λθ = λ + θc,
where M f (θ) =

∫
∞

−∞
f (x)eθxdx and θ is the largest solution

to the equation M f (θ) = (λ +θc)/λ . Under this change of
densities, it turns out that the ruin occurs with probability 1,
and the corresponding (unbiased) estimator of µ simplifies
to

Xis = exp[θ(R−R(0))],

where R is the (negative) reserve when the ruin occurs.

Suppose, for example, that R(0) = 200, λ = 1, the claim
sizes are exponential with mean 2, and c = 3. Then the ruin
probability is µ ≈ 2.2× 10−15. Even if we were able to
simulate over an infinite horizon at unit cost, estimating such
a small probability by standard Monte Carlo would be too
costly. The variance per run would be µ(1−µ)≈ µ , so the
relative error would be 1/

√
µ , which increases to infinity

when µ → 0. With the IS scheme described above, the
variance is reduced to 6.3×10−31, a reduction by a factor
of about 3×1015. If we take c = 10 instead, then we have
µ ≈ 3.6×10−36 whereas the variance with IS is 2.3×10−71,
a reduction by a factor of about 1.5×1035 compared with
standard Monte Carlo. Estimating this small probability
of 3.6× 10−36 with 10% relative error would require a
sample size of approximately n = 2.8× 1037 without IS,
and n = 183 with IS.

CONTROL VARIATES

With control variates (CV), we exploit auxiliary infor-
mation to improve our estimate of the average perfor-
mance of interest. Suppose X is the basic estimator and
C = (C(1), . . . ,C(q))t is a q-dimensional vector of con-
trol variates, correlated with X , with known expectation
E[C] = ν = (ν(1), . . . ,ν(q))t (the t is for vector and matrix
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transposition). The controlled estimator is

Xc = X−β
t(C−ν),

where β = (β1, . . . ,βq)t is a vector of constants. We have
E[Xc] = E[X ] = µ .

Let ΣC = Cov[C], a matrix whose element (i, j)
is Cov[C(i),C( j)], and let ΣCX = (Cov(X ,C(1)), . . . ,
Cov(X ,C(q)))t. We assume that Var[X ] = σ2 < ∞, ΣC and
ΣCX are finite, and ΣC is positive definite. Then, we have

Var[Xc] = Var[X ]+β
t
ΣCβ −2β

t
ΣCX.

This variance is minimized by taking

β = β
∗ = Σ

−1
C ΣCX,

and this gives

Var[Xc] = (1−R2
CX)Var[X ]

where

R2
CX =

Σ
t
CXΣ

−1
C ΣCX

Var[X ]
.

This squared correlation coefficient indicates by what frac-
tion the variance is reduced when we take the optimal β .
With a perfect correlation of ±1, the variance is reduced
to zero. This means that the variance reduction factor can
be arbitrary large. The variance and covariance terms that
define β

∗ are usually estimated from the same simulation
runs; the CV scheme is then equivalent to a linear re-
gression. For theoretical analysis and other variants and
recommendations, one can consult Nelson (1990), Glynn
and Szechtman (2002), Glynn (1994), for example. A re-
lated class of methods called moment matching, widely used
in finance applications (Boyle et al. 1997), turns out to be
asymptotically dominated by linear CVs.

For a concrete illustration, we consider the pricing of an
Asian call option on a single asset whose price evolves as a
geometric Brownian motion (the exponential of a Brownian
process) {S(t), t ≥ 0}. The process is observed at the fixed
times 0 = t0 < t1 < · · · < tc = T . We want to estimate the
option value given by E[X ] where

X = e−rT max

(
0,

1
t

c

∑
j=1

S(t j)−K

)
,

and r and K are given positive constants. This can be done
by generating n independent realizations of the same path,
and averaging the n realizations of X . Interestingly, if we
replace the arithmetic average in the definition of X by a

geometric average, we obtain a random variable

C = e−rT max

(
0,

c

∏
j=1

(S(t j))1/c−K

)
,

whose expectation ν = E[C] can be computed exactly by
exploiting the famous Black-Scholes formula. Kemna and
Vorst (1990) proposed using this C as a CV. Lemieux
and L’Ecuyer (1998) have observed variance reductions by
factors of up to a million for some examples, with this
technique.

CONDITIONAL MONTE CARLO

The idea is to hide information and replace the basic esti-
mator X by its expectation conditional on the information
that remains available. Suppose G is a sigma-field that
contains not enough information to compute the realization
of X , but enough to compute its expectation conditional on
G . The conditional Monte Carlo (CMC) estimator is then

Xe = E[X | G ].

We have E[Xe] = E[E[X | G ]] = E[X ], so this estimator is
unbiased, and an application of the Rao-Blackwell theorem
gives

Var[Xe] = Var[X ]−E[Var[X | G ]] ≤ Var[X ].

The choice of G is a matter of compromise. The less
information it contains, the more the variance is reduced.
But if it contains too little information, Xe becomes too
difficult to compute.

In many situations, X is defined as a sum of random variables,
say C1,C2, . . . , and it may be much more convenient to apply
CMC to each C j separately, with a different sigma field G j.
This extended CMC methodology is no longer guaranteed
to reduce the variance, but it can be very convenient and
effective in certain cases.

CMC by itself rarely reduces the variance by a huge factor
such as those mentioned in the previous examples. Typical
gains are quite modest. However, CMC can make a big
hit when combined with a finite difference estimator with
CRNs. There are indeed many situations where Proposi-
tion 1 (ii) does not apply because X(θ) is not continuous
in θ , but where Xe(θ) = E[X(θ) | G ] is continuous in θ for
an appropriate choice of conditioning G . The role of CMC
in that context is to boost the efficiency of the derivative
estimator, and it can make a huge difference, as can be seen
by comparing Proposition 1 (ii) and (iii). Several examples
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of this are given by L’Ecuyer and Perron (1994) and Fu
and Hu (1997). A frequent situation where this applies is
when the estimator X involves indicator functions.

As an illustration, suppose that in the call center example
discussed earlier, we want to estimate the expected number of
abandonments in a day, and the derivative of this expectation
with respect to a service time parameter θ . The basic
estimator X(θ) here is just the number of abandonments
in the day. It is piecewise constant in θ for any fixed set
of underlying uniform random numbers. Suppose now that
we erase from the simulation’s sample path all the calls
that have abandoned and all traces of these calls. Let G be
the information that remains. If the calls arrive according
to a (non-stationary) Poisson process and if the patience
times are all exponential, then it is possible to compute the
expected number of abandonments conditional on G . The
idea is to multiply the arrival rate at time t by the probability
that a call arriving at time t would have abandoned before
starting its service, and integrate this with respect to t for
the entire day. Under mild conditions, this conditional
expectation would be continuous with respect to θ , so it
would provide a much more accurate derivative estimator.

GENERALIZED ANTITHETIC VARIATES AND
RANDOMIZED QUASI-MONTE CARLO

These two classes of techniques are essentially the same
idea viewed from slightly different angles. We estimate the
expectation of X by the average of k realizations of X , say
X (1), . . . ,X (k), each having the same distribution as X , and
we want to induce negative dependence between these k
copies of X . The (unbiased) estimator based on generalized
antithetic variates (GAV) is

Xa =
1
k

k

∑
i=1

X (i)

with variance

Var[Xa] =
1
k2

k

∑
j=1

k

∑
`=1

Cov[X ( j),X (`)]

=
Var[X ]

k
+

2
k2 ∑

j<`

Cov[X ( j),X (`)].

The variance is reduced in comparison with independent runs
if and only if the last sum is negative. The goal is to make it as
negative as possible. One way of doing this is via antithetic
pairs of random variables (with k = 2). Another way is
Latin hypercube sampling. But these methods are generally
dominated by randomized quasi-Monte Carlo (RQMC).

RQMC is based on the following intuition. Suppose that
generating X requires s independent uniform random vari-
ables over (0,1), so that its expectation can be written
as the integral of some function f over the s-dimensional
unit hypercube. Ordinary Monte Carlo then corresponds to
generating independent random points in this hypercube,
evaluating f at each point, and taking the average. The
idea of RQMC is to start with a set Pk = {u0, . . . ,uk−1} of k
points that cover the unit hypercube [0,1)s in a very uniform
way, and randomize Pk so that after the randomization:

(a) Pk retains its high uniformity when
taken as a set and

(b) each individual point of Pk has the
uniform distribution over [0,1)s.

If X (i) represents the value taken by f at the ith randomized
point, then we are back to the GAV setting. To estimate
the variance and compute confidence intervals, it is usually
necessary to repeat the randomization m times, indepen-
dently, for some positive integer m, to obtains m independent
copies of Xa. The variance is then estimated from the sample
variance of these m independent copies.

Specific ways of constructing highly-uniform point sets Pk
are detailed in Niederreiter (1992), for example. They
are usually known under the name of low-discrepancy or
quasi-Monte Carlo point sets. The main classes of construc-
tions are digital nets and lattice rules (Niederreiter 1992,
L’Ecuyer and Lemieux 2002, Glasserman 2004). Random-
ization methods that satisfy (a) and (b) above are examined
in L’Ecuyer and Lemieux (2002), for example. Software im-
plementations are available in SSJ (L’Ecuyer 2004b). Under
the assumption that the integrand f is smooth enough, these
methods provide estimators whose worst-case square error
converge as O(n−2(logn)2s), which is asymptotically better
than the O(n−1) convergence rate for the mean square error
in the standard Monte Carlo method. One could rightfully
argue about the practical significance of this asymptotic
result when s is larger than 10 or so. But there are many
important applications, e.g., in computational finance, com-
puter graphics, and computational statistics, where RQMC
is really effective (Keller 2006, L’Ecuyer 2004a; 2008).

What happens is that even if s is large, it is often possible to
redefine the function f in a way that f is well-approximated
by a sum of low-dimensional functions, and it suffices that
these low-dimensional functions are integrated with good
accuracy by the RQMC method. Concrete examples of this
can be found in L’Ecuyer (2004a), Glasserman (2004), for
example. In numerical examples of option pricing, L’Ecuyer
(2004a) obtains variance reductions by factors of up one
million in certain cases.
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