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Abstract

We evaluate alternative time series methods for forecasting future call volumes in call centers.

Our methods take into account both interday (day-to-day) and intraday (within day) dependence

structures, and allow for real-time dynamic updates. We also propose a new model which exploits

correlations between the arrival processes of two separate queues, leading to more accurate fore-

casts. We describe results from an empirical study analyzing real-life call center data. We test the

forecasting accuracy of the proposed models using forecasting lead times ranging from weeks to

hours in advance.
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1. Introduction

The service sector currently dominates the economic landscape of both emerging and developed

economies. For example, the CIA World Factbook (2010) shows that, as of 2008, the service sector

in Canada employs over three quarters of Canadians and accounts for over two thirds of the Gross

Domestic Product (GDP). In broad terms, the service sector comprises businesses (systems) that

produce a service instead of just an end product; e.g., call centers are service systems that provide

support or sales services to callers. For background on call centers, see Mandelbaum (2002), Gans
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et al. (2003), and Aksin et al. (2007).

Unlike tangible products, services are experienced and not consumed. To increase customer

satisfaction, service systems compete in improving the quality of service provided, while maintaining

high levels of operational efficiency. As a result, service system managers often need to weigh

contradictory objectives. In the context of call centers, quality of service is typically measured by

customer delay in the system (i.e., the amount of time that callers spend waiting on hold before

being handled by an agent), whereas operational efficiency is measured by the proportion of time

that agents are busy handling calls. The quality of service in a call center is usually regulated by

a service-level agreement (SLA) which need be respected. The SLA specifies target performance

levels, such as the wait-time level or the proportion of abandoning customers.

In order to achieve the right balance between quality of service and operational efficiency, call

center managers are faced with multiple challenges. First, there is the problem of determining

appropriate staffing levels, weeks or even months in advance, based on long-term forecasts of future

incoming demand which is typically both time-varying and stochastic; see Gans et al. (2003),

Avramidis et al. (2004), Brown et al. (2005), Shen and Huang (2008b), Aldor-Noiman et al.

(2009), and references therein. In the words of Aksin et al. (2007), that is a problem of “resource

acquisition”. Second, there is the problem of scheduling (and re-scheduling) the available pool

of agents based on updated forecasts, typically made several days or weeks in advance. That

is a problem of “resource deployment”; see Avramidis et al. (2010). Finally, there are short-

term decisions that need be made, such as routing incoming calls in real-time to available agents,

or mobilizing agents on short notice due to unforseen fluctuations in incoming demand. Those

decisions are based on short-term forecasts, updated one day or a few hours in advance. As an

initial step, pending the analysis of effective scheduling and routing designs, it is crucial to develop

accurate forecasts of future incoming demand (future call volumes), and to study ways of updating

those forecasts at different points in time.

In this paper, we estimate and compare alternative time series models for forecasting future

call volumes in a call center. We conduct an empirical study using real-life call center data,

and test the forecasting accuracy of the proposed models using lead times ranging from weeks to
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hours in advance. We do so to mimic the challenges faced by call center managers, as explained

above. Our study shows the importance of accounting for correlations in the data when forecasting

future arrivals. Here, we focus on three types of correlations: (i) interday (day-to-day), (ii) intraday

(within day), and (iii) between the arrival processes of different call types. This work was motivated

by an industry research project with a major company in Canada. In §1.1, we provide a brief

description of that project.

1.1. Motivation

The company, hereafter referred to as Company X, operates several large call centers with thousands

of agents serving over one hundred different call types and handling hundreds of thousands of

incoming calls per day. The forecasting team of Company X uses time series methods (linear

regression models) to generate forecasts for future daily total call volumes. In particular, the

team generates forecasts for future daily totals two weeks in advance (“scheduling forecasts”), then

updates those forecasts one day in advance (“last intraday forecast”).

In order to obtain forecasts for specific half-hour intervals in the future (needed to make detailed

agent schedules), the forecasting team uses a call center management software. The major concern

of Company X is that the half-hourly forecasts thus generated are often unreliable. Indeed, one

specific problem is that the software used does not take into account either interday or intraday

dependence structures in the arrival process, which are typically significant; see §3. Instead, it

performs a simple exponential smoothing of the data to generate the needed forecasts.

We were asked by Company X to: (i) develop accurate ways of forecasting future half-hourly

call volumes; (ii) take into account both interday and intraday dependence structures, and allow

for dynamically updating the forecasts; and (iii) develop ways of splitting the existing forecasts of

daily totals into corresponding half-hourly forecasts. The reason behind using the existing forecasts

is that they incorporate important information which impacts the arrival process (and is not in the

data set), such as major marketing campaigns or recent price increases. For work on the impact of

marketing campaigns on call center arrivals, see Soyer and Tarimcilar (2008). For ease of exposition,

we focus in this work on forecasting arrivals for a single call type, say Type A, but our methods
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can be easily applied to forecasting any call type handled at the call centers of Company X, or

elsewhere.

1.2. Time Series Approach

The time series models that we consider in this paper address the concerns of Company X. Thus,

they are appealing from a practical perspective. To capture interday and intraday correlations, we

use a Gaussian linear mixed model. Mixed models were shown to generate accurate forecasts of

future call volumes in Aldor-Noiman et al. (2009). For background on linear mixed models, see

Muller and Stewart (2006). In the first part of this paper (§4 and §5), we compare the mixed model

to three other models which do not account for any correlations in the data. Our results show the

importance of accounting for interday and intraday correlations, especially when forecasting lead

times are not too long. Here is a brief description of the alternative time series methods used; see

§4 for details.

First, we consider a simple linear regression model with independent residuals. This model is

equivalent to a historical average approach since it essentially uses past averages as forecasts of

future call volumes; see Weinberg et al. (2007) and Shen and Huang (2008b). Moreover, it serves

as a useful reference point because it does not incorporate any dependence structures in the data.

Second, we consider a Holt-Winters exponential smoothing technique, which is popular in fore-

casting seasonal time series. We take Holt-Winters smoothing to represent the current way of

forecasting half-hourly arrival counts at Company X. It would have been ideal to use the com-

pany’s actual half-hourly forecasts as reference, but those were unfortunately unavailable.

Third, we consider a method for breaking down the existing daily forecasts of Company X into

half-hourly forecasts. In particular, we use the “Top-Down” approach, described in Gans et al.

(2003), which splits the daily forecasts based on historical records for the proportion of calls in

specific half-hour intervals of a given day.

In the second part of this paper (§6), we extend the mixed model into a bivariate mixed model

which exploits the dependence structure between the arrival processes of two call types: Type A

and Type B. Arrivals to the Type A queue originate in the province of Quebec, and are mainly
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handled in French, whereas arrivals to the Type B queue originate in the province of Ontario, and

are mainly handled in English. Otherwise, arrivals to both queues have similar service requests.

Initial data analysis indicates a strong dependence between the arrival processes of Type A and

Type B queues. In Figure 1, we present a scatter plot of the half-hourly arrival counts to each

queue. (We first subtract from each arrival count the average count for the corresponding half-hour

period.) Figure 1 shows that there is a significant positive correlation between the arrival processes

of Type A and Type B. Indeed, a point estimate of this correlation is equal to 0.71. In §6.2, we show

that the bivariate mixed model yields more accurate forecasts than the standard mixed model.

1.3. Main Contributions and Organization

Here are the two main contributions of this paper. First, we present a comparative study of several

time series methods using real-life call center data. That is particularly important because there is

relatively little empirical work on forecasting call center arrivals; see §2. Moreover, our models are

especially appealing from a practical perspective. For example, both the “Top-Down” approach

and exponential smoothing are forecasting methods commonly used in practice; therefore, it is

important to study their forecasting accuracy.

Second, we show the importance of modeling different types of correlations in the data. In

addition to accounting for interday and intraday correlations, we propose a new time series model

which exploits correlations between the arrival processes of two separate queues. We show that

this new bivariate model leads to more accurate forecasts. To the best of our knowledge, ours is

the first work which proposes jointly modeling the arrival processes of different queues to generate

forecasts of future call volumes.

The rest of this paper is organized as follows. In §2, we review some of the relevant literature.

In §3, we describe the data set that motivated this research. In §4, we describe the candidate

time series methods considered, and discuss how model parameters are estimated from data. In §5,

we compare the alternative methods based on their forecasting accuracy. In §6, we introduce the

bivariate mixed model and show that it leads to more accurate forecasts. In §7, we make concluding

remarks.
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Figure 1: Scatter plot of half-hourly arrival counts (corrected for corresponding means and season-
ality) to the Type A and Type B queues.

2. Literature Review

We now review some of the existing literature on forecasting call center arrivals. Much of the earlier

work focuses on applying standard time series methods, such as Autoregressive Integrated Moving

Average (ARIMA) models. For example, Andrews and Cunningham (1995) used the ARIMA/

transfer function methodology to forecast arrivals to L. L. Bean’s call center, and emphasized the

impact of holidays and marketing campaigns on the arrival process. Bianchi et al. (1998) also used

ARIMA models and found that they outperform simple Holt-Winters smoothing, which we also

consider in this paper.

More recent work includes Weinberg et al. (2007) who used a Bayesian approach to forecast

incoming calls at a United States bank’s call center. They used the same square-root data trans-

formation that we use in this paper, and exploited the resulting normality of data in their model.

Taylor (2008) compared the forecasting accuracy of alternative time series models, including a ver-

sion of Holt-Winters smoothing which accommodates multiple seasonal patterns. He showed that,

with long forecasting lead times, simple forecasting techniques such as taking historical averages are

difficult to beat. We reach a similar conclusion in this work as well. Shen and Huang (2008a) used
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a Singular Value Decomposition (SVD) approach to forecast the time series of an inhomogeneous

Poisson process by first building a factor model for the arrival rates, and then forecasting the time

series of factor scores. Shen and Huang (2008b) used the same SVD idea to create a prediction

model which allows for interday forecasting and intraday updating of arrival rates. Aldor-Noiman

et al. (2009) proposed an arrival count model which is based on a mixed Poisson process approach

incorporating day-of-week, periodic, and exogenous effects. We use a similar mixed model in this

paper as well.

Other empirical studies have shown several important features of the call arrival process.

Avramidis et al. (2004) proposed several stochastic models including a doubly stochastic Pois-

son arrival process with a random arrival rate. Their models reproduce essential characteristics

of call center arrivals, such as: (i) a variance considerably higher than with Poisson arrivals, as

observed by Jongbloed and Koole (2001), and (ii) strong correlations between the arrivals in suc-

cessive periods of the same day, as in Tanir and Booth (2001). Then, they tested the goodness of

fit of their models via an empirical study of real-life data. We also model intraday correlations in

this paper. Additionally, we account for interday correlations. Interday correlations were shown

to be significant in the seminal paper by Brown et al. (2005). One last feature of the call arrival

process, which we also take into account here, is the time-variability of arrival rates. Indeed, there

is strong empirical evidence suggesting that arrival rates in call centers are usually not stationary;

e.g., see Gans et al. (2003), Brown et al. (2005) and Aksin et al. (2007).

3. Preliminary Data Analysis

The present data were gathered at the call center of a major company in Canada. They were

collected over 329 days (excluding days when the call center is closed, such as holidays and Sundays)

ranging from October 19, 2009 to November 11, 2010. The data consist of arrival counts for the

Type A queue whose incoming calls originate in the province of Quebec. In §6, we also consider call

arrival data for a closely related queue, Type B, whose calls originate in the province of Ontario.

The call center operates from 8:00 AM to 7:00 PM on weekdays (Monday to Friday), and from

8:00 AM to 6:00 PM on Saturdays. Because the call arrival pattern is very different between

7



weekdays and Saturdays, we focus solely on weekdays in this paper. We thus remove a total of 54

Saturdays from the data set, which leaves us with D = 329 − 54 = 275 remaining days. Arrival

counts for each day are aggregated in consecutive time periods of length thirty minutes each.

There are P = 22 thirty-minute periods on a weekday, and a total of D × P = 275 × 22 = 6050

observations in our data set. There are “special” days in the data, such as days with missing values

or irregular days (i.e., days on which arrival volumes are unusually high or low). In particular, there

is a total of 15 special days (including 9 outlier days, see Figures 2 and 3). Standard forecasting

techniques generally produce unreliable forecasts for outlier days, since these are very different from

the remaining days of the year. In practice, forecasts for outlier days are typically made off-line,

and are largely based on the experience of call center managers. In a statistical study, we could: (i)

remove outlier days altogether from the data set, or (ii) replace the arrival counts on outlier days

by historical averages based on past data. Option (i) is only useful when the forecasting methods

considered are able to tolerate gaps in the time series of arrival counts. In this work, we opt for

(ii) to allow for more flexibility. As a result, we leave the natural seasonality in the data intact. In

§5 and §6, we compare the forecasting accuracy of the alternative models in periods excluding all

outlier days.

3.1. Overview

In Figure 2, we plot daily arrival volumes to the call center between October 19, 2009 and October

19, 2010 (one year). Figure 2 shows that there exist some outlier days with unusually low call

volumes, e.g., on 05/24/2010 which is day 157 in the plot. Figure 2 also shows that there may exist

monthly fluctuations. In particular, the moving average line in the plot (computed for each day as

the average of the past 10 days) suggests that there is an increase in call volume during the months

of January and February, which correspond to days 54-93 in the plot. (This was also confirmed by

the company.) We do not incorporate a month-of-year effect into our models because of insufficient

data. Indeed, if several years of half-hourly data had been available, then we would expect to see

a significant monthly seasonality.

In Figure 3, we present a box plot of the daily arrival volume for each day of the week. The
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boxes have lines at the lower quartile, median, and upper quartile values. The whiskers are lines

extending from each end of the boxes to show the extent of the rest of the data. Outliers are data

with values beyond the ends of the whiskers. Figure 3 clearly shows that Mondays have a higher

call arrival volume relative to the remaining weekdays. We use Figures 2 and 3 to identify 9 outlier

days which we replace with historical averages.

In Figure 4, we plot the average arrival count per period for each weekday, after smoothing

the data. Figure 4 shows that all weekdays have a similar intraday profile: There are two major

peaks in call arrival volumes during the day. The first peak occurs in the morning, shortly before

11:00 AM, and the second peak occurs in the early afternoon, around 1:30 PM. (There is also a

third “peak”, smaller in magnitude, which occurs shortly before 4:00 PM on Mondays, Tuesdays,

and Wednesdays.) Such intraday arrival patterns are commonly observed in call centers; e.g., see

Gans et al. (2003). Upon closer inspection, Figure 4 shows that the average number of arrivals per

period is nearly identical on Wednesdays and Thursdays. That is confirmed by hypothesis tests for

statistical significance, detailed in §4.1. We also see that Tuesdays have a slightly different morning

arrival pattern relative to the remaining weekdays, whereas Fridays have a different afternoon

arrival pattern (between 2:00 PM and 4:00 PM).

3.2. Interday and Intraday Correlations

Exploratory analysis of our data set shows evidence of: (i) strong positive (interday) correlations

between arrival counts over successive days, and (ii) strong positive (intraday) correlations between

arrival counts over successive periods of the same day. In §4, we take both interday and intraday

correlations into account when making forecasts of future call volumes.

In Table 1, we present estimates of correlations between daily arrival volumes over successive

weekdays. (We first subtract from each daily total the average arrival volume for the corresponding

weekday.) Table 1 shows that there are significant positive correlations between days of the same

week. In particular, correlations are strong between successive weekdays, and are slightly smaller

with longer lags; e.g., the correlation between (the total call volume on) Tuesday and (the total

call volume on) Wednesday is 0.68, whereas the correlation between Tuesday and Friday is 0.62.
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Figure 2: Daily arrivals to the Type A queue between October 19, 2009 and October 19, 2010.

Mon Tues. Wed. Thurs. Fri.
Mon. 1.0 0.48 0.35 0.35 0.34
Tues. 1.0 0.68 0.62 0.62
Wed. 1.0 0.72 0.67
Thurs. 1.0 0.80

Fri. 1.0

Table 1: Correlations between arrival counts (corrected for seasonal trends) on successive weekdays
for the Type A queue.

Additionally, Table 1 shows that Mondays are less correlated with the remaining weekdays; e.g.,

the correlation between Monday and Tuesday is 0.48.

There are also strong intraday correlations in the data set. Here, we plot estimates of intraday

correlations on Wednesday, but similar patterns hold for all weekdays as well. More precisely, in

Figure 5, we plot correlations between the fifth period on Wednesday and the remaining periods

of that day; e.g., the correlation between periods 5 and 7 on Wednesday is equal to 0.9, and the

correlation between periods 5 and 20 is roughly equal to 0.6.
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Figure 3: Box plot of daily arrival counts to the Type A queue for each weekday.

3.3. Data Transformation

Let Ni,j be the number of arrivals in the jth period of day i, where 1 ≤ i ≤ D and 1 ≤ j ≤ P . As

in Whitt (1999) and Avramidis et al. (2004), we model the arrival process as a doubly stochastic

Poisson process with a random arrival rate Λi,j . In particular, conditional on Λi,j = λi,j where

λi,j > 0 is a deterministic value, we assume that Ni,j follows a Poisson distribution with arrival

rate λi,j . As in Jongbloed and Koole (2001), our data possesses overdispersion relative to the

Poisson distribution, e.g., the variance of the arrival counts is roughly equal to ten times the mean.

To stabilize the variance, we use the “root-unroot” method which is commonly used in the

literature; e.g, see Brown et al. (2005). In particular, letting yi,j =
√

Ni,j + 1/4, it was shown

in Brown et al. (2001) that for large values of λi,j , yi,j is approximately normally distributed,

conditional on λi,j , with a mean value of
√

λi,j and a variance equal to 1/4. Since there are

hundreds of calls per period on average in a given weekday, it is reasonable to assume that our

square-root transformed counts are roughly normally distributed with the above mean and variance.

In §4.2, we exploit normality to fit Gaussian linear mixed models to the transformed data. In the

mixed model, we assume that
√

λi,j is a linear combination of both fixed and random effects.
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Figure 4: Intraday arrival patterns for each weekday, for the Type A queue, averaged over all arrival
counts between October 19, 2009 and November 11, 2010.

The goodness of fit of the Gaussian model, described in §5.4, indicates that the Poisson model is

appropriate in our context.

4. Time Series Models

In this section, we describe candidate time series models for the arrival process and discuss how

different model parameters are estimated from data. In §5, we compare the alternative models

based primarily on forecasting performance.

4.1. Fixed-Effects (FE) Model with Independent Residuals

The preliminary data analysis of §3 shows that the five weekdays have different expected daily

total call volumes. Moreover, the expected number of calls per period for each weekday varies

depending on the period; see Figure 4. We capture those two properties in our first time series
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Figure 5: Correlations between period 5 and remaining periods on Wednesday for Type A call
arrivals.

model which is a simple linear additive model incorporating both day-of-week and period-of-day

covariates. This model also includes cross terms to capture the interaction between the day-of-week

and period-of-day effects. The additional cross terms allow for a different intraday profile for each

weekday, consistently with Figure 4. We consider the Fixed-Effects (FE) model because similar

models are often used in the call center industry; e.g., see Weinberg et al. (2007) and Shen and

Huang (2008b). As pointed out in §1.2, the FE model is equivalent to a historical average approach

since it essentially uses past averages as forecasts of future call volumes. Moreover, the FE model

serves as a useful reference point because it does not incorporate any dependence structures, such

as interday and intraday correlations; see Table 1 and Figure 5.

Let di be the day-of-week of day i, where 1 ≤ i ≤ D. (That is, di ∈ {1, 2, 3, 4, 5} where di = 1

denotes a Monday, di = 2 denotes a Tuesday, ..., and di = 5 denotes a Friday.) Let j denote the

half-hour period index in day i, where 1 ≤ j ≤ P . Recall that D = 275 is the number of days in

our data set, and P = 22 is the total number of half-hour periods per day.
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We model yi,j , the square-root transformed call volume in period j of day i, as:

yi,j =
5∑

k=1

αkI
k
di

+
22∑
l=1

βlI
l
j +

5∑
k=1

22∑
l=1

θk,lI
k
di

I l
j + εi,j , (4.1)

where Ik
di

and I l
j are the indicators for day di and period j, respectively. That is, Ik

di
(I l

j) equals 1

if di = k (j = l) and 0 otherwise. The products Ik
di

I l
j are indicators for the cross terms between the

day-of-week and period-of-day effects. The coefficients αk, βl, and θk,l are real-valued constants that

need be estimated from data, and εi,j are independent and identically distributed (i.i.d.) normal

random variables with mean 0 and variance σ2
ε . The normality assumption enables us to obtain

prediction intervals for future observations; see §5. Equation (4.1) simplifies to

yi,j = αdi
+ βj + θdi,j + εi,j . (4.2)

We estimate model parameters using the method of least squares. It is well known that least

squares estimates are equivalent to maximum likelihood estimates with normal i.i.d. residuals,

as in (4.1). We perform t-tests for the significance of the fixed effects in (4.1) at the 90% level,

i.e., significant parameters have an associated p-value which is less than 0.10. Motivated by the

principle of parsimony in statistical modeling, we exclude from (4.1) some terms with no statistical

significance. In Table 2, we summarize some results based on fitting the FE model to the entire

data set. Table 2 shows that the 5 weekdays have significantly different effects, i.e., each weekday

has a different expected daily call volume. In contrast, not all periods have significant effects. In

particular, our results indicate that the effects of 6 out of the 22 periods in a day (namely periods

4, 10, 14, 15, 16, and 17) are not statistically significant. Consistent with intuition, periods 1 (first)

and 22 (last) have significant negative effects on the expected number of incoming calls. Since some

period indicators are strongly significant, whereas others are not, we retain in our FE model all the

period-of-day effects. Our results also show that none of the indicators corresponding to cross terms

between Thursday and period-of-day, and Wednesday and period-of-day, is statistically significant.

Therefore, those cross terms are removed from the model. We keep all cross terms between a specific

weekday and the period-of-day if at least one of those terms is statistically significant. For example,
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Table 2 shows that the indicator for period 4 on Tuesday is statistically significant whereas the

indicator for period 8 on Tuesday is not. As a result, we do not exclude from our model any cross

terms corresponding to the interaction between Tuesday and period-of-day. Similarly, we do not

exclude any cross terms corresponding to the interaction between Monday and period-of-day, and

Friday and period-of-day.

Category Coefficient Std. error p-value
Monday 17.2 0.210 < 0.0001
Tuesday 15.8 0.205 < 0.0001
Wednesday 15.6 0.205 < 0.0001
Thursday 15.4 0.207 < 0.0001
Friday 15.6 0.207 <0.0001
Period 1 -4.96 0.289 <0.0001
Period 4 0.222 0.289 0.443
Period 10 0.249 0.289 0.390
Period 18 -0.845 0.289 0.00350
Period 22 -4.47 0.289 < 0.0001
Monday × Period 13 -0.00415 0.415 0.992
Monday × Period 22 -0.833 0.415 0.0447
Tuesday × Period 4 0.845 0.409 0.0391
Tuesday × Period 8 0.142 0.409 0.728
Wednesday × Period 11 0.119 0.417 0.773
Wednesday × Period 14 -0.0291 0.417 0.942
Thursday × Period 1 0.214 0.411 0.603
Thursday × Period 10 -0.0106 0.411 0.980
Friday × Period 1 0.0524 0.413 0.899
Friday × Period 20 -1.37 0.413 < 0.0001

Table 2: Partial results for the Fixed-Effects model specified in (4.1). Point estimates of model
coefficients, α, β, and θ, are shown with corresponding standard errors and p-values of t-tests for
statistical significance.

4.2. Gaussian Linear Mixed Effects (ME) Model

As discussed in §3.2, there is evidence of strong correlations in the data at both the interday

and intraday levels. In this subsection, we extend the FE model of §4.1, and consider a linear

mixed model incorporating both fixed and random effects. We consider the same fixed effects as in

(4.1). Random effects, which are Gaussian deviates with a pre-specified covariance structure, are
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used to model the interday correlations. Intraday correlations are modeled by imposing a specific

covariance structure on the residuals of the model. We use the Mixed Procedure in the SAS r©

software to implement the linear mixed model, and compute maximum likelihood estimates of all

model parameters.

For ease of representation, we formulate the linear mixed model in matrix form; see (4.7). Mixed

models have been previously considered to model call center arrivals. In particular, the model that

we describe in this subsection has been proposed by Aldor-Noiman et al. (2009). We consider

Gaussian linear mixed models because they are relatively easy to implement and interpret, and

they allow for interactions (dependencies) between the different covariates. They have also been

previously shown to generate accurate forecasts of future call volumes. The Gaussian linear mixed-

effects model, henceforth referred to as the ME model, exploits the normal approximation of the

square-root transformed data counts, which is reasonable for large call volumes; see §3.3.

4.2.1. Random Effects.

We use random effects γ = (γ1, γ2, ..., γD)′ to model the normal daily volume deviation from the

fixed weekday effect. (This means that we add a random effect γi to the right-hand side of (4.2).)

Let G denote the D × D covariance matrix of the random effects γ. We assume that G has a

first-order autoregressive covariance structure, AR(1), i.e., we assume that the covariance between

γi and γj is given by:

cov(γi, γj) = gi,j = σ2
Gρ

|i−j|
G for 1 ≤ i, j ≤ D , (4.3)

where σ2
G is the variance parameter and ρG is the autocorrelation parameter. Considering an

AR(1) covariance structure for G is both useful and computationally effective, because it requires

the estimation of only two parameters, σG and ρG. Some care need be taken to preserve the true

numerical distance between the days. We do so by fitting the power transformation covariance

structure to G, using the actual duration between days; e.g., the lag between Monday and Tuesday

of the same week is equal to 1, whereas the lag between Friday and the following Monday is equal

to 3.
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We also considered more complex covariance structures for G, such as an autoregressive-moving-

average structure, ARMA(1,1), and a heterogeneous autoregressive structure, ARH(1). For an

ARMA(1,1) structure, we assume that:

gi,j =

 σ2
G · δ · ρ|i−j|−1

G if i 6= j ,

σ2
G if i = j ,

(4.4)

which requires the estimation of three parameters: σG, ρG, and δ. And, for an ARH(1) structure,

we assume that:

gi,j = σiσjρ
|i−j|
G for 1 ≤ i, j ≤ D , (4.5)

where σi and σj may not be equal. That is, an ARH(1) structure for G requires the estimation of D+

1 parameters. Unfortunately, both the ARMA(1,1) and ARH(1) structures are so computationally

intensive that the corresponding mixed models could not be fit to data (we ran into computer

memory restrictions). Thus, we focus solely in this work on an AR(1) covariance structure for G.

Using the terminology of standard linear models, we denote by Z the design matrix for the ran-

dom effects, i.e., Z = ID ⊗ 1P where ID is the D−dimensional identity matrix, 1P = (1, 1, ..., 1)′ ∈

RP is the P−dimensional vector of 1’s, and ⊗ denotes the Kronecker product.

4.2.2. Model Residuals.

Let ε denote the DP−dimensional vector of residuals of the model, i.e., the Gaussian deviations at

the periodic level of the square-root transformed data counts after accounting for both fixed and

random effects. Let R denote the within-day P × P covariance matrix of residuals. We assume

that

R = R0 + σ2IP , (4.6)

where R0 has an AR(1) covariance structure with variance parameter σ2
R0

and autocorrelation

parameter ρR0 ; see (4.3). We let σ2 be the residual variance, and IP be the P−dimensional

identity matrix. If the mixed model is a good fit for the data, then the estimated value of σ2 should

be roughly equal to the theoretical value of 0.25. In §5.4, we show that this is indeed the case.

17



In addition to AR(1), we also considered an ARMA(1,1) covariance structure for R0. We found

that the difference in performance between the two models is not statistically significant. Therefore,

we focus solely on an AR(1) structure for R0 in this work. There remains to formulate the ME

model, which we do next.

4.2.3. Mixed Model Formulation.

Let W be a D × 5 matrix with (u, v)th entry wu,v = 1 if du = v, and 0 otherwise. Let XD be the

DP × 5 design matrix for the fixed daily effects. Then, XD = W ⊗ 1P. Let XP be the DP × P

design matrix for the fixed period-by-period effects. Then, XP = W ⊗ IP . Finally, let XDP be the

design matrix for the cross terms between the day-of-week and period-of-day effects. Then, XDP

has DP rows and 3P columns (recall that we removed from the model the cross terms corresponding

to both Wednesday and Thursday). The model for the square-root transformed vector of arrival

counts y = (y1,1, ..., yD,P )′ is:

y = XDα + XP β + XDP θ + Zγ + ε , (4.7)

where the covariance matrix of γ is Var(γ) = G, and the covariance matrix of ε is Var(ε) = ID⊗R =

ID ⊗ (R0 + σ2IP ). We assume that both γ and ε have expected values E[γ] = E[ε] = 0, and that

they are independent. In Table 3, we present some results for the statistical significance of the daily

random effects γi for selected days i, obtained when fitting the mixed model in (4.7) to the entire

data set. In Table 4, we present corresponding estimates of the covariance parameters σ2
G, ρG, σ2

R0
,

ρR0 , and σ2, specified in (4.3) and (4.6). It is interesting to note the strong positive interday and

intraday correlations, which are indicated by the high values of ρG and ρR0 . For more details on

the estimation of linear mixed models, see Henderson (1975).

4.3. Holt-Winters (HW) Smoothing

Exponential smoothing is a popular forecasting technique, commonly used in call centers, where the

forecast is constructed from an exponentially weighted average of past observations. Therefore, it

is important to study the accuracy of this method. The Holt-Winters (HW) method is an extension
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Category Coefficient Std. error p-value
Day 1 1.63 0.323 < 0.0001
Day 10 2.38 0.318 < 0.0001
Day 20 -1.16 0.322 < 0.0003
Day 30 -0.448 0.318 0.159
Day 40 1.25 0.321 < 0.0001
Day 50 -0.695 0.322 0.0311
Day 60 0.562 0.318 0.0772
Day 71 -2.61 0.322 <0.0001
Day 75 0.0702 0.324 0.828

Table 3: Partial results for the Mixed Model, specified in (4.7), fit to the entire data set. Point
estimates of the random effects, γ, are shown along with corresponding standard errors and p-values
of t-tests for statistical significance.

σ2
G 1.59

ρG 0.652
σ2

R0
0.391

ρR0 0.619
σ2 0.278

Table 4: Covariance parameter estimates for the Mixed Model in (4.7) when fit to the entire data
set.

of exponential smoothing which accommodates both a trend and a seasonal pattern; see Winters

(1960). The HW method has two versions, additive and multiplicative, the use of which depends

on the characteristics of the particular time series. Here, we apply the logarithmic transformation

to the original time series of arrival counts, which makes the additive version of HW smoothing

appropriate for use. As shown in Figure 4, there is a clear intraday pattern in the arrival process

of calls. Therefore, we incorporate a daily seasonality in our model; see (4.8). Since we only have

arrival data for about one year, we exclude the presence of a trend.

Taylor (2008) extended the HW method to accommodate two seasonalities; e.g., weekly and

daily. Even though this extension may be more appropriate for our call center data, where we

found evidence of both daily and weekly seasonal patterns, we restrict attention here to the HW

method with a single daily seasonality. (That is, the length of the seasonal cycle is equal to P .)

We do so to mimic current practice at Company X. Indeed, we were told that the present way

of generating half-hourly forecasts at the company is via a simple smoothing of data, which does
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not account for multiple seasonal cycles. We take the forecasts resulting from HW smoothing to

represent the current half-hourly forecasts at Company X. We implement the HW method using

the corresponding function in the R statistical software.

For ease of representation, we now use a slightly different notation for indexing the time series.

In particular, let {N1, N2, ..., NDP } denote the successive half-hourly arrival counts. For example,

NP+1 = N23 is the number of arrivals in the first half-hour interval of the second day in our data

set. Let xt denote the logarithm-transformed data count, i.e., xt = log(Nt), for t = 1, 2, .., DP .

Here are the smoothing equations for the HW method:

St = ν(xt −Dt−P ) + (1− ν)St−1 ,

Dt = δ(xt − St) + (1− δ)Dt−P ,

x̂t(k) = St + Dt−P+k ,

(4.8)

where St is the smoothed level, Dt is the seasonal index for the intraday cycle, and x̂t(k) is the

k−step-ahead forecast at time t. For simplicity, the forecast in (4.8) is based on having k ≤ P , but

it is an easy task to rewrite it for longer forecasting lead times. The constants ν and δ are smoothing

parameters, whose values are between 0 and 1, which are chosen to minimize the one-step ahead

in-sample forecast errors ranging from October 19, 2009 to August 18, 2010 (a total of 4730 data

points). Chatfield and Yar (1988) showed the importance of the choice of initial values for the

smoothed level, St, and seasonal index, Dt. Here, we choose those values by averaging observations

from October 19, 2009 to August 18, 2010. In §5, we compare the forecasting accuracy of all models

based on out-of-sample forecasts ranging from August 19, 2010 to November 11, 2010.

4.4. The “Top-Down” (TD) Approach

As explained in Gans et al. (2003) and Taylor (2008), the “Top-Down” (TD) approach is very

commonly used in call centers to forecast future arrival volumes. Applied to our context, this

approach splits forecasts of total daily arrival volumes into forecasts for half-hourly intervals based
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on estimates of historical proportions of calls in successive half-hourly intervals of the day. The TD

approach is especially useful in our context because it allows us to use the daily forecasts currently

generated by Company X. Indeed, those forecasts are based on information which affects the arrival

process but is not in the data, such as major marketing campaigns or recent price increases.

In Table 5, we present summary statistics for the historical proportion of calls in different

(selected) half-hour intervals on Tuesdays. Results for other periods on Tuesdays, and for the

remaining weekdays, are largely similar and are therefore not presented separately. In Table 5, we

present point estimates for the mean, the variance, the median, and the first and third quartiles

of the historical proportions on Tuesdays. Table 5 shows that those proportions are not highly

variable. For example, the ratio between the point estimates of the variance and the square of

the mean in period 8 on Tuesday is roughly equal to 0.006. It is worthwhile noting that the TD

approach is consistent with modeling the multivariate distribution of arrival counts in successive

periods of a day by a multinomial distribution; see Channouf et al. (2007).

Here are the equations for breaking down the daily forecasts, made by Company X, into interval

forecasts. Let ŷi denote the forecast for the number of arrivals on day i, 1 ≤ i ≤ D. Let ŷi,j denote

the split forecast for period j on day i, 1 ≤ j ≤ P . As in §4.1, let di denote the day-of-week of day

i. Then,

ŷi,j = ŷi × p̂di,j , (4.9)

where p̂di,j is the point estimate of proportion of calls in half-hour period j of day type di. The

proportions p̂di,j are the historical proportions of calls that fall in a given period of a day, relative

to the total number of calls on that day. More precisely,

p̂di,j =
1

ndi

D∑
k=1

Ik
di

yk,j∑P
l=1 yk,l

, (4.10)

where ndi
is the number of days of type di in our data set, and Ik

di
is the indicator for day of type

di, as in (4.1).
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Category Mean Variance Median 1st quartile 3rd quartile
Period 1 0.0249 1.74 ×10−5 0.0245 0.0222 0.0272
Period 5 0.0580 2.52 ×10−5 0.0575 0.0540 0.0612
Period 8 0.0543 1.95 ×10−5 0.0545 0.0516 0.0573
Period 10 0.0502 1.03 ×10−5 0.0503 0.0484 0.0523
Period 15 0.0470 1.20 ×10−5 0.0469 0.0451 0.0497
Period 17 0.0467 1.61 ×10−5 0.0467 0.0443 0.0493
Period 22 0.0243 6.32× 10−6 0.0242 0.0230 0.0260

Table 5: Selected historical proportions on Tuesdays, as specified in (4.10), computed based on the
entire data set.

5. Model Comparison

In this section, we compare the alternative time series models of §4 based on their forecasting

performance. In particular, we make out-of-sample forecasts for alternative forecasting lead times,

and quantify the accuracy of the forecasts generated by the candidate models.

5.1. Lead Times and Learning Period

We generate out-of-sample forecasts for the forecasting horizon ranging from August 19, 2010 to

November 11, 2010. That is, we make forecasts for a total of 85 days, and generate 85× 22 = 1320

predicted values. We consider three forecasting lead times to mimic the challenges faced by real-life

call center managers. In particular, we consider lead times of 2 weeks, 1 week, and 1 day. In §6.2,

we also consider within-day forecasting updates. In this section, we let the learning period include

all days in the data set, up to the beginning of the forecast lag. When we generate a forecast for

all periods of a given day, we roll the learning period forward so as to preserve the length of the

forecasting lead time. We re-estimate model parameters after each daily forecast.

5.2. Performance Measures

We quantify the accuracy of a point prediction by computing the squared error (SE) per half-hour

period, defined by:

SEi,j ≡ (Ni,j − N̂i,j)2 , (5.1)
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where Ni,j is the number of arrivals in the jth period of a given day i, and N̂i,j is the predicted

value of Ni,j . We also compute the relative error (RE), defined by:

REi,j = 100 · |Ni,j − N̂i,j |
Ni,j

. (5.2)

We then average SEi,j and REi,j over all half-hour periods of day i, for each i. In particular, we

define the root-average-squared error for day i, RASEi, given by:

RASEi =

√√√√ 1
P

P∑
j=1

SEi,j , (5.3)

and the average percentage error for day i, APEi, given by:

APEi =
1
P

P∑
j=1

REi,j . (5.4)

The RASE is an empirical version of the root mean-squared error, RMSE. We repeat this procedure

for all 85 days in our forecasting horizon. As a result, we have 85 daily values for both RASEi

and APEi. We then compute point estimates for the mean, median, 1st and 3rd quartiles of the

resulting RASEi and APEi values.

We also use performance measures to evaluate the prediction intervals for Ni,j , generated by

the FE and ME models. In particular, we define the “Cover” of the prediction interval for Ni,j as:

Coveri,j = I(Ni,j ∈ (Li,j , Ui,j)) , (5.5)

where I(·) denotes the indicator random variable, and Li,j and Ui,j are the lower and upper bounds

of the prediction interval, respectively. We also compute the “Width” of the confidence interval,

defined as:

Widthi,j = Ui,j − Li,j . (5.6)

For each day i in the forecasting horizon, we compute the average coverage probability, Coveragei,

defined as the average over all periods j in day i of the indicators in (5.5). Similarly, we define
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Widthi as the average of Widthi,j in (5.6), over all periods j in day i. As a result, we obtain 85

values for both Coveragei and Widthi, corresponding to all days in our forecasting horizon. Then,

we compute the mean, median, 1st and 3rd quartiles of the resulting Coveragei and Widthi values;

see Tables 6-8.

In this paper, we compute prediction intervals with a confidence level of 95%. If the chosen

model adequately captures the correlation structure in the data, then we expect that the average

coverage probability be close to 95%. Since we are unable to compute prediction intervals for both

the TD approach (no confidence intervals generated by Company X), and for the HW method (for

which we make no modeling assumptions), we leave the corresponding entries for Coverage and

Width empty in Tables 6, 7, and 8.

5.3. Forecasting Performance

5.3.1. Two Weeks-Ahead Forecasts.

In Table 6, we present point estimates of the performance measures described in §5.2, for each of

the candidate models, with a forecasting lead time of 2 weeks. Table 6 shows that the FE model

generates the most accurate forecasts in that case. Consistent with Taylor (2008), this shows that

with long lead times a simple historical average is difficult to beat. The ME model performs worse

than the FE model in this case. Indeed, RASE(ME)/RASE(FE) is roughly equal to 1.04, whereas

APE(ME)/APE(FE) is roughly equal to 1.08. Although this may seem counterintuitive at first,

since the ME model uses the same fixed effects as the FE model, it can be readily seen that the

difference in performance between the two models is due to the fact that the ME model over-fits the

data; e.g., the ME model requires estimating a random effect for each day in the learning period,

in addition to 4 covariance parameters for G and R, as explained §4.2.1 and §4.2.2.

Table 6 also shows that the TD approach, based on 2-weeks-ahead forecasts made by Company

X, is outperformed by both the FE and ME models. For example, RASE(TD)/RASE(FE) is

roughly equal to 1.14, and APE(TD)/APE(FE) is roughly equal to 1.19. Finally, the HW smoothing

approach yields disappointing results. Indeed, RASE(HW)/RASE(FE) is roughly equal to 1.66 and

APE(HW)/APE(FE) is roughly equal to 1.90. That is also consistent with results in Taylor (2008),
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where exponential smoothing was found to be ineffective, particularly for long lead times. That

is especially interesting because exponential smoothing is the way that half-hour interval forecasts

are currently generated at Company X.

It is insightful to compare the Width and Coverage of the prediction intervals for the FE and

ME models, respectively. Indeed, both the Width and Coverage of prediction intervals for the

FE model are considerably smaller than those for the ME model. For example, Coverage(FE) is

roughly equal to 0.22, whereas Coverage(ME) is roughly equal to 0.95, as desired. Additionally,

prediction intervals for the ME model are roughly 8 times larger, in an average sense, than those

for the FE model. The Width and Coverage reveal that the FE model underestimates uncertainty

in the data by not capturing the correlation structure between the arrival counts.

5.3.2. One Week-Ahead Forecasts.

In Table 7, we present results corresponding to a forecasting lead time of 1 week. We do not

discuss those results separately because they are largely consistent with those obtained with a

forecasting lead time of 2 weeks. However, it is interesting to note that the resulting forecasts are

only very slightly more accurate than with 2-week-ahead forecasts. That is consistent with results

in Aldor-Noiman et al. (2009), who found that shorter lead times do not always lead to more

accurate forecasts. As pointed out by the authors of that paper, this observation may help call

center managers decide whether they need to update their forecasts one week in advance. Since

Company X does not update its forecasts one week in advance, we do not include forecasts for the

TD approach in Table 7.

5.3.3. One Day-Ahead Forecasts.

In Table 8, we present results for a forecasting lead time of one day. As expected, the superiority

of the ME model is clearly evident in this case. In particular, it is considerably more accurate than

the FE model, which fails to model the interday and intraday correlations in the arrival counts.

Indeed, RASE(FE)/RASE(ME) is roughly equal to 1.17 in this case, and APE(FE)/APE(ME) is

roughly equal to 1.18. Table 8 shows that the TD approach is competitive. Indeed, this method
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generates the second most accurate forecasts, after the ME model; e.g., APE(TD)/APE(ME) is

roughly equal to 1.07. This indicates that the daily forecasts of Company X are relatively accurate,

and that there is a justification behind adopting a simple splitting technique of those forecasts, as

with the TD approach.

With a lead time of one day, HW smoothing generates, once more, the least accurate forecasts.

For example, APE(HW)/APE(ME) is roughly equal to 2. With a lead time of one day, all models

generate more accurate forecasts compared with the longer lead times of two weeks. For example,

APE(ME) decreases from 16.4% to 12.9% (roughly a 30% decrease). As in Tables 6 and 7, the

Coverage and Width of the prediction intervals for the ME model show that it correctly captures

the correlation structure in the data.

ME model TD approach FE model HW smoothing
Mean 41.7 45.8 40.3 67.0

RASE Median 29.5 33.9 32.0 57.9
1st quartile 21.4 24.3 22.0 47.2
3rd quartile 41.8 45.1 43.8 82.1

Mean 16.4 18.2 15.3 29.0
APE Median 11.2 13.7 11.9 23.3

1st quartile 7.87 9.19 8.62 18.5
3rd quartile 16.3 17.3 17.6 34.1

Mean 0.946 - 0.220 -
Coverage Median 1 - 0.182 -

Probability 1st quartile 1 - 0.0909 -
3rd quartile 1 - 0.363 -

Mean 182 - 22.4 -
Average Median 180 - 23.3 -
Width 1st quartile 176 - 18.3 -

3rd quartile 184 - 25.4 -

Table 6: Comparison of the forecasting accuracy of the alternative time series methods, for a
forecasting lead time of two weeks, based on out-of-sample forecasts between August 19, 2010 and
November 11, 2010. Point estimates for the performance measures described in §5.2 are shown.

5.4. Goodness of Fit of the Mixed Model

The empirical results of this section showed that the ME model yields the most accurate forecasts,

for short forecasting lead times, among all methods considered. We conclude this section by com-
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ME model FE model HW smoothing
Mean 41.5 40.1 65.4

RASE Median 29.2 31.4 59.7
1st quartile 21.6 22.6 41.8
3rd quartile 41.4 43.4 76.6

Mean 16.3 15.2 28.1
APE Median 10.9 12.0 25.4

1st quartile 7.87 8.70 17.0
3rd quartile 16.4 17.2 32.7

Mean 0.946 0.220 -
Coverage Median 1 0.205 -

Probability 1st quartile 1 0.0909 -
3rd quartile 1 0.330 -

Mean 180 22.04 -
Average Median 178 23.4 -
Width 1st quartile 175 18.2 -

3rd quartile 183 25.5 -

Table 7: Comparison of the forecasting accuracy of the alternative time series methods, for a
forecasting lead time of one week, based on out-of-sample forecasts between August 19, 2010 and
November 11, 2010. Point estimates for the performance measures described in §5.2 are shown.

menting on the goodness of fit of the ME model. In Figure 6, we present a QQ-plot of the residuals

of the ME model which are obtained after fitting the model to the entire data set. Figure 6 shows

that the assumption of normality is reasonable.

Consistent with §3.3, we found that the average estimated value of σ2 is equal to 0.27, which

is close to the theoretical values of 0.25. Thus, the ME model adequately captures the predictive

structure in the data, and what remains is unpredictable variation. To get a sense of the magnitude

of this variance, we need to compare it to the square root of the average number of arrivals per

period. Since that number is in the tens of calls, we conclude that the obtained value of σ2 is small.

6. A Bivariate Mixed (BM) Model

In this section, we describe a bivariate linear mixed (BM) model, which extends the linear mixed

model of §4.2, to jointly model the arrival processes of the Type A and Type B queues.

As explained in §1, calls arriving to the Type A queue originate in the province of Quebec,
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Figure 6: QQ plot for the residuals of the Mixed model specified in (4.7), when fit to the entire
data set. Also included is a straight line with slope 1.
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ME model TD approach FE model HW smoothing
Mean 30.4 33.9 35.7 60.7

RASE Median 27.1 30.3 30.9 48.9
1st quartile 19.8 22.9 22.9 35.99
3rd quartile 34.5 41.0 42.8 82.4

Mean 12.9 13.9 15.1 26.4
APE Median 10.1 12.5 11.9 20.8

1st quartile 7.26 8.23 8.67 15.7
3rd quartile 14.4 15.5 17.1 33.9

Mean 0.962 - 0.219 -
Coverage Median 1 - 0.227 -

Probability 1st quartile 1 - 0.0909 -
3rd quartile 1 - 0.329 -

Mean 157 - 21.9 -
Average Median 151 - 22.9 -
Width 1st quartile 147 - 17.8 -

3rd quartile 160 - 25.4 -

Table 8: Comparison of the forecasting accuracy of the alternative time series methods, for a
forecasting lead time of one day, based on out-of-sample forecasts between August 19, 2010 and
November 11, 2010. Point estimates for the performance measures described in §5.2 are shown.

and are mainly handled in French, whereas calls for the Type B queue originate in the province

of Ontario, and are mainly handled in English. Otherwise, callers to both queues have similar

service requests. Therefore, we expect their respective arrival streams to be positively correlated.

Here, we propose exploiting this positive correlation to generate more accurate forecasts for Type

A arrivals. (For simplicity, we restrict attention to forecasting arrivals for the Type A queue, but

similar results also hold for the Type B queue.) Consistent with intuition, we showed in Figure 1

that the arrival streams for Type A and Type B are strongly positively correlated. Indeed, this

correlation is estimated at 0.71.

Bivariate linear mixed models are traditionally used in the field of biostatistics, e.g., when

analyzing longitudinal data of two associated markers; see Barry and Bowman (2007), and Thiébaut

et al. (2007). We fit bivariate mixed models to our data using the Mixed Procedure in SAS r©.
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6.1. Model Formulation

Let yB
i,j (yA

i,j) denote the square-root transformed arrival count of Type B (Type A) in period j of

day i, where 1 ≤ i ≤ D and 1 ≤ j ≤ P . Let the P−dimensional vectors of arrival counts on day i

for Type B and Type A, respectively, be given by:

yB
i = (yB

i,1, y
B
i,2..., y

B
i,P )′ , (6.1)

and

yA
i = (yA

i,1, y
A
i,2..., y

A
i,P )′ . (6.2)

We model the joint distribution of yB and yA where yB = (yB
1 , ..., yB

P )′ and yA = (yA
1 , ..., yA

P )′. As

in the standard mixed model, the bivariate mixed model has both fixed and random effects. We

use the same fixed and random effects as in §4.1 and §4.2. In particular, we assume that:

yB = XDαB + XP βB + XDP θB + ZγB + εB , (6.3)

yA = XDαA + XP βA + XDP θA + ZγA + εA ; (6.4)

using the same notation as in (4.1) and (4.7). The random effects in (6.3) and (6.4) are chosen

as in §4.2.1. That is, γB and γA denote the D−dimensional vector of Gaussian deviates from the

daily fixed effects. As in §4.2.1, we assume AR(1) structures for the covariance matrices GB (of

γB) and GA (of γA). We also assume that γB and γA are independent. That is, we assume that:

cov(γB
i , γB

j ) = gB
i,j = σ2

G,Bρ
|i−j|
B for 1 ≤ i, j ≤ D , (6.5)

where σ2
G,B is the variance parameter and ρB is the autocorrelation parameter. Similarly, for Type

A we assume that:

cov(γA
i , γA

j ) = gA
i,j = σ2

G,Aρ
|i−j|
A for 1 ≤ i, j ≤ D , (6.6)

where σ2
G,A is the variance parameter and ρA is the autocorrelation parameter.
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We model the dependence between the arrival streams for Type A and Type B via intraday

correlations. In particular, we assume that εB and εA are correlated. Let RBIV denote the within-

day 2P × 2P covariance matrix of residuals for the bivariate model. We assume that:

RBIV = R∗ + σ2
BIVI2P , (6.7)

where I2P is the 2P− dimensional identity matrix, and R∗ is the 2P × 2P matrix given by:

R∗ =

 σ2
B σB,A

σA,B σ2
A

⊗



1 ρ ρ2 ... ρP

ρ 1 ρ ... ρP−1

. . . . .

. . . . .

. . . . .

ρP ρP−1 ρP−2 ... 1


. (6.8)

That is, in addition to intraday correlation between the two arrival streams, each call type has an

intraday AR(1) covariance structure, as in §4.2.2. We assume that the intraday AR(1) structures

for both regions have the same autocorrelation parameter, ρ.

In addition to the covariance structure specified in (6.8), we also considered other ways to

model the dependence between the two call types. For example, we assumed that both types have

an AR(1) covariance structure for interday dependence, and that there are correlations between the

two call types at the daily level. However, we found that the bivariate model specified in (6.3)-(6.8)

yields the most accurate forecasts among all other models considered. That is why we focus solely

on that model in this paper. In Table 9, we present some results for the statistical significance of

the daily random effects, γB and γA, obtained when fitting the bivariate mixed model in (6.3)-(6.8)

to the first 14 weeks of the data set, i.e., to days ranging from October 19, 2009 to January 29,

2010. In Table 10, we present corresponding estimates of the covariance parameters of the bivariate

model. It is interesting to note the strong interday and intraday correlations in the data, and the

value of σ2
BIV which is close to 0.25, as desired; see §3.3.
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Category Coefficient Std. error p-value
Day 1 (Ontario) 1.34 0.626 0.0323
Day 10 (Ontario) 0.851 0.612 0.164
Day 23 (Ontario) -1.24 0.609 0.0430
Day 30 (Ontario) -1.52 0.610 0.0129
Day 59 (Ontario) -1.072 0.613 0.0802
Day 1 (Quebec) 1.03 0.558 0.0675
Day 10 (Quebec) 0.601 0.548 0.273
Day 23 (Quebec) 0.0447 0.547 0.935
Day 30 (Quebec) -1.06 0.547 0.0519
Day 59 (Quebec) -1.36 0.549 0.0136

Table 9: Summary of results for the Bivariate Model specified in (6.3) and (6.4) when fit to the
data between October 19, 2009 and January 29, 2010. Point estimates of random effects γB and
γA for selected days are shown along with corresponding standard errors and p-values of t-tests for
statistical significance.

σ2
G,B 1.07
ρB 0.934

σ2
G,A 0.829
ρA 0.941
σ2

B 1.09
σ2

B,A 0.651
σ2

A 0.833
ρ 0.924

σ2
BIV 0.214

Table 10: Covariance parameter estimates for the Bivariate Mixed Model (6.3) and (6.4) when fit
to the data between October 19, 2009 and January 29, 2010.

6.2. Comparison of the Bivariate and Mixed Models

In this subsection, we compare the forecasting accuracies of the BM model of §6.1 and the ME

model of §4.2. As noted in §5, the ME model is superior with short forecasting lead times; e.g., see

Table 8. Therefore, we focus on short lead times in this subsection.

6.2.1. Forecasting Lead Time and Learning Period.

As in §5, we generate forecasts for the 85 days ranging from August 19, 2010 to November 11,

2010. Here, we consider generating forecasts (i) one day ahead, and (ii) within each day. For (ii),
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we consider a lead time of 5.5 hours which corresponds to 11 half-hour periods. Recalling that a

day is composed of 22 half-hour periods, we see that option (ii) corresponds to mid-day forecasting

updates.

Predictions for a forecast lag of 1 day
BM model ME model

RASE APE Coverage Width RASE APE Coverage Width
Mean 33.4 14.2 0.897 128 38.9 16.4 0.858 126

Median 28.1 10.4 0.955 114 33.7 12.8 0.955 111
1st quartile 22.1 8.64 0.909 108 23.7 9.59 0.795 103
3rd quartile 39.5 1 14.4 130 46.9 0.954 0.954 111

Table 11: Comparison of the Bivariate Model described in §6 and the Mixed-Effects Model described
in §4.2 for a forecast lag of 1 day. The reported estimates are for forecasts of Type A arrivals.

Predictions for a forecast lag of 1/2 day
BM model ME model

RASE APE Coverage Width RASE APE Coverage Width
Mean 28.5 10.9 0.920 102 30.1 11.8 0.898 103

Median 28.4 9.15 1 97.3 28.4 10.1 0.955 97.2
1st quartile 20.1 7.63 0.909 96.5 22.1 8.32 0.864 91.1
3rd quartile 32.9 11.2 1 108 36.6 13.5 1 116

Table 12: Comparison of intraday updating for the Bivariate Model described in §6 and the Mixed
Model described in §4.2. The reported estimates are for forecasts of Type A arrivals.

We consider a learning period of 58 days (or 58× 2 = 116 sets of 11 half-hour periods), which

corresponds to about 12 weeks. We do so for two main reasons. First, the Bivariate Model is quite

computationally intensive. To minimize computational time, we use a smaller learning period than

in §5. Second, it is interesting to consider shorter learning periods because those are not uncommon

in call center management, where data collected in earlier months may not be available.

6.2.2. Model Comparison.

In Table 11, we present estimates for the average RASE, APE, Coverage, and Width for each model,

with a forecasting lead time of one day. In this case, the BM model is superior to the ME model.

Indeed, RASE(ME)/RASE(BM) is approximately equal to 1.15, whereas APE(ME)/APE(BM) is
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roughly equal to 1.16. The BM model also yields more accurate prediction intervals. Indeed,

the coverage probability for the Bivariate Model is roughly equal to 0.9, whereas the coverage

probability for the ME model is roughly equal to 0.86. On another note, Table 11 clearly shows

the advantage of using longer learning periods when making forecasts of future call volumes. For

example, with a forecasting lead time of one day and a learning period of about 10 months, Table 8

showed that RASE(ME) is roughly equal to 13%. In contrast, with the same forecasting lead time

and a learning period of only 3 months, Table 11 shows that RASE(ME) is now roughly equal to

16%.

In Table 12, we present estimates for the average RASE, APE, Cover, and Width for each model,

with a forecasting lead time of half a day. The Bivariate Model is, once more, superior to the ME

model. For example, RASE(ME)/RASE(BM) is roughly equal to 1.05 and APE(ME)/APE(BM)

is roughly equal to 1.09. Additionally, Table 11 shows that the Bivariate Model yields better

prediction intervals than the ME model. For example, the average coverage probability for the

Bivariate Model is 0.92 whereas the average coverage probability of the ME model is close to 0.90.

The average width of confidence intervals for the Bivariate Model is also smaller than for the ME

model. Finally, consistent with intuition, comparing Tables 11 and 12 shows that the magnitude of

errors for both models significantly decreases when updating forecasts within the day. For example,

RASE(BM) decreases from about 14% with one-day-ahead forecasts, to about 11% with intraday

updating.

7. Conclusions

In this paper, we evaluated alternative time series models for forecasting half-hourly arrivals to a

call center. We compared the forecasting accuracy of those models based on real-life call center

data of a major company in Canada.

7.1. Summary of Main Contributions

The time series models that we considered in this paper are appealing from a practical perspective.

In particular, we evaluated forecasting methods that are commonly used in practice, such as Holt-

34



Winters smoothing and the “Top-Down” approach; see §4.3 and §4.4. In using the “Top-Down”

approach, we broke down actual daily forecasts generated by Company X to produce half-hourly

forecasts. It is interesting to consider the forecasts of Company X because they incorporate infor-

mation about marketing campaigns or recent price increases which affect the arrival process.

We modeled interday and intraday dependence structures, commonly observed in call center

arrivals, via a Gaussian linear mixed model (§4.2). The mixed model incorporates fixed effects

such as day-of-week, period-of-day, and cross-terms between the two. As a useful reference model,

we also considered a fixed model (§4.1) which does not incorporate any dependence structure. We

compared the forecasting accuracy of all models based on forecasting lead times ranging from weeks

to hours in advance, to mimic the challenges faced by call center managers in real life.

In §5, we compared those four models based on out-of-sample forecasts for 85 days, ranging

from August 19, 2010 to November 11, 2010. We quantified the impact of the forecasting lead time

on the forecasting accuracy of our models in Tables 6 (2 weeks ahead), 7 (1 week ahead), and 8 (1

day ahead). We found that with sufficiently long lead times, a simple historical average is difficult

to beat. But, when lead times are short, such as one day or even hours in advance, it becomes

increasingly important to model correlations in the data. Indeed, with short forecasting lead times,

the mixed model considerably outperforms the remaining models; see Table 8.

In §6, we extended the mixed model into a bivariate mixed model, thus innovatively exploiting

the dependence between two call types to generate more accurate forecasts. Figure 1 showed that

the two call types considered are strongly positively correlated. In §6.2, we showed that the bivariate

model significantly outperforms the standard mixed model; see Table 11 and 12. As a result, we

quantified the advantage of modeling correlations between alternative call types in making forecasts

of future call volumes.

7.2. Future Research Directions

One possible direction for future research is to extend the bivariate model into a multivariate model

which exploits the dependence structure between multiple related call types. Indeed, experience in-

dicates that the arrival processes of several queues in call centers are often correlated, and exploiting
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this correlation promises to improve predictions of future call volumes, as we saw in §6.

As indicated in §1, forecasting call center arrivals is an essential first step towards the better

management of call centers. There remains to study the more complicated problem of developing

efficient algorithms for scheduling agents, and updating the resulting schedules, based on distribu-

tional forecasts of future call volumes. Distributional forecasts consist of densities, in addition to

point forecasts and prediction intervals. They are particularly important because the variability of

the arrival process greatly impacts the performance measures in the system; e.g., see Steckley et al.

(2005). In this paper, we used a square-root transformation of the data (§3.3) and exploited the

resulting normality of the transformed counts. However, there remains to characterize the marginal

and joint densities of the untransformed arrival counts, as in Avramidis et al. (2004).

Simulation-based methods may be used in complicated systems where there are multiple cus-

tomer classes and multiple service pools with some form of skill-based routing. Distributional

forecasts of future arrivals could potentially be implemented in those simulation models to produce

approximate solutions to the agent scheduling problem, see Avramidis et al. (2010).
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