
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

Computing the Two-Sided

Kolmogorov-Smirnov Distribution

Richard Simard
Université de Montréal

Pierre L’Ecuyer
Université de Montréal

Abstract

We propose an algorithm to compute the cumulative distribution function of the two-
sided Kolmogorov-Smirnov test statistic Dn and its complementary distribution in a fast
and reliable way. Different approximations are used in different regions of (n, x). Java
and C programs are available.

Keywords: KS test, Kolmogorov-Smirnov distribution, goodness-of-fit.

1. Introduction

The Kolmogorov-Smirnov (KS) two-sided test statistic Dn is widely used to measure the
goodness-of-fit between the empirical distribution of a set of n observations and a given
continuous probability distribution. It is defined by

Dn = sup
x

∣∣∣G(x)− Ĝn(x)
∣∣∣ ,

where n is the number of (independent) observations, Ĝn is their empirical cumulative dis-
tribution function (cdf), and G is a completely specified continuous theoretical cdf. Let Fn

denote the cdf of Dn under the null hypothesis H0 that the n observations are independent
and have cdf G, that is,

Fn(x) = P[Dn 6 x | H0] for x ∈ [0, 1].

This Fn is loosely called the KS distribution.

Computing Fn(x) in a fast and reliable way, for arbitrary values of n and x, is not easy.
With the help of a symbolic algebra package, Drew, Glen, and Leemis (2000) computed the
exact KS distribution for 1 6 n 6 30 as a set of piecewise polynomials of degree n resulting

http://www.jstatsoft.org/

2 Computing the Two-Sided Kolmogorov-Smirnov Distribution

from a large number of integrals. They also gave a short literature review. Brown and
Harvey (2008) consider seven different methods proposed in the past to compute the exact
KS distribution. They programmed these seven methods in Mathematica, using only rational
numbers to obtain exact results. Although their Mathematica programs are very useful for
verification purpose, the calculations are extremely slow for large n. For example, computing
Fn(x) for n = 10000 and x = 2/

√
n, using the Durbin (1968) recursion formula, takes three

hours on our (standard) desktop computer. The Durbin recursion formula gives the fastest
exact method among all those programmed by Brown and Harvey (2008). Unfortunately, it
contains expressions that suffer from subtractive cancellation between very large terms, and
is thus unsuitable for floating-point computations with limited precision. Among the formulæ
considered by Brown and Harvey (2008), only those of Noé, Pomeranz, and the Durbin matrix
formula are not subject to catastrophic cancellation because they contain only non-negative
terms.

The method of Pomeranz (1974) and the Durbin (1968) recursion method were programmed in
single precision Fortran 77 by Pomeranz (1974). The Durbin recursion method is numerically
unstable and gives sensible results only for very small n. The Pomeranz method makes use
of floors and ceilings which must be computed with great care; as an illustration, the KS
distribution computed by the program of Pomeranz (1974) sometimes gives a non-smooth
distribution with very large errors, as we will see in Section 2.2. Kallman (1977) programmed
a generalized version of Pomeranz method in Fortran 77; this program works well in single
precision for small n but starts to break down for moderate n and when Fn(x) is close to 1.
Miller (1999) programmed the complementary KS distribution F̄n(x) = 1− Fn(x) in Fortran
90, using different approximations; his program is very fast, but gives only 0 to 3 decimal digits
of precision for n > 120 and sometimes returns NaN (not a number), for example for n = 100
and x = 0.54, 0.66, 0.77, or negative values, for example for n = 50 and 0.35 < x < 0.50.

Recently, Marsaglia, Tsang, and Wang (2003) wrote a C procedure implementing the matrix
formula of Durbin (1973). Although it works very well for small n and gives 13 decimal digits
of precision according to the authors, it is very slow for large n and sometimes returns NaN
or infinite values; for example for n = 11000 and 0.000413 ≤ x ≤ 0.000414; for n = 21000
or 21001 and 0.000434 6 x 6 0.000526; for n = 42001 and 0.000206 ≤ x ≤ 0.000263; and
for n = 62000 and 0.001 6 x 6 0.007. Furthermore, computing a p-value as p = P[Dn >
x] = 1 − Fn(x) gives rise to loss of precision when Fn(x) is close to 1, due to subtractive
cancellation.

A close look at popular statistical software reveals that even some of the best products use
poor approximations for the KS distribution (or the complementary distribution) in some
regions (values of (n, x)). For example, in the popular statistical software environment R
(2009), the method of Marsaglia et al. (2003) was recently implemented to compute the p-value
p = 1−Fn(x) in KS tests (with the option“exact”). However, because this method is very slow
for large n, the default algorithm in R for n > 100 is an asymptotic approximation that gives
only 0 to 2 decimal digits of precision. For example, for n = 120 and x = 0.0874483967333,
R default method returns p = 0.3178 while the correct value is p = 0.30012. For n = 500 and
x = 0.037527424, R default method returns p = 0.482 while the correct value is p = 0.47067.
R “exact” (but slow) method gives the correct values in both cases. However for p-values
smaller than 10−15, neither method gives any correct decimal.

MATLAB (2009) uses different methods to approximate the KS distribution depending on n
and x. For example, for n = 20 and x = 0.8008915818, MATLAB returns p = 2.2544× 10−12

Journal of Statistical Software 3

while the correct value is p = 2.5754×10−14, and for n = 20 and x = 0.9004583223, it returns
p = 1.5763× 10−15 while the correct value is p = 1.8250× 10−20. These returned values have
zero decimal digits of precision in both cases.

Available programs for the KS distribution in standard programming languages such as C,
Fortran, and Java are either fast but unreliable, or precise but slow. Moreover, they either
compute only the KS distribution or only its complementary. So there is a need for a fast and
reliable program that computes both the KS distribution and its complementary distribution
for arbitrary n and x.

In this paper, we describe such an algorithm and its implementation for the KS distribution
with floating-point numbers of 53 bits of precision. In §2, we briefly describe the exact methods
that we use to compute the KS distribution. We implemented the Pomeranz recursion formula
and we compare its speed with the Durbin matrix formula. In §3, we introduce faster but
less precise approximations that we use for large n. In §4, we partition the space (n, x) in
different regions and we explain why each method is more appropriate in a given region to
compute the KS distribution. In §5, we do the same for the complementary KS distribution.
Finally, we measure the speed of our C program at several values of n and x.

2. Exact methods

2.1. Some values in the tails

There are a few special cases for which the exact KS distribution is known and has a very
simple form. In the tails (for x close to 0 or 1), the exact values for arbitrary n are (Ruben
and Gambino 1982):

Fn(x) =

0 for x 6 1

2n

n!
(
2x− 1

n

)n for 1
2n < x 6 1

n

1− 2(1− x)n for 1− 1
n 6 x < 1

1 for 1 6 x.

(1)

This also provides an exact formula for the complementary cdf F̄n(x) def= 1 − Fn(x) over the
same range of values of (n, x). We will use these simple formulas whenever they apply.

2.2. The Pomeranz recursion formula

The Pomeranz formula permits one to compute a (2n + 2)× (n + 1) matrix whose entries are
defined by a recurrence, and the last of those entries is Fn(x). The method is described in
Pomeranz (1974) and Brown and Harvey (2008), and explained below. It makes use of floors
and ceilings which must be computed with care, because it is very sensitive to numerical
imprecision, as we will see in a moment. Let t = nx and define the A1, . . . , A2n+2 (which

4 Computing the Two-Sided Kolmogorov-Smirnov Distribution

depend on t) as follows:

A1 = 0,

A2 = min{t− btc, dte − t},
A3 = 1−A2,

Ai = Ai−2 + 1, for i = 4, 5, . . . , 2n + 1, and
A2n+2 = n

We then define the entries Vi,j of a (2n + 2) × (n + 1) matrix V (which depend on t) by
V1,1 = 1, V1,j = 0 for j = 2, . . . , n + 1, and

Vi,j =
k2(i,j)∑

k=k1(i,j)

((Ai −Ai−1)/n)j−k

(j − k)!
Vi−1,k (2)

for i = 2, . . . , 2n + 2 and j = bAi − tc+ 2, . . . , dAi + te, where

k1(i, j) = max (1, bAi−1 − tc+ 2) and k2(i, j) = min (j, dAi−1 + te) . (3)

Then we have
Fn(x) = n!V2n+2,n+1. (4)

As observed by Pomeranz, the differences Ai−Ai−1 can take at most four different values. This
can be exploited by precomputing the factors ((Ai − Ai−1)/n)j/j! in (2), and this increases
the speed of computation significantly. It is also clear from (2) that we never need to store
more than two rows of matrix V at a time, since row i can be computed from row i− 1 only.

Pomeranz’s algorithm uses the floor and ceiling of Ai±t to define the lower and upper bounds
of summation in (2), which are defined in (3). For some values of t (and x), unavoidable round-
off errors in floating-point calculations will give the wrong value of k1(i, j) or k2(i, j), and this
may give rise to large errors in the cdf. As an illustration, Figure 1 shows (in blue) the KS
distribution Fn(x) as computed by the program 487.f of Pomeranz (1974) for n = 20 and
0.17 6 x 6 0.19, compared with the correct distribution (in red). The zigzags in the blue line
are due to floating-point errors in computing k1(i, j) and k2(i, j).

To avoid this type of problem, we precompute exactly all floors and ceilings of Ai ± t in (3)
for the given value of t = nx, although nx itself is not computed exactly due to floating-point
error in the multiplication. We decompose t = ` + f , where ` is an non-negative integer and
0 6 f < 1. There are three cases to consider depending on where the fractional part f lies.
We must make sure to identify correctly in which case we are, and use the corresponding
formulas for the precomputations.

Case (i): f = 0. In this case, we have

A2i = i− 1 A2i+1 = i, for i = 1, 2, . . .

bA2i − tc = i− 1− ` dA2i + te = i− 1 + `, for i = 1, 2, . . .

bA2i+1 − tc = i− ` dA2i+1 + te = i + `, for i = 0, 1, 2, . . .

Journal of Statistical Software 5

0.17 0.18 0.19

0.45

0.5

0.55

0.6

x

F
n
(x

)

487.f
exact

Figure 1: The KS distribution for n = 20 returned by the program 487.f (in blue) compared
with the correct cdf (in red)

Case (ii): 0 < f 6 1/2. Here we have

A2i = i− 1 + f A2i+1 = i− f, for i = 1, 2, . . .

bA1 − tc = −`− 1 dA1 + te = ` + 1
bA2i − tc = i− 1− ` dA2i + te = i + `, for i = 1, 2, . . .

bA2i+1 − tc = i− 1− ` dA2i+1 + te = i + `, for i = 1, 2, . . .

Case (iii): 1/2 < f < 1. Here we have

A2i = i− f A2i+1 = i− 1 + f, for i = 1, 2, . . .

bA2i − tc = i− 2− ` dA2i + te = i + `, for i = 1, 2, . . .

bA2i+1 − tc = i− 1− ` dA2i+1 + te = i + 1 + `, for i = 0, 1, 2, . . .

With floating-point numbers that follow the IEEE-754 64-bit standard for double precision,
the algorithm cannot be used in this naive form as soon as n > 140, because for some
regions of x, the terms Vi,j will underflow to 0 while the n! factor will overflow, even though
the corresponding probability is finite. For this reason, we must periodically renormalize
all elements of row i of V (in our implementation, we multiply all elements of the row by
2350) when the smallest element of the row becomes too small (smaller than 10−280 in our
implementation) and we keep track of the logarithm of the renormalization factors to recover
the correct numbers.

2.3. The Durbin matrix formula

Durbin (1973) proposed a formula for Fn(x) based on the calculation of a k × k matrix H
raised to the power n, where k = dte = dnxe; see his equations (2.4.3) and (2.4.4). Then
Fn(x) is given by n!T/nn, where T is the element k × k of the matrix Hn; see also Brown

6 Computing the Two-Sided Kolmogorov-Smirnov Distribution

Table 1: Values of Fn(x) for selected pairs (n, x)
n\x µ0/4 µ0/3 µ0/2 µ0 2µ0 3µ0

10 1.9215× 10−8 5.7293× 10−5 0.021523 0.63157 0.99769 0.9999999
50 2.2809× 10−9 1.9914× 10−5 0.014262 0.59535 0.99618 0.9999987

100 1.0020× 10−9 1.3267× 10−5 0.012461 0.58616 0.99587 0.9999982
200 4.9331× 10−10 9.5265× 10−6 0.011212 0.57949 0.99566 0.9999980
500 2.3705× 10−10 6.8400× 10−6 0.010131 0.57343 0.99549 0.9999978

1000 1.5699× 10−10 5.7174× 10−6 0.009597 0.57032 0.99541 0.9999977

and Harvey (2008). Marsaglia et al. (2003) have recently implemented this algorithm in a
C program which we shall call MTW. We reuse their program for this method, with small
corrections.

2.4. Comparison between Pomeranz and Durbin for small n

One of our objectives in this work was to provide a reliable implementation of Pomeranz
algorithm and compare its speed and precision with the Durbin matrix algorithm implemented
in MTW (its main competitor), for small n. We implemented the Pomeranz algorithm in C and
Java, while MTW is implemented in C. For n not too large, these two implementations both
return 13 to 15 decimal digits of precision (as measured by comparing with the exact values
provided by the Mathematica programs of Brown and Harvey (2008)). We also compared their
speed for computing Fn(x) at values of (n, x) selected as follows. The mean of Dn (under H0)
is close to

µ0
def= ln(2)

√
π/(2n) ≈ 0.868731/

√
n

and we selected the pairs (n, x) around this mean. More specifically, we took x = aµ0 for
a = 1/4, 1/3, 1/2, 1, 2, and 3, for n ranging from 10 to 1000. The values of Fn(x) for these
pairs (n, x) are given in Table 1. For each pair (n, x) in the table, we measured the CPU
time (in seconds) needed to compute Fn(x) 106 times with the C programs. All the timings
reported in this paper were made on a computer with an AMD Athlon processor 4000+ at
clock speed of 2400 MHz, running Red Hat Linux. The results are shown in Table 2 for
the Pomeranz algorithm and in Table 3 for the Durbin matrix algorithm. We see that the
CPU times increase with n and with x (for fixed n). For small n, MTW is faster for x < µ0

(roughly), while the Pomeranz program is faster for x > µ0.

When n is large, especially for x > µ0, these exact algorithms are too slow and have to be
replaced by approximations.

3. Asymptotic approximations

Kolmogorov (1933) has proved the following expansion which provides an approximation of
Fn(z/

√
n) for large n:

lim
n→∞

Fn(z/
√

n) = lim
n→∞

P[
√

nDn 6 z | H0] = K0(z) = 1 + 2
∞∑

k=1

(−1)ke−2k2z2
. (5)

Journal of Statistical Software 7

Table 2: CPU time (seconds) to compute Fn(x) 106 times with the Pomeranz algorithm
n\x µ0/4 µ0/3 µ0/2 µ0 2µ0 3µ0

10 0.17 0.17 2.5 3.5 5.2 6.5
50 9.6 11 15 32 74 124

100 22 26 42 100 266 498
200 57 79 128 325 1257 3266
500 221 324 592 2314 1.9× 104 3.1× 104

1000 708 1112 2070 1.8× 104 5.6× 104 7.9× 104

Table 3: CPU time (seconds) to compute Fn(x) 106 times with MTW
n\x µ0/4 µ0/3 µ0/2 µ0 2µ0 3µ0

10 0.57 0.57 1.6 3.4 21 60
50 2.5 5.3 9.6 48 264 782

100 5.9 5.7 21 106 754 2468
200 14 27 62 331 2200 7012
500 37 85 221 1601 1.2× 104 7.4× 104

1000 96 242 615 4608 3.8× 104 1.3× 105

Pelz and Good (1976) generalized Kolmogorov’s approximation (5) to an asymptotic series in
1/
√

n of the form

lim
n→∞

P[
√

nDn 6 z | H0] = K0(z) +
K1(z)
n1/2

+
K2(z)

n
+

K3(z)
n3/2

+ O

(
1
n2

)
, (6)

where

K0(z) =
√

2π

z

∞∑
k=1

e−π2(2k−1)2/(8z2),

K1(z) =
1

6z4

√
π

2

∞∑
k=−∞

{
π2(k + 1

2)2 − z2
}

e−π2(k+1/2)2/(2z2),

K2(z) =
1

72z7

√
π

2

∞∑
k=−∞

{
(6z6 + 2z4) + π2(2z4 − 5z2)(k + 1

2)2

+ π4(1− 2z2)(k + 1
2)4

}
e−π2(k+1/2)2/(2z2)

− 1
36z3

√
π

2

∞∑
k=−∞

π2k2e−π2k2/(2z2), and

K3(z) =
1

6480z10

√
π

2

∞∑
k=−∞

{
π6(k + 1

2)6(5− 30z2) + π4(k + 1
2)4(−60z2 + 212z4)

+ π2(k + 1
2)2(135z4 − 96z6)− (30z6 + 90z8)

}
e−π2(k+1/2)2/(2z2)

+
1

216z6

√
π

2

∞∑
k=−∞

(−π4k4 + 3π2k2z2)e−π2k2/(2z2).

8 Computing the Two-Sided Kolmogorov-Smirnov Distribution

These authors claim that their approximation is accurate to 5 decimal digits for n > 100 (the
absolute error of their approximation is in fact smaller than 10−5 for n > 100, but in our
work we focus on the relative error). Notice that K0(z) in the above equation is equivalent
to (5) through some of Jacobi’s identities on theta functions.
Another approximation useful for x close to 1 is based on the complementary cdf of the
one-sided KS statistic, defined by

D+
n = sup

x
{Ĝn(x)−G(x)},

where n, Ĝn, and G are defined as in §1. The upper tail probability of D+
n , defined as

p+
n (x) = P[D+

n > x | H0], is much faster and easier to compute than Fn(x). Smirnov’s stable
formula gives

p+
n (x) = x

bn(1−x)c∑
j=0

(
n

j

) (
j

n
+ x

)j−1 (
1− x− j

n

)n−j

(7)

Miller (1956) has shown that for p+
n (x) not too large, a very good approximation for the

distribution of Dn in the upper tail is

F̄n(x) = P[Dn > x | H0] ≈ 2p+
n (x). (8)

But as p+
n (x) increases (and x decreases), the reliability of this approximation deteriorates

quickly as we shall see in the next section.

4. The selected method as a function of (n, x)

In our implementation, we have selected the method that seems to make the best compromise
between speed and precision as a function of (n, x), in each area of the N × [0, 1] space. We
partitioned this space as illustrated in Figure 2, where the minimal number of decimal digits
of precision of our algorithm is given in parenthesis in each area of the partition (we use the
relative error everywhere). For practical reasons, we use approximations when n is large or
when x is too close to 1, because the exact methods are then far too slow. The precision of
these approximations is very poor for small n or x, and improves as n or x increases. We start
by partitioning in three regions according to the value of n: (i) n 6 140, (ii) 140 < n 6 105,
and (iii) n > 105. Note that the horizontal line below the Pelz-Good region in Figure 2 is at
n = 140. Next, we explain what we do in each of those three regions; more details can be
found in the appendix at the end of the paper.

(i) n 6 140. For n 6 140, we use the Ruben-Gambino formula (1) whenever it applies, which
is for x 6 1/n and for x > 1− 1/n, the Durbin matrix algorithm for 1/n < nx2 < 0.754693,
and the Pomeranz algorithm for 0.754693 6 nx2 < 4. When 4 6 nx2 < 18, we compute the
approximation of the complementary cdf F̄n(x) given by (8) and we return Fn(x) = 1− F̄n(x).
This is in the region labeled “1 − F̄n(x)” in the figure. When nx2 > 18, we just return
Fn(x) = 1. The program returns at least 13 to 15 decimal digits of precision everywhere for
n 6 140. The reasons for this partition are as follows.
A look at Kolmogorov’s original approximation (5) or the Pelz-Good formula (6) shows that
the tail probability of Fn(x) is approximately a function of z =

√
nx only. A closer exami-

nation reveals that in general, except when n is very small, the curves nx2 = c, where c is a

Journal of Statistical Software 9

0 0.2 0.4 0.6 0.8 1
1

10

140

103

104

105

Pelz-Good
(5)

Durbin (13)

Ruben-Gambino (13)

Fn(x) = 1
(15)

1− F̄n(x) (14)
Pomeranz (13)

x

n

Figure 2: Choice of method to compute (or approximate) Fn(x) and minimal number of
decimal digits of precision for Fn(x), as a function of (n, x), in each region of N× [0, 1].

constant, are curves of almost constant probability (see Table 1 for some typical values of x).
Thus regions of constant nx2 seem relevant for the different approximations of Fn(x).

If F̄n(x) < 2.2× 10−16, the double precision representation of Fn(x) cannot be distinguished
from 1, so we can just return Fn(x) = 1. The second term in Kolmogorov’s formula (5) is
2e−2z2

and is less than 2.2× 10−16 when z2 > 18.37. More precise calculations show that in
fact F̄n(x) < 5 × 10−16 whenever nx2 > 18. Thus we shall just return Fn(x) = 1 whenever
nx2 > 18, and this gives 15 digits of precision in this region, labeled “Fn(x) = 1” in Figure 2.

Comparing the results of the approximation of F̄n(x) by (8) with the exact values from the
Brown and Harvey (2008) Mathematica programs, we find that it returns at least 10 decimal
digits of precision as long as F̄n(x) < 10−3 when n 6 140. To determine the region where
F̄n(x) < 10−3 (approximately) in terms of n and x, we first use Kolmogorov’s formula (5)
which gives K0(2) = 0.99933 for nx2 = 4. More precise calculations with exact methods show
that for n 6 140, we have F̄n(x) < 0.0006 (and thus Fn(x) > 0.9994) whenever nx2 > 4.
When we use the approximation (8) in the region nx2 > 4, the absolute error on F̄n(x) is
always smaller than 10−14 and thus computing Fn(x) = 1− F̄n(x) gives 14 decimal digits of
precision for Fn(x).

In the region that remains, we use one of the exact methods of Durbin and Pomeranz. Based
on the speed comparison in §2.4, we choose Durbin when nx2 < 0.754693 and Pomeranz
otherwise. We avoid the Pelz-Good approximation because it returns less than 5 correct
digits for n ≤ 140.

(ii) 140 < n 6 105. Whenever nx2 > 18, we simply return Fn(x) = 1 and this gives 15
digits of precision as explained above. Otherwise, we use the Pelz-Good asymptotic series (6)

10 Computing the Two-Sided Kolmogorov-Smirnov Distribution

everywhere in the remaining region, except for x very close to 0 where it is not very good and
where we use the Durbin matrix algorithm. As n increases, the region where the Pelz-Good
approximation is good gets larger and closer to x = 0. We could use again a curve nx2 =
constant as a separation between these two regions, but we use instead the empirical curve
nx3/2 = 1.4 as separation, which permits the use of the Pelz-Good approximation in a slightly
larger region near x = 0; this is more efficient since the Durbin matrix algorithm is very slow
for larger n. Thus we use the Durbin matrix algorithm for nx3/2 < 1.4 and the Pelz-Good
asymptotic series for nx3/2 > 1.4. Our program returns at least 5 decimal digits of precision
everywhere.

(iii) n > 105. We use Fn(x) = 1 for nx2 > 18 and the Pelz-Good asymptotic series ev-
erywhere for nx2 < 18. Let u = Fn(x). Then for n = 100001, our program returns at
least 5 decimal digits of precision for all u > 10−16, at least 2 decimal digits of precision
for u > 10−56, and at least 1 decimal digit of precision for all u > 10−108. The Pelz-Good
approximation becomes better as n increases and, for a given n, it also becomes better as x
increases. For example, for n = 106, our program returns at least 5 decimal digits of precision
for all u > 10−33, at least 2 decimal digits of precision for u > 10−120, and at least 1 decimal
digit of precision for all u > 10−230. For such small values of u, a high precision for Fn(x) is
less important since 1 or 2 decimal digits of precision suffices to reject a statistical hypothesis
with confidence.

5. The complementary cdf

The complementary cdf is defined by F̄n(x) = 1 − Fn(x). Direct use of this formula in the
upper tail, where Fn(x) ≈ 1, would cause loss of precision. For this reason, we use specialized
methods for x close to 1.

When x is close enough to 0 or 1, we use the complementary of the Ruben-Gambino exact
formula (1). We split the remaining region in two: n 6 140 and n > 140.

(i) n 6 140. For x close to 1, we base our computation of F̄n(x) on the distribution of the
one-sided Kolmogorov-Smirnov statistic, as given by the Miller approximation (8). In the
region where nx2 > 4, we always have F̄n(x) < 0.0006. Comparing the approximation (8)
with the exact values obtained from Brown and Harvey’s Mathematica program, we see that
the approximation returns at least 11 decimal digits of precision for F̄n(x) in this region.

When nx2 < 4, we simply take F̄n(x) = 1 − Fn(x) with Fn(x) computed by the method
specified in §4. Since Fn(x) < 0.99993 for all x in this region as long as n > 6, subtractive
cancellation may cause the loss of at most 4 decimal digits of precision. For n < 6, x is either
larger than 1 or in the region where we use the exact formula in (1), so there is no loss of
precision there.

Overall, n 6 140, our program returns at least 10 decimal digits of precision everywhere for
F̄n(x) (see Figure 3).

(ii) n > 140. The minimal value of a floating-point number represented in the IEEE-754
64-bit standard for double precision is ≈ 10−308. If we impose the constraint 2e−2z2

< 10−308

Journal of Statistical Software 11

0 0.2 0.4 0.6 0.8 1
1

10

140

103

104

105

1− Fn(x) (10)

Ruben-Gambino (13)

F̄n(x) = 0

Miller
(5)

(6)

(10)

x

n

Figure 3: Choice of method to compute (or approximate) F̄n(x) and minimal number of
decimal digits of precision for F̄n(x), as a function of (n, x), in each region of N× [0, 1].

to the dominant term in (5), we obtain the condition z2 > 355. More precise calculations for
different values of n with the Miller approximation (8) show that we can safely set F̄n(x) = 0
whenever nx2 > 370, because F̄n(x) is then always smaller than 10−308; this corresponds to
region “F̄n(x) = 0” in Figure 3.

Since for n > 140, the Pelz-Good approximation (6) returns 5 decimal digits of precision,
we shall use the Miller approximation (8) with the Smirnov formula (7) in the larger region
nx2 > 2.2. In this region, we have F̄n(x) < 0.025 and the Miller approximation returns at
least 6 decimal digits of precision.

For nx2 < 2.2, we simply use F̄n(x) = 1−Fn(x). Since for n > 140, we have at least 5 decimal
digits of precision on Fn(x) in the region where Fn(x) > 10−12, the program returns at least
5 decimal digits of precision everywhere for F̄n(x) in the region nx2 < 2.2.

Overall, for 140 < n ≤ 200000, our program for F̄n(x) returns at least 5 decimal digits of
precision everywhere. And for n > 200000, it returns a few correct decimal digits.

6. The C and Java programs

The C program in file KolmogorovSmirnovDist.c has two public functions:

� KScdf(int n, double x), which computes Fn(x) for given n and x, and

� KSfbar(int n, double x), which computes the complementary cdf F̄n(x) for given n
and x.

The Java program in file KolmogorovSmirnovDist.java has two public static methods:

12 Computing the Two-Sided Kolmogorov-Smirnov Distribution

� cdf(int n, double x), which computes Fn(x) for given n and x, and

� fbar(int n, double x), which computes the complementary cdf F̄n(x) for given n
and x.

The programs are available at http://www.iro.umontreal.ca/~simardr/ksdir/.

7. Speed comparison

Table 4: CPU time (seconds) to compute Fn(x) 106 times with the C program of MTW
n\x µ0/4 µ0/3 µ0/2 µ0 2µ0 3µ0

10 0.57 0.57 1.6 3.4 21 60
100 5.9 5.7 21 106 754 0.1
140 6.7 12 41 206 1315 0.1
141 7.0 12.4 44 225 1444 0.1

1000 96 242 615 4.6× 103 3.8× 104 0.1
10000 2.8× 103 6.2× 103 2.1× 104 1.9× 105 3.5× 106 0.1

100000 1.1× 105 2.7× 105 1.1× 106 4.3× 107 4.4× 108 0.1

Table 5: CPU time (seconds) to compute Fn(x) 106 times with our C program
n\x µ0/4 µ0/3 µ0/2 µ0 2µ0 3µ0

10 0.17 0.17 1.6 3.4 5.1 0.66
100 6.5 6.3 23 98 260 22
140 7.3 13 41 174 500 32
141 7.6 13 44 1.4 2.3 3.3

1000 100 247 0.95 1.4 2.3 3.3
10000 2900 0.95 0.95 1.4 2.3 3.3

100000 0.95 0.95 0.95 1.4 2.3 3.3

Tables 4 and 5 report the CPU times needed to compute Fn(x) 106 times, for selected values
of n and x as in Table 1, with MTW and our C program. Note that for x = 3µ0, MTW
uses the quick approximation given by the authors, which returns only 7 decimal digits of
precision. We do not use their approximation since for n 6 140, the cdf is much less precise
than our program, and using this formula to compute F̄n(x) = 1−Fn(x) will give a very bad
approximation. For n > 140, our program is considerably faster than MTW. On the other
hand, the MTW program often gives more precision than our asymptotic expansions when it
returns sensible values for n > 140. However, the MTW program loses all precision when it
is used to compute F̄n(x) and the latter is smaller than 10−15, whereas our program returns
sensible values for F̄n(x) even when the latter is as small as 10−307.

http://www.iro.umontreal.ca/~simardr/ksdir/

Journal of Statistical Software 13

References

Brown JR, Harvey ME (2008). “Rational Arithmetic Mathematica Functions to Evaluate
the Two-Sided One sample K-S Cumulative Sample Distribution.” Journal of Statistical
Software, 26(2), 1–40. URL http://www.jstatsoft.org/v26/i02.

Drew JH, Glen AG, Leemis LM (2000). “Computing the Cumulative Distribution Function of
the Kolmogorov-Smirnov Statistic.” Computational Statistics and Data Analysis, 34, 1–15.

Durbin J (1968). “The Probability that the Sample Distribution Function Lies Between Two
Parallel Straight Lines.” Annals of Mathematical Statistics, 39, 398–411.

Durbin J (1973). Distribution Theory for Tests Based on the Sample Distribution Function.
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadel-
phia, PA.

Kallman R (1977). “Three Algorithms for Computing Kolmogorov-Smirnov Probabilities
with Arbitrary Boundaries and a Certification of Algorithm 487.” ACM Transactions on
Mathematical Software, 3(3), 285–294. Fortran program at http://calgo.acm.org/519.
gz.

Kolmogorov A (1933). “Sulla Determinazione Empirica di una Legge di Distribuzione.” Gior-
nale dell’ Istituto Italiano degli Attuari, 4, 83–91.

Marsaglia G, Tsang WW, Wang J (2003). “Evaluating Kolmogorov’s Distribution.” Journal
of Statistical Software, 8(18), 1–4. URL http://www.jstatsoft.org/v08/i18/.

MATLAB (2009). MATLAB-7.9.0 (R2009b) The Language Of Technical Computing. The
MathWorks Inc., Natick, MA. URL http://www.mathworks.com/products/matlab/.

Miller AJ (1999). “Calculates 1 and 2-tail Probabilities for the Single-Sample Kolmogorov-
Smirnov Statistic.” Available at http://www.cmis.csiro.au/Alan_Miller/KS2.f90.

Miller LH (1956). “Table of Percentage Points of Kolmogorov Statistics.” Journal of the
American Statistical Association, 51, 111–121.

Pelz W, Good IJ (1976). “Approximating the Lower Tail-areas of the Kolmogorov-Smirnov
One-sample Statistic.” Journal of the Royal Statistical Society, Series B, 38(2), 152–156.

Pomeranz J (1974). “Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for
Small Samples (Algorithm 487).” Communications of the ACM, 17(12), 703–704. Fortran
program at http://calgo.acm.org/487.gz.

R Development Core Team (2009). The R Project for Statistical Computing. The R Foundation
for Statistical Computing. Version 2.10.1 (2009-12-14). URL http://www.r-project.
org/.

Ruben H, Gambino J (1982). “The Exact Distribution of Kolmogorov’s Statistic Dn for
n ≤ 10.” Annals of the Institute of Statistical Mathematics, 34, 167–173.

http://www.jstatsoft.org/v26/i02
http://calgo.acm.org/519.gz
http://calgo.acm.org/519.gz
http://www.jstatsoft.org/v08/i18/
http://www.mathworks.com/products/matlab/
http://www.cmis.csiro.au/Alan_Miller/KS2.f90
http://calgo.acm.org/487.gz
http://www.r-project.org/
http://www.r-project.org/

14 Computing the Two-Sided Kolmogorov-Smirnov Distribution

A. Selection of regions

Here we give a few details on the calculations used to select the regions in §4 and §5. First,
we computed the distribution function Fn(x) at many values of x for n 6 1000 both with
the Durbin matrix formula and the Pomeranz formula (in our C program); we also compared
these results with the exact Brown-Harvey Mathematica program at a few random values of
x and n: all three always agreed to at least 13 decimal digits of precision. For n > 1000, the
Mathematica program that computes Fn(x) becomes very slow, so we used mostly the Durbin
matrix program to check how good the other approximations are for large n.

Region nx2 > 18. Consider the values of x =
√

18/n for several values of n. We compute
the KS complementary distribution function F̄n(x) both with the Brown-Harvey Mathematica
program and also with the Miller approximation (8). The results are given in Table 6 with
the relative error between the two, defined as |(u− v)/u|, where u is the Mathematica result
and v the Miller approximation. (For n > 10000, the Mathematica program is so slow that it
takes many days to compute F̄n(x); this explains the blank entries in Table 6.) Since F̄n(x)
is a decreasing function of x, we conclude that F̄n(x) is smaller than 5× 10−16 for nx2 > 18
and n 6 109, and almost certainly for any n (from Table 6). Thus, setting Fn(x) = 1 gives
15 decimal digits of precision for Fn(x) in this region.

Table 6: Values of F̄n(x) for x =
√

18/n

n x Miller Mathematica rel. err.
50 0.6 9.634070456142e-18 9.63407045614234e-18 3.5e-14

100 0.424264068711929 7.606532198486e-17 7.60653219848661e-17 8.0e-14
500 0.189736659610103 3.09340954272e-16 3.09340954272345e-16 2.4e-12

1000 0.134164078649987 3.6959926424e-16 3.69599264245350e-16 5.3e-12
5000 0.06 4.3371233237e-16 4.33712332378453e-16 2.5e-11

10000 0.042426406871193 4.448626200e-16
50000 0.018973665961010 4.56828378e-16

105 0.013416407864999 4.59148616e-16
106 0.004242640687119 4.6253138e-16
107 0.001341640786500 4.634834e-16
108 0.000424264068712 4.637718e-16
109 0.000134164078650 4.6386e-16

Region nx2 > 4 and n 6 140. Consider the values of x =
√

4/n for several values of n. We
again compare the KS complementary distribution function computed with the Brown-Harvey
Mathematica program and also with the Miller approximation (8). The results are given in
Table 7 with both the relative error (≈ 10−11) and the absolute error (< 10−14). Since the
Miller approximation becomes better as x increases for a given n, we conclude that it gives
at least 11 decimal digits of precision for F̄n(x), and at least 14 decimal digits of precision for
Fn(x) = 1− F̄n(x) in this region.

Journal of Statistical Software 15

Table 7: Values of F̄n(x) for x =
√

4/n

n x Miller Mathematica rel. err. abs. err.
20 0.447213595499958 0.000362739697817368 0.000362739697817367 3.0e-15 1.1e-18
40 0.316227766016838 0.000469148796139823 0.000469148796139491 7.1e-13 3.3e-16
60 0.258198889747161 0.000513418298233135 0.000513418298231541 3.1e-12 1.6e-15
80 0.223606797749979 0.000538602147624629 0.000538602147621453 5.9e-12 3.2e-15

100 0.2 0.000555192732807431 0.000555192732802810 8.3e-12 4.6e-15
120 0.182574185835055 0.000567103285090544 0.000567103285084519 1.1e-11 6.0e-15
140 0.169030850945703 0.000576152104012519 0.000576152104005186 1.2e-11 7.3e-15

Region nx2 > 2.2 and 140 < n 6 105. Consider the values of x =
√

2.2/n for several
values of n. We compare the Miller approximation (8) for the KS complementary distribution
function F̄n(x) both with the Brown-Harvey Mathematica program and with the Durbin ma-
trix C program. The results are shown in Tables 8 and 9 with the relative error of the Miller
approximation. Since the Miller approximation becomes better as x increases for a given n,
we conclude that it gives at least 6 decimal digits of precision for F̄n(x) in this region.

Table 8: Values of F̄n(x) for x =
√

2.2/n

n x Miller Mathematica rel. err.
141 0.124911316058364 0.0223963592 0.0223963330223726 1.2e-6
300 0.0856348838577675 0.0230987058 0.0230986730185827 1.4e-6
500 0.066332495807108 0.0234361007 0.0234360648085745 1.5e-6

1000 0.0469041575982343 0.0237703789 0.0237703399363784 1.6e-6
5000 0.020976176963403 0.0242079719 0.0242079291326927 1.8e-6

Table 9: Values of F̄n(x) for x =
√

2.2/n

n x Miller Durbin matrix rel. err.
500 0.066332495807108 0.0234361007 0.0234360648085807 1.5e-6

1000 0.046904157598234 0.0237703789 0.0237703399363874 1.6e-6
5000 0.020976176963403 0.0242079719 0.0242079291327157 1.8e-6

10000 0.0148323969741913 0.0243102062 0.0243101626961063 1.8e-6
50000 0.0066332495807108 0.0244457597 0.0244457151043362 1.8e-6

100000 0.0046904157598234 0.0244777310 0.0244776861027715 1.8e-6

Region nx3/2 > 1.4 and 140 < n 6 105 for Fn(x). Here we compare the Pelz-Good
approximation on the separating curve nx3/2 = 1.4 with the Mathematica program, and also
with the Durbin matrix C program for a few values of (n, x). The results are shown in Tables
10 and 11. After testing many values of Fn(x) at different n > 140 and x, we concluded that
the Pelz-Good approximation becomes better as x increases for a given n, and that it gives

16 Computing the Two-Sided Kolmogorov-Smirnov Distribution

Table 10: Values of Fn(x) for x = (1.4/n)2/3

n x Pelz-Good Mathematica rel. err.
140 0.0464158883361278 0.09025921823 0.0902623294750042 3.4e-5
500 0.0198657677675854 0.01302426466 0.0130242540021059 8.2e-7

1000 0.0125146494913519 0.00289496816 0.00289493725169814 1.1e-5
5000 0.0042799499222603 1.42356151e-5 1.42355083146456e-5 7.5e-6

Table 11: Values of Fn(x) for x = (1.4/n)2/3

n x Pelz-Good Durbin rel. err.
140 0.0464158883361278 0.09025921823 0.0902623294750041 3.4e-5
500 0.0198657677675854 0.01302426466 0.0130242540021058 8.2e-7

1000 0.0125146494913519 0.00289496816 0.00289493725169812 1.1e-5
5000 0.00427994992226032 1.42356151e-5 1.42355083146454e-5 7.5e-6

10000 0.00269619949977585 4.83345438e-7 4.83345410767114e-7 5.6e-8
50000 0.00092208725841169 3.71471703e-12 3.71479094405454e-12 2.0e-5

100000 0.00058087857335637 2.21229903e-15 2.21236052547566e-15 2.8e-5

at least 5 decimal digits of precision for Fn(x) in the region nx3/2 > 1.4. The Pelz-Good
approximation becomes worse as x gets close to 0, and so for nx3/2 < 1.4, we use the Durbin
matrix program.

Region n > 105. Here we compare the Pelz-Good approximation for n = 100001 with the
Durbin matrix C program for a few values of x. The results are shown in Table 12. The
Pelz-Good approximation is not so good for small x but becomes better as x increases. It
also becomes better as n increases.

Table 12: Values of Fn(x) for n = 100001
x x Pelz-Good Durbin matrix rel. err.

1/14
√

n 0.000225875846349904 6.09086278e-103 1.07874093328718e-102 0.44
1/12

√
n 0.000263521820741555 1.572209174e-75 1.87885894249649e-75 0.16

1/10
√

n 0.000316226184889866 2.269812367e-52 2.35008915128103e-52 0.034
1/8

√
n 0.000395282731112333 1.962478061e-33 1.96902657319316e-33 0.0033

1/6
√

n 0.00052704364148311 1.018350563e-18 1.01845452774208e-18 0.0001
1/4

√
n 0.000790565462224666 2.9070737934e-8 2.90707424915525e-8 1.6e-7

1/2
√

n 0.00158113092444933 0.0363919975970 0.0363919976016742 1.3e-10
1/
√

n 0.00316226184889866 0.7305646847185 0.730564684714965 4.8e-12
2/
√

n 0.00632452369779733 0.9993319333086 0.999331933307205 1.4e-12

Journal of Statistical Software 17

Affiliation:

Richard Simard and Pierre L’Ecuyer
Département d’Informatique et de Recherche Opérationnelle
Université de Montréal
C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada
E-mail: lecuyer@iro.umontreal.ca, simardr@iro.umontreal.ca
URL: http://www.iro.umontreal.ca/~lecuyer/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

mailto:lecuyer@iro.umontreal.ca, simardr@iro.umontreal.ca
http://www.iro.umontreal.ca/~lecuyer/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Exact methods
	Some values in the tails
	The Pomeranz recursion formula
	The Durbin matrix formula
	Comparison between Pomeranz and Durbin for small n

	Asymptotic approximations
	The selected method as a function of (n,x)
	The complementary cdf
	The C and Java programs
	Speed comparison
	Selection of regions

