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Abstract We consider a class of Markov chain models that includes igklyhreliable
Markovian systems (HRMS) often used to represent the @volaf multicomponent sys-
tems in reliability settings. We are interested in the desifefficient importance sampling
(IS) schemes to estimate the reliability of such systemsitoylation. For these models,
there is in fact a zero-variance IS scheme that can be writtawtly in terms of a value
function that gives the expected cost-to-go (the exactléify, in our case) from any state
of the chain. This IS scheme is impractical to implement gygdout it can be approximated
by approximating this value function. We examine how this ba effectively used to es-
timate the reliability of a highly-reliable multicomportesystem with Markovian behavior.
In our implementation, we start with a simple crude appration of the value function, we
use itin afirst-order IS scheme to obtain a better approximait a few selected states, then
we interpolate in between and use this interpolation in mal fisecond-order) IS scheme.
In numerical illustrations, our approach outperforms tlsuar IS heuristics previously
proposed for this class of problems. We also perform an agytio@nalysis in which the
HRMS model is parameterized in a standaml by a rarity parametes, so that the relative
error (or relative variance) of the crude Monte Carlo eston& unbounded whea — 0.
We show that with our approximation, the IS estimator hasided relative error (BRE) un-
der very mild conditions, and vanishing relative error (JREhich means that the relative
error converges to 0 when— 0, under slightly stronger conditions.

Keywords Monte Carlo- rare eventsimportance sampling
1 Introduction

Estimating dependability measures for a highly-reliabldtrmvomponent system is an im-
portant problem in many areas of applications such as teleumications, computer sys-
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tems, aircraft design, air traffic control, power utilijesd many others. Dependability mea-
sures of interest include (among others) thean time to failurdMTTF), defined as the
expected time until the first failure of the system given #@latts components are initially
operational, thenean time between failurédsTBF), defined as the inverse of the average
number of system failures per unit of time in the long run (oc&e infinite horizon), and
the systenavailability, defined as the fraction of the time when the system is ojerali

in the long run [8,23]. Dependability is typically improvéy introducing redundancy in
the components. To estimate these measures, the systetarisyaddeled as a continuous-
time Markov chain (CTMC), by assuming that component lifegs and repair times are
exponentially distributed.

However, with the exception of very simple situations, tketes space of the CTMC
is usually so large that analytic and numerical methodsrapgactical, and one must rely
on simulation to estimate the dependability measures efést. Moreover, standard (crude)
Monte Carlo method is much too inefficient, because systdordéa occur too rarely to pro-
vide a meaningful estimator within a reasonable amounté tin this context, importance
sampling (IS) is the standard way of making the importarg exents (the system failures, in
this case) occur more frequently, in order to recover anasdual estimator with smaller vari-
ance [10,14,22,26]. The main difficulty is to find a good, rethand easily implementable
IS strategy. Popular IS heuristics previously proposedttics class of problems include
simple failure biasing (SFB), balanced failure biasing BBRhe general biasing scheme
(GBS), failure-distance biasing (FDB), and the balanceliliiood ratio (BLR) method [2,
6,7,12,13,23,26,27,29]. Here, we study a different apgraa which we approximate the
zero-variance change of measure via a simple approximafitme value function (in this
case, the conditional probability that the rare event ag@s a function of the current state).

In agreement with previous literature, we adopt a CTMC maed# finite state space,
whose jumps (transitions) correspond to component failarel repairs. This model is re-
generative, and we can define the regeneration times aswihasthe chain returns to the
initial state, in which all the components are operatiofile transitions that correspond
to component failures have very small rates, but not thosedbrrespond to repairs. As a
result, the system tends to return to its initial state vdtgroand rarely reaches the failed
state.

In this setting, the MTTF can be written as a ratio of two exagons, where the numer-
ator is the expected time until the system reaches eithefatleel state or the initial state,
and the denominator is the probabilfiy that the system reaches the failed state before re-
turning to its initial state, both under the assumption thatsystem starts from its initial
state [10,23,25]. The numerator is easy to estimate by atdridonte Carlo, but not the
denominator, because it is the probability of a rare evehé MTBF and the availability
can also be written as ratios of expectations where one dinbexpectations in the ratio
involves the same rare event aslig 1S schemes that work well fqrg typically work fine
also for these expectations [10,12]. In this paper, we farutow-variance estimation of
Ho.

Since the occurrence of the rare event of interest here dutedepend on the sojourn
times in the states visited by the CTMC, it suffices to sineithe embedded discrete-time
Markov chain (DTMC), and this is what we will do.

Theremaindelis organized as follows. In Section 2, we specify the HRMS ehadn-
sidered in this papeaind we briefly summarizthe IS heuristicproposed earlier for this
model. In Section 3, we defireezero-variance IS sampling scheme to estimgteand we
propose practical heuristics to approximate this schenpgdntice. Zero-variancestima-
torsfor general Markov chains have been studied earlier, in43.3, 20], for example. In



asymptotic analysis of IS for highly-dependable systehms failure probabilities are often
parameterized by some parameteso that these probabilities converge to 0 wigen 0
while the repair probabilities remain bounded, and oneistuthe asymptotic behavior of
the estimator (e.g., its relative error) when- 0. In Section 4, we recall the basic definitions
for this type of analysis, and prove some asymptotic prégedf the IS estimators proposed
in Section 3. We show thatur IS estimators haviie BRE property under mild conditions,
and the VRE property under slightly stronger conditidnsiumerical experiments reported
in Section 5the new IS methodsutperformthe IS heuristics previously proposed for this
class of problems. A conclusion follows in Section 6. A sulmsehis paper (mostly parts
of Sections 3 and 5) was presented at the 2007 European Sionulonference [19].

2 Markovian Model of a Highly Reliable System

We consider a model of highly reliable Markovian system (HRMs in [6,25-27], among
others. The system hastypes of components, withy identical components of typie for
i=1,...,c. We assume that each component is either in a failed statear operational
state, and that the system evolves as a CTMC wistesieis a vectory = (YY), ..., y(9),
wherey() represents the number fafiled components of type This implies in particular
that the failure and repair rates depend onlypbut they may depend on the entire state
This CTMC has a finite state spagéof cardinality(ny+1)--- (nc+1). LetA(y,y) denote
its jump rate from statg to statey’. A jump correspondsither to the (simultaneous) failure
of one or more components, or to the repair of one or moredaitenponents. This model
covers the notion of failure propagation, where the failoff@ component may trigger the
(almost) simultaneous failure of other components. It ascers deferred and group repairs
[12], where repairs can occur only when there are enougbd@bdmponents. For example,
for a certain type of component, all components of that tyjightrbe repaired as a group
(simultaneously) at a given rate when at least three of thernfedled, and the repair rate for
these components is zero otherwisk®wever, our results in this paper are obtained under
additional assumptions that preclude these deferred anggepairs.

One could of course define more general CTMC models wheréialli information
must be incorporated in the state. This happens, for exarflee failed components are
repaired according to some priority rules that take intaaat their failure time (then the
state space remains finite but the state must contain thearglerdering information), or if
some of the lifetime or repair distributions are no longepanential (then the state space
is infinite, with continuous coordinates). Our proposedimdblogy could be extended in
principle to these more general models, but it may becoméhrmare complicated to im-
plement. The IS methodology studied here is only for thenestion of Lip in the CTMC
model.

We suppose tha? is partitioned in two subset® and.Z, where% is a decreasing
set (i.e., ify e Z andy >y € %, theny € %) that contains the initial sta@= (0,...,0)
in which all the components are operational. When we retarthis state where all the
components are operational, we must recognize that we dri rtbe same situation as
initially, because we now know that we have returne@ tmefore reaching the failed state.
In this second case, we will call the stéfeto make the distinctiorin other words, we split
the stated in two states: From now o) will refer only to the initial state at the beginning
of the simulation, an@ will refer to the state where all the components are oparatiat
any other stage of the simulation. Formally, this incredsescardinality of the state space
by 1. We also denotép = % \ {0'}.



Let{Yj, j > 0} be the DTMC embedded in the CTMC. That is, the CTMC startsdtest
Yo and enters statg at its jth jump, forj = 1,2,3,.... The transition probabilities for this
DTMC are
A(yY)

Zy”ew A (y7y, )

forally,y € 2. We assume that sta®ecan be reached (directly or indirectly) from any state
Y€ %.Lettz =inf{j>0:Yje F}, 1y =inf{j >0:Y; =0}, andt = min(T#, Ty). Our
assumption tha’ can be reached from arnyye % implies thatE[1] < . For ally € %,
define

p(yv}/ - [ y|YJ 1= ]

uly) =Ptz <1y | Yo=Y

Note thatu(y) = 1 wheny € %, u(0') =0, andu(0) = o is the probability we want to
estimate. To avoid trivialities, we suppose that @ < 1.

The standard (crude) Monte Carlo method [3] estimatgsy simulatingn independent
copies of the DTMC under its original probability law, andeeages then copies of the
random variableX = I[1s < Ty], wherel is the indicator functionThe variance o is
Lo(1— Lp). A confidence interval ompp can be computed by assuming that this average is
approximately normally distributed (relying on the cehtiait theorem) and estimating its
variance by the sample variance of theopies ofX, divided byn. In our rare-event setting,
however, only rare realizations of are nonzero. The crude Monte Carlo estimator has a
relative error (the standard deviation divided by the medny Lio(1— o) /n/ o, which is
approximately(npio) ~*/2 whenpy is small and becomes very large whep is very small.

IS consists in replacing the transition probabilitigy,y’) by new probabilitiesy(y,y)
that satisfyq(y,y’) > 0 whenevemp(y,y)u(y') > 0. We useE;s and Vars to denote the ex-
pectation and variance operators under these new prdiEbillhe estimatoX is replaced
by

YJ 1vYJ

=X I_llq (Yi-1.Yj)’

where the last product is thi&elihood ratioassociated with the sample path. This estimator
is unbiased [9]:
Eis[Xis [ Yo=Y = E[X | Yo =y] = pu(y).

IS schemes such as SFB, BFB, RBS, FDB, and BLR, mentionei¢egmovide specific
ways of selecting the probabilitiegy,y’).
BFB [26] defines

H if y € F(y) andpr(y) = 0;

_ p if y’ € F(y) andpr(y) > 0;
W= 0T ity e ry)
0 otherwise,

whereF (y) is the set of stateg directly reachable frong (in a single transition) by a failure
event,R(y) is the set of states directly reachable frgr(in a single transition) by a repair
event,pr(y) =P[Y; € R(y) | Yj—1 =], andp € (0,1) is a constant, usually taken as 0.5.
This p represents the fraction of probability devoted to failuemsitions at each step. This
probability is divided equally between all failure tramsits having nonzero probability.

SFB [27] is similar, except that/1F (y)| is replaced byp(y,Y')/ Y yer(y) P(Y,Y) in the
above equation, i.e., the failure probability is allocatedhe transitions |n proportion to
their original probabilities.



GBS and other refinements were developed in [12,13] for tiitus where there are
high-probability cycles. The main idea is to make sure thattrobabilities are not reduced
too much along these high-probability cycles, becauseethgsles would otherwise con-
tribute huge values (with low probabilities) to the likedibd ratio, thus increasing the vari-
ance. High-probability cycles are common in models witredefd or group repairs, for ex-
ample.ln our asymptotic analysis in Section 4, Assumption 1 wiladiow high-probability
cycles.

Other schemes have been proposed, trying to take advantasgene knowledge or
learning of the model structure. For instance, we may decsmphe set of component
types in those have already experienced a failure and thbsehave not, and give fixed
probabilities to each of those transitions (to favor thds seem to drivels closer to a
failed state). In each case, we can balance the probadiliti@ach subset or take them
proportional to the original ones in the spirit of SFB and BJeR In particular, FDB [7]
changes the probabilities by taking into account the mihimaenber of transitions to failure
from each statg’ to which we can jump.

In BLR [2], the probabilities are changed in a way that ovey eycle, the cumulated
likelihood ratio remains bounded when the failure prolbied converge to zero. Variants
are also defined that use structural information by ideimigfyevents on shortest paths to
failure, and pushing more toward those events.

3 Approximate Zero-Variance Sampling

Here we propose and study an alternative heuristic baseleoapproximation of théol-
lowing zero-variance IS sampling scheme. Suppose we apply IS D BMC with

ay) = () © { BEYMOIHD) D SR <2 o)

Note thaty <5 q(y,y') = 1 for eachy.

Proposition 1 With the probabilities (1), we havears[Xis] = 0 and Eis[1] < o for any
initial state Yy =y € %.

Proof Under these probabilitie®[X = 0] = 0, becauseg* (y,0') = u(0') = 0fory € %, so
X = 1 with probability 1. IfX = 1, thenu(Y;) = 1, and therefore

p(Yi-1,Yi) 5 K1) p(Y)
alYi-nY) o mtY) o u(Yr)

= Ho,

a constant, so its variance is zero.

For the second property, observe that a syage0’ with p(y) = 0 cannot be reached
under the new probabilities. Then, one can see that theredastan®d > 0 such that from
any visited statg # 0/, there is a path of probability at leasileading to.%. The result then
follows from astandardyeometridrials argument. O

This zero-variance scheme cannot be implemented exaeitguse the functiop is
unknown, but it can be replaced by an approximatidhat is easy to compute during the
simulation.That is, for each simulation run, we take an approximatiaf the functionu



and plug itin (1) in place ofi to define the change of probabilities for the IS estimatois Th
gives
_ [P y)VY)fily) 0 <¥(y) <1,
alv.y) = { p(y,Y) otherwise, 2)

whereVly) = Sy ca P(Y,Y)V(Y). We will assume henceforth thatmatchesu at0’ and in
Z, where its value is known/(0') = 0 andv(y) = 1 fory € .%.

Several types oadaptive ISmethods that learn a good functigriteratively have been
proposed and studied in the literature; see [1,4,14,13£08], for example. The general
idea of these adaptive methods is to use the realizatiomegfrevious sample paths, where
each sample path provides one realizatiorXpfto construct an approximation Under
some conditions, this approximation can sometimes be showonverge tqu asn — o,
wheren is the number of realizations &. There are even situations where one can prove
that the variance converges to zero exponentially [y, 15].

In some of these methods, eitheor the IS probabilities) are restricted to be in a
preselected parametric class of functions parameterigednbultivariate parameted, and
the current value o used for each sample path is selected based of what has laeeade
from the previous sample paths. Some methods directly peteaine the IS probabilities
with 6 and then learn adaptively tigethat minimizes the variance. Anothgass of methods
definesv as a linear combination of a fixed set of basis functions, atidnates the best
coefficients in the linear combination (the parameters)agt squares, using data frone
previous sample patt{§4]. The main difficulty with these methods is the choice asis
functions,and they often require a significant amount of work and s®tagipdates.

In this paper, we shall consider simpler, more direct, agipnations that can be com-
puted at little cost and require practically no storage.

As a rough-cut approximation of the functignin our model, we start with the follow-
ing. For any statyg € %0, let 1 (y) be the set of all pathe= (y=yo — y1 — - -- — Yk) going
from statey to the set#, wherey; € % for j =0,...,k—1, p(yj—1,y;) >0forj=1,... K,
andyy € .#. Each patht € 1(y) has original probability

k
p(m) = [ P(yj-1,Yj)
J|:|1111

and we have that(y) = ¥ () P(77). However, the latter sum is normally too complicated
to compute in practice, because it involves too many palies€tis often an infinite number
of paths, because the paths may contain an unlimited nunflogcles within%/).

A very crude estimate is to replace the sum by the maximum;approximateu(y) by
its lower bound

mw—g%mm

Computing this/(y) amounts to computing the shortest path frpto .%, where the length
of the directed link fromy to y” is —logp(y,y”) for any pair of statesy’,y”), or equiva-
lently the longest path where the length of a path is its pgoditya(the product of probabili-
ties of its one-step transitions$i general, the worst-case time complexity for computirg th
shortest path i®©(|% |log|% |), which is certainly better than th@(|% |®) work required
to solve the linear system that would provide all the prolitéds i (y) for y € %, but still
expensive for large systems. Moreover, the shortest pathdime needed from each state
y visited during the simulation. Of course, one could savekwmyr storing in a hash table
any shortest path computed so far, including the shortélssfiiaom other stateg computed
simultaneously while computing the shortest path from amgyistatey. Whenever we would



needvy(y) for some statg, we would first check the hash table to see if it has already bee
computed. Fortunately, all this overhead can often be sgzhby exploiting the model's
structure, sometimes even for large and complicated sgstasmwe shall illustrate in our
examples. In many cases, the shortest path can be compmotestat no cost from any:.

This vo would do well in the cases where a single path dominates tire But this
lower bound oru(y) could still underestimate the true value by a significantdfa@dn easy
improvement is to take the sum over a small set of disjoirhpédnly a few of them) in-
stead of just considering the single most dominant one.d Heminant paths can often be
selected by exploiting our knowledge of the structure ofdgstem. For example, in some
cases, it makes sense to compute the probability of a patthetids to.# from failures of
a single type of component, do this for each component type aald these probabilities.
This computation can be done very quickly. We will use it im aumerical illustrations,
for systems that fail whenever fewer than a given number ofgaments of any given type
are operational. Whe# has a different type of structure, other inexpensive apprax
tions can often be used instead. For example, if the systdsnwiaen thetotal number of
failed components (regardless of their type) exceeds aghreshold, we can approximate
u(y) by approximating the probability of reaching the failedsteby a sequence of failure
transitions only (no repair). We will give an illustratiofithis in Section 5.

Our general definition ofy for the rest of the paper is then as follows: Select a small set
of disjoint pathso(y) C 1(y) and define

wy)= Y p(m.

nieo(y)

In [18], we had good luck with the following simple type of atilohal correction (this
was used there in a splitting algorithm): estimat®) in preliminary runs with some initial
IS strategy, and compute the exponensuch that(vp(0))? equals this estimate. Then,
replace the estimatg(y) by

vi(y) = (Vo(y))“

for all y € . This functionv; matchesu for y € .# and matches its estimate yt= 0.
In between, it uses an exponential interpolation, motivdige the crude idea that if there
is a single component typg,denotes the number of failed components, and if we assume
that the probability that the next event is a failure doesdegend ory, then the model
turns essentially into a gambler’s ruin problem an@) decreases (approximately) as an
exponential function of-y [20].

This idea can be refined. One possibility is to repladey a state-dependent correction
exponent (y). Here we shall consider the following form far(y):

logvo(y)
logvo(0)’

a(y) =1+[a(0) - 1]

wherea (0) is the value ofa as in the previous paragraph. The rationale for this form is
that the correction exponent is needed usually becay(s¢ accounts for only a few paths
and disregards many other ways of reachifigirom y. Since the set of paths leading to
7 is generally richer when we are farther frof, it appears sensible to have a correction
exponent that changes progressively from 1 when we are Vesg ¢0.7, to a(0) when

we are in stat®, and reflects the “distance” t& for the states in between. We denote the
resulting approximation by

va(y) = (vo(y))*¥.



Among other possibilities, instead of estimatipgy) only aty = 0, we can estimate
it directly, via IS, over a finite subset of statésC %, in preliminary runs. For example,
in an HRMS model# could be the set of states where no more than one component is
failed, or the set of states where no more than two comporeetfiled (depending on the
structure and size of the model). For each syates, we definevs(y) as the direct estimate
of u(y) and we compute (y) such that(vo(y))?Y) = va(y). For each statg € % \ &, we
may interpolate exponentially as follows: We can selecagest € & such that’ <y, and
definevs(y) = (vo(y))?") (the selection is arbitrary and could be problem-dependént
we may selecall statesy’ € & such thaty £y <y, and defineu(y) as the average of the
corresponding values ¢fo(y))?"). Yet another possibility is to estimatesigleexponent
a for all statesy, based on all available information, e.g., by least-sqaiaggression. As
an extreme case, taking = % means that we have a direct estimateu¢§) for all states
y € % , and no interpolation is needed. Then, we are back to an @&stiraimilar to that of
[1], depending on how the estimation is done (these autlnasge the measure dynamically
at each step, at the same time as they update their estinfiatég Our proposal is a matter
of compromise between this extreme case and just takiifdne other extreme).

All these possibilities would deserve further analysis antgpirical comparison in real-
istic examples. In the Section 5, we compare some of thenthgtbest known IS heuristics,
on a few examples.

4 Asymptotic analysis

Asymptotic analysis of IS estimators in the context of HRMStems, to characterize their
behavior when the failure rates converge to zero in certaiyswvhile the rest remains fixed,
is usually done by parameterizing the transition rates®ffiMC in a polynomial form as
follows [14,21,26]:

AY) =AY, €) =aly,y)e)

for some state-dependent constaatgy’) > 0 andb(y,y’) > 0 (that do not depend og).
We usually havéa(y,y’) > 0 for failure transitions an(y,y') = 0 for repair transitions. We
then look at what happens when— 0. Thus, the failure rates become smaller and smaller
whene — 0, but the repair rates remain @(1), and o = (&) > 0 converges to 0. This
parameterization is transmitted to the transition prolit&s p(y,y) of the DTMC. The
rationale is that studying the asymptotic properties ia thpe of setting should give a good
idea of what happens for a given model, provided that we useight constantb(y,y’) to
somehow mimic the relationships between the differentifaitates.

Suppose we have an estimaoe= X(¢) taking its value in0, o), such thatf[X(€)] =
Ho(€) and VafX(g)] = o (¢) for eache > 0.

Definition 1 (a) The estimatoK (&) hasbounded relative erro(BRE) [11,26], or equiva-
lently bounded relative variancef

. 0o(€)
limsu
£-0 puo(s)

< 0. 3

(b) It hasvanishing relative erro(VRE) [16] if

IimsupOO(E) =0, (4)

£—0 IJO(e)




or equivalently if

lim supM =1 (5)

e—0 Ho (8)

BRE essentially means that for a given number of simulatims rthe relative width of a
confidence interval based on the central-limit theorem mesfaounded whee — 0. Under
the assumption that the DTMC has no high-probability cyBIEB provides an IS estimator
with BRE, whereas SFB does not [21]. On the other hand, BRE dotenecessarily mean
that the estimator is practically efficient, because therdd:be a large hidden constant. It
has been recognized that BFB can waste computing time byggaertain low-probability
paths more weight than necessary, and this can degrademarfoe especially when the
system has a high level of redundancy [2,23].

VRE is obviously much stronger than BRE and it is related toz@riance simulation
in the sense that VRE implies théte) is generated from a probability law that converges
in the Lo, norm to the zero-variance IS scheme [16]. In our setting, théans that VRE
implies that

lim e layy) —a‘(v,y)| =

VRE means that the estimaﬂon becomamerwhens — 0, which is the opposite of what
normally happens with crude Monte Carlo.

In what follows, we provide sufficient conditions for VRE,dthen for BRE, for IS
sampling based on zero-variance approximation with sometifionv, applied to the HRMS
model of Section 2. The key ingredient is the quality of thpragimation ofu by v.

But first, we start by giving a simple example showing thatzée-variance IS scheme
is not (asymptotically) balanced in general, in the senaeftom a given state, the optimal
transition probabilities for different failure transitis can be of different orders (different
powers ofe). When this happens, BFB is likely to perform poorly compbweth a better
(unbalanced) heuristic, even if the asymptotic BRE prgpleoids. Again, this poor perfor-
mance of BFB (and of balanced schemes in general) in sonsgisits has been observed
earlier, for example in [23].

Example 1Suppose that = 2, n; = n, = 2, and that the system is operational when at
least two components (of any kind) are operational. Let thesitions probabilities of the
corresponding DTMC be those given in Figure 1, where theestat.# are shaded, and
statey = (y,y@) means (as usual) thg!) components of type 1 and® components of
type 2 are down.

For this small example, we can easily computg) for all statesy by solving the fol-
lowing system of linear equations (the balance equatiotiseoDTMC):

p(L1) = 262+ (1-2¢%)p(0,1)/2+ (1—2¢2) pu(1,0)/2
u,2) = €+(1 €)u(0,1)

p(2,0) = ( €)u(1,0)

p(0.1) = (0 2) +ep(L1)

H(1,00 = £u(2,0)+ep(1,1)

p(0,0) = (0 1)/2+u(1,0)/2

This gives
H(1,1) =262+ (1-6) T2, = 0(e?)

1-et+e3+ed

(2,0) = u(0,2) =&+ (1— &) 224 — O(e)

1-et+e3+ed

H(0,1) = u(1,0) = p(0,0) = L 24 — O(&?).

1-et+e3+ed
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Fig. 1 Transition probabilities in Exemple 1

Now, if we look for instance at the two failure transitionsin state (0,1), under the zero-
variance IS, we have
£2u(0,2)

u(0,1)

eu(L1)

a(0.2),(1.2) = {5y = O,
which means that the change of measure is unbalanced betiwesertwo failure transitions.
The explanation is that all the paths from (0,0).40that include the transitio0,1) —
(0,2) have much smaller probability than those that include thasition(0,1) — (1,1)
(O(*) compared with@(?)), so we should waste much less time simulating the former
than the latter; i.e., an optimal IS scheme must tak®, 1), (0,2)) significantly smaller
thanq((0,1),(1,1)). On the other hand, taking((0,1), (0,2)) too small can be as bad (or
worse) than taking it too large. If it is too small, the likadiod ratio will become very large
when this transition occurs, and this would increase thiamee significantly. O

q((0,1),(0,2)) = =0(e),

whereas

The next theorem gives a sufficient condition for VRE. It usesfollowing definition.
For ally € %, there is a set of path3y(y) C IM1(y) such that

p(m) = p(m.£) = a(me™) +o(e")

for all T e y(y), for some constants(r) > 0 andb(y) > 0 that do not depend og, and
p(1t,€) = o(e”V)) for all 7T ¢ My(y). The paths in this sefly(y) are called thedominant
paths from y to#. They account asymptotically for all the probability of ceang.#, in the
sense that
lim —— p(rre) =1 (6)
€0 Ho(y) g (y) ( )
Fory= 0, they are just called the dominant paths. For our next resuét make the following
assumption.
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Assumption 1 All cycles that belong to some pathe I1(y) have probability Qe?), for
some constand > 0.

This assumption implies th&ly cannot contain paths having a cycle, and thereféye
must be finite. It also rules out several models with defearegroup repairs, for which the
Markov chain has high-probability cycles, as mentionedierar

Theorem 1 Under Assumption 1, iim._.ov(y)/u(y) = 1for ally € ¢, then we have VRE.
This happens, in particular, if(y) is defined as the sum of probabilities of all dominant paths
fromyto.#

Proof Because? is finite andv(y) = u(y)(1+ (o(1)) for all y, there are positive constants
d1 andr, independent of andy, such that

V(y)/u(y) =1 < &e'

for € sufficiently small. Therefore, there exidt> 0, independent of andy, such that

W) o Py MY s o
W2 W S 2Py () = gy (1)

for € sufficiently small. Thus, the IS estimator satisfies

X.s<|_|1

Eis[X2] < ugEis[(1+ 5¢")%]. @)

Definem(y) as the maximal length (in number of transitions) of a path My(y). For
y € #, we havan(y) = 0. Let m= max.4, m(y), the maximal length taken over the whole
set of states. Note that this is finite thanks to our assumption that no dominant path can
have a cycle. Similarly, definpc(y) as the probabilityunder 1S,0f using a dominant path
fromy to . given that we are in statgc %, and letpg = minyc4, pc(y). Also for all
integers > 0, under IS,

Ho(1+ d¢€")T,

giving

P[T > mi] < (1— po)',

because this probability does not exceed the probabilibobfeachingZ in i independent
trials, starting fromy. Consequently, the random variaki¢m is stochastically bounded
by a geometric random variab¥ewith parameteipy, whose generating functioBy (s) =
E[s"] = pos/[1— (1— po)g] is finite for (1— po)|s| < 1. Therefore,

po(1+ 8e")2m
(1—po)(1+ d¢")2m

Eis[X3] < KSE[((1+8€")>™)/™ < g 1= ®)
provided thai(1 — po)(1+ 6€")?™ < 1, where the last inequality bounds the moment gener-
ating function ofr /m by that of the geometric random variable.

It remains to show thaty — 1 whene — 0, and then by plugging this in (8), we would
obtain thafEis[X2] — ug ase — 0, leading to VRE and completing the proof.

Under the assumptions of the theorem, the transition pititbedunder IS satisfy

POYVY)  _  POY)IHY)+0(1)  _ POLY)H(Y)
Szew PDV(D)  Tzew PY:DH(2) +0(1) H(y)

ay.y) = +0o(1).
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So under IS, foy € %, any pathr= (y=yp — Y1 — -+ — Yk) € [1(y) has probability

) — [ PYI-LYDR0) _ pm
p.s(n)—ﬂ HY) +°(l)*u(y)+°(l)'

Thus, the dominant paths have probabi@yl) and the non-dominant paths have probabil-
ity o(1). This implies thatp:(y) — 1, and then thapy — 1, whene — 0. O

We now give an example showing that VRE is sometimes satigfied when the condi-
tions of Theorem 1 are not satisfied. The example satisfies¢la&er condition that(y) is
the probability of one dominant path, which has the sameraflmagnitude as the sum of
probabilities over all dominant paths. One might conjezfuom this example that estimat-
ing u(y) by av(y) having the right order of magnitude in termsafvould be enough for
VRE. We give another example showing that this is not truat ) it shows that VRE may
not hold if we do not split the probability correctly, at eastiep, amongll the transitions
that belong to a dominant path.

Example 2In the example of Figure 1, suppose we takg) = vo(y), defined as the prob-
ability of the (single) most probable path frono .%. This givesv(0,0) = £3/2,v(0,1) =
v(1,0) = €3, v(2,0) = v(0,2) = €, andv(1,1) = €. Using thisvin (2) leads to the transition
probabilitiesq(y,y') given in Table 1.

Table 1 Transition probabilities)(y,y’) for Example 2.

Origin state | Destination state| Probability
(0,0) (0,1) 172
(0,0) (1,0) 1/2
(0,2) (0,2) g/(1+e)
(0,1) (1,1) 1/(1+¢)
(1,0) (2,0) e/(1+¢€)
(1,0) (1,2) 1/(1+¢)
1) (0,1), (1,0 (1/2—€%)e/(2+ (1—2£2)¢)
1,2 (1,2), (2,1) 1/(24 (1—2£%)¢)
0,2) (0,1) (1-¢)/(1+€%(1-¢))
(0,2) 1,2) 1/(1+€%(1—¢))
(2,0) (1,0) 2(1-¢g)/(1+&(1—-¢)
(2,0) (2,1) 1/(1+€%(1—¢))

Let B(y) = Varis[Xis] whenYy =y, under these probabilities. By conditioning on the first
transition, we find that these variances satisfy the sysferquations

B pY.Y) 2 PYY)
B(y)—y;qu#)(q(yvy,)uo/)> (u(y) +yqu<y7y><q(y’y)) BY)

for ally € /. Solving this system gives, in particular,

341264 12e? +0(£?) 5

B(0,0) = 1 4c 1262007 © =0(").

Hence,B3(0,0)/u?(0,0) = O(¢), meaning that we have VRE. On the other hand, the con-
ditions of Theorem 1 are not satisfied in this case, beca(isé¢) = £2 whereasu(1,1) =
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2¢2 4 0(£2). In fact we somehow got lucky to get VRE. For instane, 1) wrongly es-
timatesu(1,1) by a multiplicative constant, but the corresponding trémisifailure proba-
bilities nevertheless have the good first order approxmnatbecause an error by the same
multiplicative constant appears in both the numerator Aaeddenominator of the most im-
portant transition probabilities, so these errors cancel ©his error cancellation occurs
at all nodes in this particular example! However, this doesatcur in general, for other
examples. O

Suppose that for a given initial statethere are different dominant paths, using different
initial transitions, say(y,y1) and (y,y2), for which v(y1) = t(y1)(c1 +0(1)) andv(yz) =
H(y2)(c2+0(1)), but with different multiplicative constantg andc,. Using thisv, the new
probability

P(Y:y1)V(y1)
o(1
PV + Py v O

does not correspond asymptotically to the zero-varianckalility

ay,y1) =

P(Y,y1)H(y1)

0y (1+0(1)).

The next example illustrates this.

Example 3Consider again a system with= 2 andn; = n, = 2, and where failure occurs
whenever any two components are failed. The transitiongisitiies are depicted Figure 2.
For each statg, definev(y) as the probability of the most probable path frgio .%. This

Fig. 2 Transition probabilities for Example 3.

givesv(0,0) =€/2,v(0,1) = €, andv(1,0) = &, whereas the exact values @r, 0) = (3 +
€2)/2,v(0,1) = 2¢, andv(1,0) = & + €2. Using this functiorv in (2) gives the transition
probabilitiesq(y,y’) of Figure 3. It leads ta((0,0),(1,0)) = 1/2, whereas for the zero-
variance change of measure, we should have

(e+€2)/2 1
1,0)= ——— 2= =2,
This asymptotic difference prevents VRE to hold. On the otiand, it is not difficult to
verify that BRE holds: Just by enumerating all paths (theeer®t so many here), one can
check thau(0,0) = (3¢ +£2)/2 andB(0,0) = €2 /4 — €3/2 4% /4. O
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Fig. 3 Transitions probabilities based @rfior Example 3.

In general, we have the following sufficient condition for BRwhich is weaker than
the condition for VRE.

Theorem 2 If Assumption 1 holds andy) = ©(u(y)), then we have BRE. This condition
holds in particular if we take fy) as the sum of probabilities of any nonempty sulbgt)
of y(y) (it could be a single path, or more).

Proof For the first part, the proof mimics that of the previous tleeor There are positive
constant®;, & andr’ independent of andy, andcy independent of, such that

Cu(y) (1-81") < V(Y) < yu(y)(1+&¢")
for € sufficiently small. Therefore, there exisi§ 6" independent of andy such that

W) _ Syer PLY )R

W) S o) ToE)

forally,y, for € sufficiently small. Lety = max,cs ¢y andcy = minyey ¢y. Then

(y) s or'y CMH(Y)
oy S (140 )c:ju(w’

<3:(1+6sr)>21} :

For the rest of the proof, we use a similar argument as in Emedr. We have thaj(y,y) =
O(p(y,Y)u(y')/u(y)), and so any path € 1(y) has probabilitypis(r7) = ©(p(1)/1(y))
under IS. It follows that the dominant paths have probab#it1), the non-dominant paths
have probabilityo(1), and thatpp — 1 whene — 0. From this, by bounding again the
moment generating function af'm, we obtain thaEis[X2] /3 remains bounded whemn—

0.

and forYp =Y,

Eis[Xg] < UGE

For the second part, we havey) = 3 ey (y) P(7D). If V(y) = o(1(y)), then it means that
no dominant path is taken into account in the computatiorfyf which contradicts the fact
thatMo(y) contains at least one dominant path. O
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5 Numerical examples

Example 4We consider a system with= 3 component types, with; = n, = n3. Each
component has an exponentially distributed time to failuith rate A; for components of
typei, whereA; = €, A, = 1.5¢, andAz = 2¢2, for some parameter. Any failed component
has an exponentially distributed repair time with rate Inds to failure and repair times
are all independent. The system is down whenever fewer tharcdmponents ony one
type are operational. We want to estimatg as explained earlier. We will experiment with
different values ofy ande.

For this example, we defing(y) as follows. For each component typeve consider
the path that goes fromto . whose only transitions are failures of components of fype
There are three such paths for each syate?/, and their probabilitiep() are very easy
to compute. We simply define)(y) as the sum of their probabilitieBor example, for the
initial statey = 0 and component type 1, the sample pattorresponds ta; — 1 failures of
components of type 1 in succession, and its probability is

m_? (m— )M
() = ,EL (M= A1 +mAz+ngAs+j’

Again, this choice ofy is appropriate for the specific structure.8f considered here

The methods we try and compare are BFB, a version of BLR peipos [2] named
simple BLR (SBLR), and our proposed IS method based on zariawwce approximation,
using the functiony just described, and its modificatiomsandv, defined earlier. We will
denote these methods by Z¥W&), ZVA (v1), ZVA(v2), respectively. For each parameter set
that we have selected, Table 2 gives (in the third column)est estimate ofip, obtained
from a very large number of simulation runs with our ZVA stgies (these numbers are
accurate at least for the digits given in the table), the netigt approximatiorg(0) of L,
and the estimate obtained fram= 22° (approximately one million) independent simulation
runs, by each of the five methodssimulation run is defined as a sample path of the DTMC
starting in stat® and running until we reach the stopping timeHere it would be feasible
to computeup numerically by building and solving a large system of linequations giving
u(y) for all statesy, because the number of statesfipe= 12 is only 2198, but we did not
do it because it was much simpler (and accurate enough fqrurpose) to use simulation.
Table 3 shows the empirical variances computed from tmasms, for each method. One
can easily get an idea of the square relative error (thenegidivided by the square mean)
by dividing these values by3, also given in the table.

Table 2 Parameter sets and estimates(®) with each method, for Example 4.

n; £ Lo Vo(0) BFB SBLR ZVA(vo) ZVA(v1) ZVA(V2)
3 0001 26x10°% 13x10°°% | 27x10°° 26x10°3 26x10°% 26x10°% 26x10°°
6 001| 18x107 34x10% | 19x1077 (9.9x10%) 1.8x107 18x107 18x1077

6 0.001| 1.7x10 34x10% | 1.8x101 (1.8x10°%)  17x101t 17x101 17x101
12 01| 60x108 32x10° | 48x10°8 1.3x10°8 6.0x108 62x108% 67x10°8
12 0.001| 39x102® 35x102 | (1.8x10%0) (29x10%) 39x1028 39x1028 39x10%8
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Table 3 Empirical variances based on= 22° independent runs, for Example 4.

n; € a L2 BFB SBLR ZVA(Vo) ZVA(V1) ZVA(V2) RE()

3 0.001| 0.906| 6.8x10% | 6.2x10°° 8.0x 103 22x108% 66x10° 93x10° | 0.04

6 0.01| 0.903| 32x10"* | 63x10°1! (45x10°1%)  20x10* 12x10 77x10715 | 0.48

6 0.001| 0.939 | 3.0x102?? | 88x10°1° (20x10°%%) 12x10% 11x10% 76x102 | 0.16
12 0.1| 0.851| 36x10°15 | 81x10°10 17x10°10 16x1010 29x1010 15x101 | 645
12 0.001| 0.963 | 1.5x10°% | (32x107%) (35x10%) 14x10% 93x10% 94x10% | 0.78

In those tables, the entries in parentheses are empiriGaisrend variances that clearly
underestimate their exact counterparts by a large factortiie empirical means, those en-
tries are actually even lower (by a large factor) than theefdower boundsp(0). When we
have serious underestimation for the mean, then we have théovariance as well. The
usual explanation is that certain types of paths that havenportant relative contribution
to the mean are given a too small probability by the IS heariahd never occur in the sam-
ple, so their contribution is totally missed by the estimattis reduces both the empirical
mean and empirical variance (but not the true variancenéf af these paths would occur,
it would potentially have a huge contribution, due to a ldigelihood ratio. All these prob-
lematic entries are for the BFB and SBLR heuristics, andghigenerally worsen whem
gets smaller and; gets larger. These heuristics were designed to cope wiyhewerfailure
rates for the components (very smel] but are not doing very when the paths#have a
large number of transitions (i.e., whenis large, in our example).

With our proposed approach, using as an approximation already gives much better
results than BFB and SBLR, in the sense that we at least geigthteorder of magnitude
for all parameter values. The adjustmentdoes not provide much improvement owgr

in this example, whereas does provide a more significant improvement for many cases.

This seems to confirm the idea that the exponential correstimuld take into account the
distance to failure. This appears to be especially true wheés small, in which case we
need much less corrections for the states that are very tdosélure than for the initial
state (compare the resultswfwith the other ones whem = 3).

With any of the three variants(, v1, andvy), we are able to estimate very small proba-
bilities (smaller than 10°° in our example) quite accurately with a reasonably smalllpem
of simulation runs. For example, for = 12 ande = 0.001, if we take the average over
simulation runs withv,, the relative error i3/9.4 x 10-56/(3.9 x 10728,/n) ~ 0.786/./n,
so we only needh = (78.6/x)? to getx% relative error. For example,= 61 sufficesto ob-
tain 10% relative error. Far, = 12 ande = 0.1, on the other hand, the relative error with
isv/1.5x 10-11/(6.0x 108,/n) ~ 64.5/,/n, so we neea ~ (6450/x)? to getx% relative
error. The relative errors withp are given in the table, under RE). Note that withn; = 12,
the relative error with our heuristic is much smaller wath= 0.001 than withe = 0.1. This
is most likely due to the fact that our approximatiwhecomes too crude whernincreases.

Another observation is that (used forv;) increases, and apparently converges to 1,
whene — 0 for fixed n;, or whenn; increases while is fixed. The intuitive explanation is
that for this example, the dominant (most probable) pathdifey to.# are the direct ones,
that involve failures of components of only one type, and¢hgaths are all included in the
computation ofs;.

Of course, comparing only the variances and neglecting dhepating costs might be
unfair. A standard practice is to look at the work-normalizariance, which is the variance
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Table 4 Total computating times (in seconds) for= 22° runs, for Example 4.

n & | BFB SBLR ZVA(o) ZVA(Vi) ZVA(V2)
3 000122 28 3.6 6.7 6.7
6 001|174 12 37 54 54
6 0001|117 11 36 a7 a7
12 01|47 102 447 652 525
12 0001| 47 25 89 114 115

multiplied by the (expected) time required to compute thimegor. On the other hand,
the computing time often depends very much on the implentientdetails, the computer,
the programming language, and even the compiler. For tasore we report the comput-
ing times separately. Table 4 reports the CPU times needethken = 220 independent
simulation runs (this excludes the pilot runs made to egémaused inv; andvy). The
simulations were performed in Java using SSJ [17] on a coenpuith a 2.00 GHz Intel
Pentium processor. The CPU times are generally larger withhnew methods than with
BFB and SBLR, by a factor of about 3 or 4 in most cases and updatdalb in the worst
case (with ZVA{1) whenn; = 12 ande = 0.1). This higher cost is more than compensated
by the large gains in accuracy; in fact, BFB and SBLR only mevmisleading mean and
variance estimates in many cases. We note that the largeti@R for ZVA come not only
from the time required to compute the functiep) at each step, but also (sometimes more
importantly) from the fact that the sample paths are longeawerage, because they reach
Z more often. O

Example 5We now consider a simplified version of an example taken fr@8j, [to which
the BFB methodology is supposed to fit well. The system is a@ag of two sets of pro-
cessors with two processors per set, two sets of disk ctéersalith two controllers per
set, and six clusters of disks with four disks per clustele Tdilure rates for processors,
controllers, and disks are>5107°, 2x 107° and 2x 107°, respectively. The repair rate is
1 for each type of component. In each disk cluster, data icetpd, which means thae
failure of a single disk does not provoke system'’s faildree system is operational if all
data is accessible from both processor types, meaning theast one processor of each
type, one controller of each set, and three disks of eacteclase operational. This can be
modeled byc = 10 different types of components, to differentiate betwibendifferent sets
of the same kind of component, and eaxls 2 or 4. We use agairf2independent sample
paths for the estimations. Table 5 displays the empiricahwaeand the CPU times for the
220 runs for each method. The exact valuefis ~ 5.6 x 10~° and the exponent im is

o ~ 0.949. We see that the ZVA methods work very nicely for this epenas well, for all
three choices of. They outperform both BFB and SBLR. O

Table 5 Empirical variances and CPU times for Example 5.

Method BFB SBLR ZVA(Vo) ZVA(v1) ZVA(V2)

Variance | 58x 1078 | 1.3x10% | 23x1012 | 1.0x1012 | 1.2x 10712
CPU time 8.5 9.0 27 39 40
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In the next example, we replace the approximatiphy a different one, to illustrate the
idea that a good choice gfreally depends on the structure of the model.

Example 6 We consider a system that fails when the total number ofdaitenponents (re-
gardless of their type) reaches a given number (threshbfig.kind of system makes sense
if we classify the components in types according to thelufairate, and we need a minimal
total number. In this case, we can easily find a good apprdiomé#or the probability that
there is the required number of failures (in successiomneediny repair occurs, and use it
for v. A simple approximation is: the probability that the firstrisition is a failure (which
is 1), multiplied by the probability that the second traiasitis a failure given that the first
failed component is one with the largest failure rate, mpli#d by the probability that the
third transition is a failure given that the first two failedraponents have the largest failure
rates, and so on. We caf this approximation.

For a numerical illustration, we take a system comprised®fypes of components
numbered from 0 to 19, with 4 components of each type. Allirapdes are assumed to be
1, but component’s failure rates differ: typeomponents have failure ralde= (1+i/10)¢
for0<i<9andj = i52/10 for 10<i <19, wheree = 10-3. The system is failed whenever
a total of 7 components are failed. Table 6 compares thetse@sdtimates, variance, CPU
times, and average number of steps per run) for BFB, SBLRZ&Aqv3). Again, the results
obtained by ZVA are very accurate; the variance is reducétd iespect to BFB by a factor
6 x 1C°. The increase in CPU time is on the other hand very limitedinVestigate more
closely where this additional time comes from, the last bidable 6 reports the average
number of steps per run. It shows that SBLR has shorter patagerage, due to the fact that
small paths fron® to 0’ are more likely to happen. With ZVA§), no sample path finishes at
0, and the paths are longer on average for this reason, but¢heaise with respect to BFB
is very small. Thus, in this example, the larger CPU timesZidA come mostly from the
required time to compute the approximatian

Table 6 Empirical estimates variancesCPU timesand average stepsrpfariExample 6.

Method BFB SBLR ZVA(V3)

Estimate | 3.1x107% | (35x107%%) | 3.0x107%

Variance | 85x10718 | (51x10%%) | 1.3x10°%*

CPU time 11 19 97
Steps per run 7.0 4.7 7.2

6 Conclusion

Zero-variance simulation is an utopian ideal that can béaeld only in very simple situa-
tions where the quantities of interest can be computed lxaithout doing any simulation.
However, it can be approximated to a reasonable extent aralanteresting situations, and
can provide very large variance reduction factors in a prakivay. The method relies on a
reasonable approximation of the functiprand this would generally depend on the model.
We have shown in this paper how very simple approximatiorth@zero-variance change
of measure, in a reliability setting, can bring significamiprovements. In our numerical
examples, the proposed approach yields a low-varianaea&sti where all other previously
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proposed algorithmsniss the target-urther studies with larger and more complex systems
are needed to find the practical limits of the method. We goztte that difficulties may show
up for large and complicated systems for which there is alagmber of dominant paths
whose sum of probabilities is hard to approximate. Addgidmeuristics might be needed
for this type of situation.
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