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Abstract: A lattice rule with a randomly-shifted lattice estimates a math-
ematical expectation, written as an integral over the s-dimensional unit hy-
percube, by the average of n evaluations of the integrand, at the n points of
the shifted lattice that lie inside the unit hypercube. This average provides
an unbiased estimator of the integral and, under appropriate smoothness
conditions on the integrand, it has been shown to converge faster as a func-
tion of n than the average at n independent random points (the standard
Monte Carlo estimator). In this paper, we study the behavior of the esti-
mation error as a function of the random shift, as well as its distribution
for a random shift, under various settings. While it is well known that the
Monte Carlo estimator obeys a central limit theorem when n→∞, the ran-
domized lattice rule does not, due to the strong dependence between the
function evaluations. We show that for the simple case of one-dimensional
integrands, the limiting error distribution is uniform over a bounded in-
terval if the integrand is non-periodic, and has a square root form over a
bounded interval if the integrand is periodic. We find that in higher dimen-
sions, there is little hope to precisely characterize the limiting distribution
in a useful way for computing confidence intervals in the general case. We
nevertheless examine how this error behaves as a function of the random
shift from different perspectives and on various examples. We also point out
a situation where a classical central-limit theorem holds when the dimen-
sion goes to infinity, we provide guidelines on when the error distribution
should not be too far from normal, and we examine how far from normal
is the error distribution in various instances of a typical real-life problem.

AMS 2000 subject classifications: Primary 62E20; secondary 60F05.
Keywords and phrases: quasi-Monte Carlo, lattice rule, integration er-
ror, limit theorem, confidence interval.

1. Introduction

Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods estimate the in-
tegral of a function f over the s-dimensional unit hypercube [0, 1)s = {u =
(u1, . . . , us) : 0 ≤ uj < 1 for all j}, by evaluating f at n points in this hy-
percube and taking the average. This integral often represents a mathematical
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expectation:

µ = µ(f) =

∫
[0,1)s

f(u) du = E[f(U)] (1)

where f : [0, 1)s → R, U = (U1, . . . , Us) ∼ U(0, 1)s, and the latter means that U
is a random vector with the uniform distribution over (0, 1)s. This framework
is very general, because the (pseudo)randomness in a simulation is typically
obtained from a sequence of independent uniform (pseudo)random numbers over
the interval (0, 1). We can take s as an upper bound on the number of calls to
the generator and view f as representing all the transformations applied to those
uniform random numbers to produce the estimator.

In the MC method, we sample n independent random points U0, . . . ,Un−1

uniformly over (0, 1)s and we estimate µ by

µ̂n =
1

n

n−1∑
i=0

f(Ui). (2)

Under standard assumptions, µ̂n obeys the classical central-limit theorem (CLT),
so if n is large enough we can compute a confidence interval on µ by assuming
that the error follows approximately a normal distribution. The variance can be
estimated by the empirical variance, because the observations are independent.

With randomized quasi-Monte Carlo (RQMC), the estimator has the same
form:

µ̂n,rqmc =
1

n

n−1∑
i=0

f(Ui) (3)

and we still have Ui ∼ U [0, 1)s for each i, but these points are no longer in-
dependent. They are constructed in a way that the set Pn = {U0, . . . ,Un−1}
⊂ [0, 1)s covers the unit hypercube more uniformly than typical independent
random points. This uniformity is quantified by figures of merit called discrep-
ancies, which measure of discrepancy between the empirical distribution of the
points and the uniform distribution over (0, 1)s. Two popular ways of construct-
ing RQMC point sets are randomly-shifted lattices and digitally-shifted nets.
For general background on quasi-Monte Carlo methods, RQMC, and discrepan-
cies, the reader is referred to L’Ecuyer (2009); L’Ecuyer and Lemieux (2002);
Lemieux (2009); Niederreiter (1992); Owen (1998); Sloan and Joe (1994) and
the references given there.

The RQMC estimator (3) has expectation µ and variance

Var[µ̂n,rqmc] = E[(µ̂n,rqmc − µ)2]. (4)

This variance is more difficult to estimate than for MC, because of the de-
pendence across observations. The usual way of estimating it and computing a
confidence interval on µ is to obtain m independent realizations of µ̂n,rqmc, say
X1, . . . , Xm, based on m independent randomizations of Pn, and compute their
sample mean Xm and their sample variance and S2

x,m. One has E[Xm] = µ and
E[S2

x,m] = mVar[Xm] (L’Ecuyer and Lemieux, 2000). With a variance estimate



P. L’Ecuyer, D. Munger, and B. Tuffin/Error Distribution for Shifted Lattice Rules 3

in hand, one might be tempted to compute a confidence interval on µ by using
a normal approximation for the distribution of Xm, as for MC. This is common
practice. Even if µ̂n,rqmc is not normal, Xm will eventually be approximately
normal if m is large enough, because the CLT applies when m → ∞. But in
typical RQMC settings, m is small, often no more than 10, and n is taken as
large as possible given the available computing budget. Then it is unclear if a
normal approximation makes sense.

This motivates the need for a better understanding of the distributional be-
havior of µ̂n,rqmc in the asymptotic regime where m is fixed (and small) and
n → ∞, and also for typical (finite) values of n. This is our aim in the present
paper.

For certain RQMC methods that involve a sufficient amount of randomiza-
tion of the dependent points, a CLT has been proved to hold for n → ∞. Two
such special cases are Latin hypercube sampling (LHS) (Owen, 1992), for which
a bound on the total variation convergence to the normal distribution is avail-
able, and digital nets with the full nested scrambling of Owen (Loh, 2003). See
Loh (2005) for a survey. However, LHS is not one of the most powerful RQMC
methods, because it ensures good uniformity only for the one-dimensional pro-
jections of the s-dimensional points, and nested scrambling is rarely used because
it is very time-consuming.

In this paper, we focus on randomly-shifted lattice rules, a widely-used and
effective RQMC technique (L’Ecuyer and Lemieux, 2000; Sloan and Joe, 1994),
where the n evaluation points are those of a randomly shifted integration lattice
of density n that lie in the unit hypercube, in s dimensions. We assume that
the lattice is projection-regular, which means that each of its one-dimensional
projections over the interval [0, 1) contains exactly n points. We explore and
illustrate how the error behaves as a function of the random shift, and study
its asymptotic distribution (for large n), in a variety of settings. We find that
when s and m are fixed and n → ∞, the error does not obey a CLT, in the
sense that it does not have a normal asymptotic distribution. We provide some
insight on when the normal approximation is likely to be reasonable or not for
finite (typical) n. We also have some results for an asymptotic regime where
s→∞.

Randomly shifting the lattice means that we generate a random shift U ∼
U(0, 1)s and add it to all the lattice points. This is equivalent to sampling
U in one of the elementary parallelotopes determined by any s vectors that
form a basis of the lattice. We show that this is also equivalent to generating
it uniformly in [0, 1)s−1 × [0, 1/n), which is much simpler, or more generally
in any elementary region of a partition of [0, 1)s into n pieces of volume 1/n
if the partition satisfies certain tiling conditions. These properties are useful
to understand how the error behaves as a function of the shift. We provide
illustrations.

We say that f is c-periodic with respect to coordinate j if its periodic contin-
uation with respect to coordinate j is a continuous function. This means that f
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is continuous in [0, 1)s and that for any (u1, . . . , uj−1, uj+1, . . . , us) ∈ [0, 1)s−1,

lim
δ→0+

f(u1, . . . , uj−1, 1− δ, uj+1, . . . , us) = f(u1, . . . , uj−1, 0, uj+1, . . . , us).

If it is c-periodic with respect to each coordinate j, f is simply called c-periodic.
We will see that for continuous c-periodic functions f , the integration error as
a function of the shift is a continuous function over the unit hypercube, and
that if f is continuous but not c-periodic with respect to coordinate j, the error
function has jumps whenever coordinate j of the shift crosses a multiple of 1/n.

For the simple case of a one-dimensional continuous function (s = 1), we
develop a generalized Euler-MacLaurin expansion of the integration error, from
which we obtain the asymptotic distribution of this error when n → ∞. As a
special case, we find that when f is not c-periodic, the asymptotic distribution
of n times the integration error is uniform over a bounded interval centered at
0. If f is c-periodic but its derivative is not, then n2 times the error converges
in distribution to the square of a uniform random variable centered at 0, whose
cumulative distribution function (cdf) is a square root function. In general, if f
has k−2 c-periodic derivatives but its derivative of order k−1 is not c-periodic,
then nk times the error converges in distribution to a constant times Bk(U)
where Bk is the Bernoulli polynomial of degree k and U ∼ U(0, 1).

For more general s-dimensional functions, the analysis is more complicated
because (among other things) the convergence behavior and even the conver-
gence rate depend on the choice of lattice as a function of n. It is well known from
the theory of lattice rules (Kuo and Joe, 2002; Niederreiter, 1992; Sinescu and
L’Ecuyer, 2010; Sloan and Rezstov, 2002) that if all the mixed partial deriva-
tives of order one of f are absolutely integrable over [0, 1)s, then for any ε > 0
there are rank-1 lattice rules for all n, such that the integration error converges
as O(n−1+ε) uniformly over the shift U. These rules are also not difficult to find
and they can be constructed explicitly component by component (one coordi-
nate at a time) (Kuo and Joe, 2002; Sloan and Rezstov, 2002). Of course, this
convergence rate does not apply to an arbitrary lattice rule. One can construct
examples of badly selected rules for a given function f where the integration
error is the same for all n. On the other hand, this rate applies to the average
over all reasonable rank-1 lattice rules, so it represents the rate for typical rules
used in practice. Note that this convergence rate is just an upper bound and
does not tell much about the error distribution.

To study this distribution, we will decompose the error as a sum of three
terms, E1 +E2 +E3, where nE1 is a linear combination of independent uniform
random variables over (−1/2, 1/2), whose cdf is a spline of degree s that does
not depend on the choice of lattice, E2 has a discrete distribution over ns−1

values, and E3 is O(n−2+ε) when f is smooth enough, and it typically becomes
negligible when n→∞. Any of these terms could be zero in certain situations.
The term E1 is the integration error for the best approximation of f by a sum
of one-dimensional functions. In situations where this term dominates the total
error, the spline is a good approximation of its cdf. For E2, we do not have
an expression or a characterization of the limiting distribution; it seems that



P. L’Ecuyer, D. Munger, and B. Tuffin/Error Distribution for Shifted Lattice Rules 5

the cdf of E2, and thus the cdf of the error when E2 dominates, can be almost
anything. We also look at the integration error via its Fourier expansion.

Our results for E1 come from our study of the special case where f is a sum
of one-dimensional functions. In practice, it is not unusual that E1 dominates
the error, especially in situations where RQMC works very well, and this is often
achieved deliberately by transforming the integrand f via a change of variables
Caflisch, Morokoff and Owen (1997); L’Ecuyer (2009); Sloan and Joe (1994).
We show that for a sum of s non c-periodic one-dimensional functions, the cdf
of n times the integration error converges to a spline (a piecewise-polynomial
function) of degree s when n→∞, and this limiting distribution has a bounded
support (in contrast with the normal distribution). In this sense, the behavior
is significantly different than when a classical CLT holds. We also show that
when s → ∞, under certain conditions, a classical CLT holds for a properly
standardized version of the error. We give illustrative examples.

Finally, we perform an empirical study of the error distributions for an ex-
ample inspired from real-life: pricing an Asian option.

The remainder is organized as follows. In Section 2, we recall the basic defini-
tions and results on randomly-shifted lattice rules, and introduce some notation.
In Section 3, we show how the random shift can be equivalently generated over
a smaller subset of the unit hypercube, and we provide several illustrations. In
Section 4, we study the error distribution for one-dimensional integrals. In Sec-
tion 5, we look at linear combinations of one-dimensional functions and show
that a classical CLT holds under certain conditions as the number of functions
increases. In Section 6, we study the general s-dimensional case. A real-life ex-
ample is examined in Section 7.

Preliminary results (mostly for the one-dimensional case) were published in
the proceedings of the 2009 Winter Simulation Conference (L’Ecuyer and Tuffin,
2009).

2. Randomly-Shifted lattice Rules

2.1. Definitions

An integration lattice is a discrete vector space of the form

Ls =

v =

s∑
j=1

zjvj such that each zj ∈ Z

 ,

where the basis vectors v1, . . . ,vs ∈ Rs are linearly independent over R and
where Ls contains Zs, the set of integer vectors. The dual lattice to Ls is

L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls},

where “t” means “transposed” and the vectors are assumed to be column vectors
whenever it matters (in the text we often write them as row vectors to simplify
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the notation). It is easy to see that Zs ⊆ Ls if and only if L∗s ⊆ Zs, i.e., if all
coordinates of all vectors of L∗s are integers.

Let Pn = Ls ∩ [0, 1)s = {u0, . . . ,un−1} be the set of lattice points that be-
long to the unit hypercube [0, 1)s, where n is the cardinality of this set Pn. One
can show that all coordinates of all vectors of Ls must be multiples of 1/n. A
(deterministic) lattice rule is a numerical integration method that approximates
µ by the average of f(u0), . . . , f(un−1). Further details on integration lattices,
lattice rules, and ways of measuring the uniformity of Pn for an integration lat-
tice, can be found in L’Ecuyer (2009); L’Ecuyer and Lemieux (2000); Sloan and
Joe (1994); Tuffin (1998), for example. Most integration lattices used in practice
are projection-regular, which means that each one-dimensional projection of Pn
is the set {0, 1, . . . , n−1}, and we assume here that the lattice has this property.
They are also usually of rank 1, which means that the basis can be selected so
that vj = ej (the jth unit vector in s-dimensions) for j = 2, . . . , s, and we can
write

Pn = {v = iv1 mod 1, i = 0, . . . , n− 1} = {(ia1 mod n)/n, i = 0, . . . , n− 1} ,

where a1 = (a1, . . . , as) and v1 = a1/n.
A lattice rule can be turned into an RQMC method by applying a random

shift modulo 1 to Pn, which consists in generating a single point U ∼ U(0, 1)s

and adding it to each point of Pn, modulo 1, coordinate-wise. That is, each point
ui = (ui,1, . . . , ui,s) ∈ Ls ∩ [0, 1)s is randomized into Ui = (Ui,1, . . . , Ui,s) =
(ui+U) mod 1. This was proposed by Cranley and Patterson (1976) and further
studied by L’Ecuyer and Lemieux (2000), among others. This is the same as
randomly shifting Ls and then taking the intersection with [0, 1)s. Clearly, Ui ∼
U [0, 1)s for each i, and the global uniformity of Pn is preserved by the shift in
the sense that the points have the same relationship with each other if we forget
about the hypercube boundaries.

Figure 1 gives a toy illustration with s = 2, n = 8, v1 = (1/8, 3/8), v2 =
(0, 1), and U = (0.436, 0.233).

2.2. Integration Error

The integration error for a lattice rule shifted by u is given by

gn(u) =
1

n

n−1∑
i=1

f((ui + u) mod 1) − µ. (5)

We are interested in the behavior of g(u) as a function of u, and the distribution
of gn(U), the integration error for a randomly-shifted lattice rule, for large n.

Suppose that the integrand f has the Fourier expansion

f(u) =
∑
h∈Zs

f̂(h) exp(2πihtu), (6)
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Fig 1. The original eight integration points of a small two-dimensional lattice (left) and the
same eight points after a shift modulo 1 by U = (0.436, 0.233) (right).

with Fourier coefficients

f̂(h) =

∫
[0,1)s

f(u) exp(−2πihtu) du,

where i =
√
−1. Then it is known that the Fourier coefficients of gn satisfy

ĝn(h) = f̂(h) if 0 6= h ∈ L∗s, and ĝn(h) = 0 otherwise (Niederreiter, 1992; Sloan
and Joe, 1994). Therefore, the Fourier expansion of gn can be written (when it
exists) as

gn(u) =
∑

06=h∈L∗s

f̂(h) exp(2πihtu). (7)

By the Parseval equality, we also have

Var[µ̂n,rqmc] = Var[gn(U)] = E[g2
n(U)] =

∑
0 6=h∈L∗s

|f̂(h)|2

whenever f is square integrable (L’Ecuyer and Lemieux, 2000). By making as-
sumptions on how fast the Fourier coefficients converge when the size of h in-
creases, one can obtain asymptotic bounds on the worst-case error supu∈[0,1)s |gn(u)|
or on the variance Var[gn(U)]. For example, let α > 1/2, take some non-negative
constants γ1, . . . , γs, and consider the class of functions f : [0, 1)s → R such that
for all h = (h1, . . . , hs) ∈ Zs,

|f̂(h)|2 ≤ w(h)
def
=

∏
{j:hj>0}

γj |hj |−2α.

It is known that there exists a sequence of lattice rules, indexed by n, such that
for any δ > 0, the worst-case error and the variance converge as O(n−α+δ) and
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O(n−2α+δ), respectively (Dick et al., 2006; Sloan and Joe, 1994). When α is an
integer, the above condition can be written in terms of square integrability of
a collection of partial derivatives: f satisfies the condition if for every subset of
coordinates, the partial derivative of order α with respect to these coordinates is
square integrable, and the partial derivatives of orders 0 to α− 2 are c-periodic
(Dick et al., 2006; L’Ecuyer, 2009).

Concrete applications where the variance is reduced drastically by randomly-
shifted lattice rules can be found in L’Ecuyer (2009); L’Ecuyer and Lemieux
(2000); Lemieux (2009), for example.

3. Generating the Shift Over a Smaller Region

3.1. A General Condition on Tiling Patterns

Instead of generating the random shift U ∼ U(0, 1)s, we can equivalently gen-
erate it over a smaller subregion R0 of volume 1/n. The key observation is that
shifting by ui + U (modulo 1) for any ui ∈ Pn is equivalent to shifting by U,
because shifting the lattice Ls by any lattice point just gives the same lattice.
The next proposition characterizes the regions R0 for which this idea works.
These regions determine a tiling pattern made of n shifted versions of R0 that
cover the unit hypercube.

Proposition 1. Let R0 ⊂ [0, 1)s be a region such that the family {Ri = (R0 +
ui) mod 1, i = 0, . . . , n − 1} forms a partition of [0, 1)s in n regions of volume
1/n, where Ri is R0 shifted by ui modulo 1. Then, sampling the random shift
uniformly in Ri for any fixed i is equivalent to sampling it uniformly in [0, 1)s.
Consequently, the error function gn(u) over any of those regions Ri is the same
as over R0, in the sense that gn(u) = gn((u + ui) mod 1) for all i.

Proof. Note that if a shifted lattice point u is in Rk for some k, then for each
i 6= k, another shifted lattice point (ui − uk + u) mod 1 must be in Ri. This
means that each Ri must contain a single shifted lattice point. Consider now
a fixed i and suppose (without loss of generality) that ui is the lattice point
that belongs to Ri before the shift. Let Ũi be the single lattice point that falls
in Ri after a shift by U ∈ [0, 1)s, and let Ũk = (uk − ui + Ũi) mod 1 for
k = 0, . . . , n − 1. Then a random shift by any of these Ũk is the same as a
random shift by Ũi, and leads to exactly the same point in Ri. If τi denotes
the transformation that maps the uniform random shift U ∈ [0, 1)s to Ũi ∈ Ri,
then the inverse image by τi of any measurable set of volume ε > 0 in Ri is the
union of n sets of volume ε in [0, 1)s, and so has total volume nε. This means
that the point Ũi has the uniform density n over Ri, and we can generate it
directly from this density.

Next, we examine some choices of R0 that satisfy this proposition.
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3.2. Random Shift in a Parallelotope

Consider a set of basis vectors v1, . . . ,vs that define the lattice. These vectors
determine a parallelotope (an s-dimensional parallelepiped)

P =

v =

s∑
j=1

cjvj : 0 ≤ cj < 1 for all j

 ,

of volume 1/n, with one vertex at the origin, and whose edges connected to that
vertex are precisely v1, . . . ,vs. With R0 = P , the conditions of Proposition 1
are satisfied (Conway and Sloane, 1999). To sample U uniformly in P , we can
generateC = (C1, . . . , Cs) uniformly over (0, 1)s and putU = C1v1+· · ·+Csvs.
This mapping C→ U is a linear transformation, so its Jacobian is a constant,
and therefore it preserves uniformity.

0 1

1

ui,2

ui,1
0 1

1

Ui,2

Ui,1

Fig 2. The original eight points and the two vectors v1 and v2 of a lattice basis (left) and
the points shifted by Ũ = (0.061, 0.108) modulo 1 (right).

Example 1. Figure 2 illustrates this property for the same example as in Fig-
ure 1, with the shift Ũ ∈ P that corresponds to the shift U shown in Figure 1.
The parallelogram P is shaded in light gray in the figure. The figure also shows
the parallelogram (P + ui) mod 1 for ui = (0.875, 0.625), which is split into
three pieces, shaded in dark green. Sampling uniformly in this parallelogram is
easily achieved by sampling uniformly in P and adding ui modulo 1. �

3.3. Random Shift in a Rectangular Slice

A simpler way of partitioning [0, 1)s is as follows. Fix an arbitrary coordinate
j ∈ {1, . . . , s} and, for each i ∈ {0, . . . , n − 1}, define Ri = Rj,i = {u =
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0 1

1

Ui,2

Ui,1

0 1

1

Ui,2

Ui,1

Fig 3. Left: The points shifted by Ũ = (0.061, 0.108) modulo 1; this shift was sampled uni-
formly over the lightly-shaded rectangle. Right: The shift can be equivalently sampled uni-
formly over the elementary region of a different “tiling” pattern, such as the lightly-shaded
region shown here. The same region shifted by (0.875, 0.625) (modulo 1) is shown in green.

(u1, . . . , us) ∈ [0, 1)s : i/n ≤ uj < (i+ 1)/n}. This partitions the hypercube into
n hyper-rectangles (or slices) Ri of thickness (and volume) 1/n. The assumption
of Proposition 1 holds, because coordinate j of the original points takes each
value in {0, 1/n, . . . , (n−1)/n} exactly once when we run through all the points,
and therefore there is always exactly one point in each Ri.

In one dimension (s = 1), this Ri is the interval [i/n, (i + 1)/n), so we can
generate the random shift over the interval [0, 1/n). Then the error function
gn(u) for u ∈ [0, 1) is periodic with period 1/n (or a divisor of 1/n).

Example 2. In Example 1, we can generate the random shift U uniformly over
the rectangle R0 = [0, 1) × [0, 1/8) instead of over the parallelogram. This is
equivalent and obviously simpler. Figure 3 (left) illustrates this situation, with
a shift U ∈ R equivalent to that or Figure 1. �

Proposition 1 works for other types of regions than rectangles and parallelo-
topes. The shaded region in Figure 3 (right) gives another illustration.

3.4. Discontinuity of gn for non-periodic functions

Shifting the points by u modulo 1 is equivalent to shifting the function f by
−u modulo 1. If f is c-periodic, f((ui + u) mod 1) varies continuously with u
for each i, which means that the error function gn(u) is also continuous in u
everywhere in [0, 1)s, and is c-periodic.

On the other hand, suppose f is not c-periodic with respect to the jth co-
ordinate and let u = (u1, . . . , us) denote the shift. When uj increases while the
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other coordinates of u are fixed, each time uj crosses a multiple of 1/n, there
is one shifted point whose jth coordinate jumps from 1 to 0, and this causes
a jump in the error function gn(u). Thus, gn(u) is discontinuous in uj across
the hyperplane uj = i/n for any integer i, and it is continuous in uj elsewhere,
provided that f is continuous in (0, 1)s. Therefore, in the general non-c-periodic
situation, gn(u) is continuous in each small hypercube of volume n−s deter-
mined by these hyperplanes, and is discontinuous across the boundaries of these
small hypercubes. In the one-dimensional case, these small hypercubes become
the intervals of the form [i/n, (i + 1)/n); the function gn(u) is the same over
each of those intervals and it is discontinuous across them.

If f is a sum of one-dimensional functions, say f(u) =
∑s
j=1 fj(uj), then we

can analyze the error by examining each fj separately. The error function for f
can be written as

gn(u) =

s∑
j=1

gj,n(uj)

where gj,n is the error function for fj . This gj,n is periodic with period 1/n, and
it is discontinuous at each multiple of 1/n if fj is not c-periodic. This implies that
the function gn over any of the small hypercubes of the form

∏s
j=1[ij/n, (ij +

1)/n), where each ij ∈ {0, . . . , n − 1}, is a replicate of gn(u) for u ∈ [0, 1/n)s.
In that case, the random shift U can be equivalently sampled uniformly in any
of the small s-dimensional hypercubes of volume n−s.

The following examples illustrate these properties.

Example 3. Figure 4 shows the error function gn(u) for u ∈ [0, 1)2, for an
example where s = 2, f(u1, u2) = u1 + u2 − 3/2 = (u1 − 1/2) + 2(u2 − 1/2),
n = 8, and the lattice points are the same as in Figure 1. This is a sum of
two one-dimensional functions, so the error function has exactly the same shape
in each small square of the form [i1/n, (i1 + 1)/n) × [i2/n, (i2 + 1)/n). It is
also discontinuous across the boundaries of those squares, because f is not c-
periodic. Here the error varies a lot within each square but it is the same across
all squares. �

Example 4. Figure 5 plots gn(u) for u ∈ [0, 1)2 for s = 2, f(u1, u2) = (u1 −
1/2) (u2 − 1/2), and the same points. In contrast with the previous example,
the error varies a lot across the squares and very little within each square. The
error function is symmetric with respect to each of the two diagonals. If we
partition the unit square into four squares of area 1/4, the error function is also
symmetric with respect to each of the two diagonal in each of those four squares.
This high symmetry comes from the symmetry in f . �

Example 5. Figure 6 plots gn(u) for u ∈ [0, 1)2 for s = 2, f(u1, u2) = u2
1(u2 −

1)+1/6, and the same points. The error has a behavior halfway between that of
the previous two examples: It varies substantially both across the squares and
within them. Also, it does not exhibit as much symmetry. �

Example 6. Figure 7 plots gn(u) for u ∈ [0, 1)2 for s = 2, f(u1, u2) =
u1u2 (u1−1/2) (u2−1/2), and the same points. Here, f is c-periodic, so the error
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Fig 4. Plot of ngn(u1, u2) for Example 3.

function is continuous and c-periodic. It also has all the symmetries observed in
Example 4. �

4. Error Distribution for One-Dimensional Integrals

4.1. Limit Theorems

One-dimensional integrals are rarely estimated by RQMC methods but studying
the distribution of gn(U) for a randomly-shifted lattice rule in one dimension
(s = 1 and U ∼ U(0, 1)) is a first step toward understanding what may happen
in general, and the result will be reused as a building block for the general case.
It also provides simple counter-examples showing that the CLT does not apply.
When s = 1, the random shift can be generated uniformly over (0, 1/n), so
the randomly-shifted points can be written as {U/n, (1 + U)/n, . . . , (n − 1 +
U)/n) where U ∼ U(0, 1) and the points are shifted by U/n. The corresponding
total error is gn(U/n), and although it is not equal to gn(U) for the same U ,
Proposition 1 tells us that it has exactly the same distribution. Thus, we could
expand the error over each interval of length 1/n, and sum up these terms to get
a handle on gn(U/n) and its distribution. This would yield the same result as
in the next theorem, which provides an asymptotic expansion of of order m for
gn(U/n) when f has at least m+1 integrable derivatives. This theorem appears
in a different form in (Abramowitz and Stegun, 1970, Section 23.1.32), without
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Fig 5. Plot of ngn(u1, u2) for Example 4.

a proof. For completeness, we provide a proof in Appendix A. We use Bk to
denote the kth Bernoulli polynomial, defined by

Bk(u) =

k∑
j=0

1

j + 1

j∑
`=0

(−1)`
(
j

`

)
(u+ `)k

(Abramowitz and Stegun, 1970). This gives B0(u) = 1, B1(u) = u−1/2, B2(u) =
u2 − u + 1/6, B3(u) = u3 − (3/2)u2 + (1/2)u, B4(u) = u4 − 2u3 + u2 − 1/30,
and so on.

Theorem 2 (Generalized Euler–MacLaurin expansion). If f has m + 1 inte-
grable derivatives over [0, 1], then

gn(U/n) =

m∑
k=1

Bk(U)

nkk!

[
f (k−1)(1)− f (k−1)(0)

]
− 1

nm+1

∫ 1

0

Bm+1((U − u) mod 1)−Bm+1(U)

(m+ 1)!

[
1

n

n−1∑
i=0

f (m+1)((i+ u)/n)

]
du.

The last term is O(n−(m+1)). This is the Euler–MacLaurin expansion of gn(U/n)
of order m.
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Proposition 3. Suppose that f has m + 1 integrable derivatives over [0, 1],∫ 1

0
f (m+1)(u)du <∞, and f (k)(1) = f (k)(0) for k = 0, . . . ,m−2, but f (m−1)(1) 6=

f (m−1)(0). Then

gn(U/n) = Bm(U)
[f (m−1)(1)− f (m−1)(0)]

m!nm
+O(n−(m+1)),

and therefore

W (m)
n

def
=

m!nmgn(U/n)

f (m−1)(1)− f (m−1)(0)
= Bm(U) +O(1/n)

converges in distribution to the random variable Bm(U). If, in addition, f is
infinitely differentiable and f (k)(1) = f (k)(0) for all k ≥ m, then W

(m)
n =

Bm(U) exactly.

Proof. Under the given assumptions, Theorem 2 gives

gn(U/n) = Bm(U)
f (m−1)(1)− f (m−1)(0)

m!nm
+O(n−(m+1)),

from which the convergence result follows. For the last part, just take m → ∞
in Theorem 2.
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Fig 7. Plot of ngn(u1, u2) for Example 6.

Corollary 4. (i) By taking m = 1, we find that if f has an integrable sec-
ond derivative over [0, 1] and f(1) 6= f(0), then we have gn(U/n) = (U −
1/2)(f(1)− f(0))/n+O(n−2) and

W (1)
n

def
=

ngn(U/n)

f(1)− f(0)
= U − 1/2 +O(1/n),

so W (1)
n + 1/2 converges in distribution to a U(0, 1) random variable U when

n→∞.
(ii) For m = 2, if f has an integrable third derivative over [0, 1], f(1) = f(0),

f ′(1) 6= f ′(0), we have

gn(U/n) = [(U − 1/2)2 − 1/12](f ′(1)− f ′(0))/(2n2) +O(n−3),

and if we define

W (2)
n

def
=

2n2gn(U/n)

f ′(1)− f ′(0)
= (U − 1/2)2 − 1/12 +O(1/n),

then W (2)
n + 1/12 converges in distribution to the random variable (U − 1/2)2,

which has density 1/
√
x and distribution function 2

√
x for 0 ≤ x < 1/4, and zero

density elsewhere, This means that 2[W
(2)
n + 1/12]1/2 converges in distribution

to a uniform random variable over [0, 1).
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We recall that gn(U/n) has the same distribution as gn(U) where U ∼ U(0, 1).
This corollary says that for non-c-periodic functions, n times the error converges
in distribution to a uniform random variable, and for c-periodic functions whose
derivative is not c-periodic, n2 times the error converges in distribution to a
random variable with a square root density over a finite interval.

4.2. Symmetric Functions and the Baker’s Transformation

An integrand f with f(0) 6= f(1) can be transformed into a c-periodic integrand
f̃ having the same integral, by defining f̃(1 − u) = f̃(u) = f(2u) for 0 ≤ u ≤
1/2. With this, we can switch from case (i) to case (ii) in Corollary 4, i.e.,
from O(n−1) to O(n−2) convergence for gn(U) (Hickernell, 2002). The resulting
function f̃ is also symmetric with respect to u = 1/2. This transformation is
equivalently achieved by keeping f unchanged and transforming the randomized
points Ui, for i = 0, . . . , n − 1, via Ũi = 2Ui if Ui < 1/2 and Ũi = 2(1 − Ui)
if Ui ≥ 1/2. This is called the baker’s transformation; it stretches the points
Ui by a factor of two and then folds back those that exceed 1. After applying
this transformation, the lattice points become locally antithetic in each interval
of the form [i/n, (i + 2)/n] if n and i are even, in the sense that they are at
equal distance from the center of the interval, on each side. As a result, they
integrate exactly any linear function over this interval. This holds for every such
interval, so a piecewise-linear approximation which is linear over each interval
is integrated exactly.

4.3. Examples with Smooth Functions

Example 7. Let f(u) = u2. We have f(1) − f(0) = 1, so we are in case (i)
of Corollary 4 and W

(1)
n + 1/2 = ngn(U/n) + 1/2 is approximately U(0, 1),

with O(1/n) approximation error. In fact, since f ′′(u) = 2 is a constant, the
first two terms in Theorem 2 give the exact error function: ngn(U/n) + 1/2 =
U + ((U − 1/2)2 − 1/12)/n. Thus, the O(1/n) approximation error in the first
order approximation is exactly ((U − 1/2)2 − 1/12)/n and its absolute value is
bounded by 1/(6n). The exact distribution of the error is

P[ngn(U/n) + 1/2 ≤ x] =
n− 1

2

[
−1 +

√
1 +

4n[x− 1/(6n)]

(n− 1)2

]

when 0 ≤ x − 1/(6n) ≤ 1 and is 0 otherwise. Figure 8 (left) shows the exact
distribution of ngn(U/n) + 1/2 for one-dimensional lattices with n = 4 and n =
210 = 1024 points. Recall that these lattices have point sets {0, 1, . . . , (n−1)/n}.
Here the random variable ngn(U/n) + 1/2 has expectation 1/2 (exactly) but it
takes its values in the interval (1/(6n), 1 + 1/(6n)). For n = 4, the values are
in the interval (1/24, 1 + 1/24), which explains the shift observed in the figure.
For n = 1024, the shift by 1/6144 is too small to be visible to the eye. �
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Example 8. We apply the baker’s transformation to the randomly-shifted
points to integrate f(u) = u2, the same function as in Example 7. The trans-
formed function is f̃(u) = 4u2 for u ≤ 1/2 and f̃(u) = 4(1 − u)2 for u > 1/2.
We obtain

∫ 1

0
f̃ ′(u)du = 0, but since f ′′(u) = 8 for all u,

∫ 1

0
f̃ ′′(u)du = 8 6=

0 = f̃ ′(1)− f̃ ′(0), which can be explained by the fact that f̃ ′ is discontinuous at
u = 1/2. If n is even, this point of discontinuity lies at the boundary between
two intervals, and case (ii) of Corollary 4 still applies with f̃ ′(1)− f̃ ′(0) replaced
by 8. Moreover, f ′′′(u) = 0 for all u. Thus, n2gn(U/n)/4 + 1/12 = (U − 1/2)2,
so that 2[n2gn(U/n)/4 + 1/12]1/2 ∼ U(0, 1) (exactly).

If n is odd, the middle term of the summation does not have a continuous
derivative, so the theorem does not apply. But if we write n = 2p+ 1 and define

tp(u) =

{
4
n

(
p+u
n

)2
if u ≤ 1/2

4
n

(
1− p+u

n

)2
if u ≥ 1/2,

we can compute

gn(u/n) =

p−1∑
k=0

4

(
k + u

n

)2

+ tp(u) +

n∑
k=p+1

4

(
1− k + u

n

)2

− 1

3

=

{
24u2p−2p+24u2−1

3n3 if u ≤ 1/2

24u2p+22p+24u2−48up+11−24u
3n3 if u ≥ 1/2.

Thus, n2gn(U/n)/4+1/12 converges to U2 if U ≤ 1/2 and to (1−U)2 otherwise,
so it has the same limiting distribution as when n is even:

lim
p→∞

P[n2gn(U/n)/4 + 1/12 ≤ x] = 2
√
x

for 0 ≤ x ≤ 1/4. �

Example 9. Take f(u) = u3+u2−2u. We have f(0) = f(1) = 0, f ′(1)−f ′(0) =
5, and f ′′′ does not vanish. Here, 2n2gn(U/n)/5 + 1/12 has approximately the
same distribution as (U−1/2)2, and 2[2n2gn(U/n)/5+1/12]1/2 is approximately
U(0, 1), but this distribution is not exact. Figure 8 (right) shows the empirical
distribution F̂ of 104 independent replications of 2[2n2gn(U)/5 + 1/12]1/2 for
one-dimensional lattices with n = 64 and n = 8192 points. We see that the
approximation is extremely good. �

Example 10. Let f(u) = Bm(u), the Bernoulli polynomial of degree m, for
m ≥ 2. Then B(k)

m (1) = B
(k)
m (0) for k = 0, . . . ,m − 2 and for k ≥ m, whereas

B
(m−1)
m (1)−B(m−1)

m (0) = m!. It follows that nmgn(U/n) = Bm(U). �

4.4. Discontinuous and Unbounded Functions

The integrands f encountered in practice are often discontinuous, and sometimes
they are also unbounded and have unbounded derivatives. The next examples
give simple illustration of what can happen in these cases, in one dimension.
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Fig 8. Left: Exact distribution function of ngn(U)+1/2 for one-dimensional lattices with n =
4 points (in blue) and n = 1024 points (in red), for Example 7. Right: Empirical distribution
F̂ of 104 replicates of 2[2n2gn(U)/5+1/12]1/2 for one-dimensional lattices with n = 64 points
(in blue) and n = 213 = 8192 points (in red), for Example 9.

Example 11. Consider the step function f(u) = 0 for u < a and f(u) = 1 for
u ≥ a, for some constant a ∈ (0, 1). For a given n, let δ(n) = dnae/n − a. The
integration error with a randomly shifted lattice rule is then gn(U/n) = −δ(n)
if U/n < 1/n− δ(n), and gn(U/n) = 1/n− δ(n) if U/n ≥ 1/n− δ(n), where U
is U(0, 1). Thus, the error is distributed over only two possible values, and the
variance is O(n−2), unless a is a multiple of 1/n, in which case there is no error.

To generalize this, suppose that f is piecewise constant with a jump of size
dj (positive or negative) at position aj , for j = 1, . . . , k, for some integer k >
0. As for the case of a single jump, changing the position of a jump by any
multiple of 1/n does not change the distribution of gn(U/n), so we can assume
that all the jumps are in the interval (0, 1/n), sorted in increasing order. Let
a0 = s0 = 0 and sj = d1 + · · · + dj , for j = 1, . . . , k, and ak+1 = 1/n. Then
the average is µ = n

∑k
j=0 sj(aj+1 − aj) and the error gn(U/n) is (sj − µ)/n

with probability (aj+1 − aj)n. Thus, the error is distributed over k+ 1 possible
values only, regardless of n, and the variance is again O(n−2). However, these
k + 1 values depend on n, and the distribution of n gn(U/n) may vary with n
without converging to anything.

Even more generally, suppose f is twice continuously differentiable, except at
k points aj where it has a jump. Then f can be written as f = fj + fc, where fj

is a piecewise constant function as above and fc is a smooth function that obeys
Proposition 3. The error gn(U/n) is then the sum of two terms: an O(1/n) error
with a discrete distribution over k values as above, and another term obtained
by applying Proposition 3 to fc. �

Example 12. Consider the unbounded function f(u) = g(F−1(u)) where F is
the cdf of a random variable with infinite support [0,∞). Let n0 be a (fixed) large
integer and let b = 1−1/n0. Suppose that n→∞ while n remains a multiple of
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n0. The error for the integral over the interval [0, b] has a distribution that obeys
a modified version of Proposition 3, with f (k−1)(1) replaced by f (k−1)(b), and
n replaced by n − n/n0. Over the last interval [b, 1), the distribution is more
complicated, and the error is unbounded. In fact, the error over the interval
[(n− 1)/n, 1) is distributed as a random variable generated from the tail of the
distribution F , so the total error will have a right tail that resembles the right
tail of F . It will not be uniform. �

5. Sums of One-Dimensional Functions

5.1. Setting and Relevance

To study the integration error in the general situation where s ≥ 1, we will
decompose this error in the next section as a sum of three terms, where the first
term E1 is the limiting integration error for a sum of one-dimensional functions.
This E1 is sometimes the dominant term of the error. The present section is
devoted to examining the behavior of the error for such a sum. That is, we
suppose here that f has the form

f(u) =

s∑
j=1

ajfj(uj), (8)

where fj : [0, 1) → R and aj ∈ R for each j. We will obtain the limiting
distribution for this case by applying the results of Section 4 to each fj , and
looking at the linear combination.

Our error decomposition is in fact connected with the functional ANOVA
decomposition of f (Liu and Owen, 2006; Owen, 1998), written as

f(u) = µ+
∑

u⊆{1,...,s}, u6=∅

fu(u) (9)

where the fu : (0, 1)s → R depend only on {ui, i ∈ u}, are defined recursively
by f∅ = µ (a constant function) and

fu(u) =

∫
(0,1)s−|u|

f(u) duū −
∑
v⊂u

fv(u)

for ∅ 6= u ⊆ {1, . . . , s}, where the first integral is with respect to the coordinates
of u whose indexes are not in u, denoted by uū. The fu’s integrate to zero and
are orthogonal, and the variance σ2 =

∫
[0,1)s

(f(u) − µ)2du (assumed finite)
decomposes as σ2 =

∑
u⊆{1,...,s} σ

2
u where σ2

u = Var[fu(U)] for U ∼ U(0, 1)s.
We say that f has effective dimension d in proportion ρ in the superposition

sense (Owen, 1998) if ∑
|u|≤d

σ2
u ≥ ρσ2. (10)
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When (10) holds for d = 1 and ρ close to 1, the approximation of f − µ by
the sum of one-dimensional functions f{j} for j = 1, . . . , s, in the ANOVA
decomposition, accounts for most of the variance (and mean square error). Then,
the higher-order functions in the decomposition have a small impact and the
distribution of the error gn(U) would be well approximated by the distribution
of the sum in (8) with fj = f{j} and aj = 1. Note that low effective dimension
can sometimes be achieved by redefining f via a change of variables, without
changing the expectation µ, and this often makes RQMC much more effective
(Caflisch, Morokoff and Owen, 1997; Glasserman, 2004; L’Ecuyer, 2009).

5.2. Convergence to a spline

Suppose that f has the form (8) and that each fj satisfies the assumptions of
Proposition 3 for some m = mj ≥ 1. If mj = 1 for at least one index j, then the
error will converge as O(1/n) and the fj ’s for which mj > 1 will have no impact
on the asymptotic distribution, because their error contribution converges at a
faster rate. So to simplify the exposition, suppose thatmj = 1 for all j (the other
fj ’s have been removed) and that each fj has an integrable second derivative.
We can then apply Corollary 4(i) to each fj : It says that if gj,n(Uj) denotes
the corresponding integration error, then n gj,n(Uj/n) converges to [fj(1) −
fj(0)](Uj − 1/2). But the integration error function for f can be written as

gn(u) =

s∑
j=1

ajgj,n(uj).

This means that the asymptotic distribution of n gn(U) is the same as the
distribution of

W =

s∑
j=1

aj [fj(1)− fj(0)](Uj − 1/2) =

s∑
j=1

bj(Uj − 1/2), (11)

where bj = aj [fj(1) − fj(0)]. This W is a linear combination of independent
uniform random variables over the interval (−1/2, 1/2). Theorem 1 of Barrow
and Smith (1979), restated in the next proposition, tells us that the (exact)
cumulative distribution function of W is a non-decreasing spline of degree s,
with s − 1 continuous derivatives, and its support is the finite interval [−b, b],
where b =

∑s
j=1 |bj |/2.

Proposition 5. The exact distribution function of W is given by

P[W ≤ w] =
1

s!
∏s
j=1 bj

∑
u⊆{1,...,s}

(−1)|u|

max

0, w + b−
∑
j∈u

bj

s (12)

for −b ≤ w ≤ b. Its density is given by a spline of degree s− 1:

fw(w) =
1

(s− 1)!
∏s
j=1 bj

∑
u⊆{1,...,s}

(−1)|u|

max

0, w + b−
∑
j∈u

bj

s−1
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where 00 = 0 by convention.

Example 13. As an illustration, let s = 2 and f(u1, u2) = 5u1 + 3u2 − 4 =
5B1(u1) + 3B1(u2). The constant −4 has no effect on the error. Here, we have
bj = aj , b = 4, and the distribution function Fw of W = ngn(U) = ngn(U1, U2)
(here we have equality) is a spline of degree 2 defined by

Fw(w) =

 (w + 4)2/30 for − 4 ≤ w ≤ −1,
(6w + 15)/30 for − 1 ≤ w ≤ 1,
−(w + 1)2/30 + (w − 1)/3 + 25/30 for 1 < w ≤ 4.

The corresponding density is a “table mountain” function, defined by

fw(w) =

 (4 + w)/15 for − 4 ≤ w ≤ −1,
1/5 for − 1 ≤ w ≤ 1,
(4− w)/15 for 1 < w ≤ 4.

�

5.3. Asymptotic Distribution when s → ∞

If f has an additive form as in (8) and s→∞ while n remains fixed, then gn(U)
is a sum of s independent random variables and its properly standardized version
may obey a CLT when s → ∞, under standard conditions on the variances of
the terms of the sum. The following version of the Berry–Essen theorem provides
simple sufficient conditions for the CLT to hold, together with an explicit bound
on the approximation error for the distribution function. It is a direct adaptation
of Petrov (1995, Theorem 5.7) reformulated for our setting.

Proposition 6. For 0 < δ ≤ 1 and j = 1, . . . , s, let Xj = ajgj,n(Uj), σ2
j =

Var[Xj ] = a2
jE[g2

j,n(Uj)], and

ν2+δ
j = E[|Xj |2+δ] = |aj |2+δE[|gj,n(Uj)|2+δ].

Define v2
s = σ2

1 + · · ·+ σ2
s , w2+δ

s = ν2+δ
1 + · · ·+ ν2+δ

s ,

Ys =
X1 + · · ·+Xs

vs
=
gn(U)

vs
,

and let Fs(x) = P[Ys ≤ x] = P[gn(U)/vs ≤ x]. Then,

sup
s≥1, x∈R

|Fs(x)− Φ(x)| ≤ K(δ)(ws/vs)
2+δ. (13)

The CLT holds (for fixed n and s→∞) if lims→∞ ws/vs = 0.

The following condition is less general, but simpler.

Corollary 7. The CLT holds (for fixed n and s→∞) if

lim
s→∞

1

vs
sup

j∈{1,...,s}
|aj | sup

u∈(0,1)

|gj,n(uj)| = 0.
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Proof. Because

E[|gj,n(Uj)|2+δ] ≤ E[g2
j,n(Uj)] sup

u∈(0,1)s
|gj,n(uj)|δ,

we have ν2+δ
j ≤ cδjσ2

j , where cj = |aj | supu∈(0,1) |gj,n(uj)|. Therefore,

w2+δ
s ≤

s∑
j=1

cδjσ
2
j ≤ v2

s sup
j∈{1,...,s}

cδj ,

which we rewrite as (
ws
vs

)1+2/δ

≤ 1

vs
sup

j∈{1,...,s}
cj .

If the right side vanishes when s→∞, then ws/vs also vanishes.

Corollary 8. If fj = f1 for all j, the CLT holds (for fixed n and s→∞) if

lim
s→∞

supj∈{1,...,s} a
2
j∑s

j=1 a
2
j

= 0.

Proof. Because the contribution from fj is the same in every term in the sum,
it can be factorized out of the sum, then just ignored because the right-hand
side is zero. A similar argument holds for the supremum in the numerator.

Example 14. Suppose fj(uj) = Bmj
(uj), the Bernoulli polynomial of degree

mj , so that (8) becomes

f(u) =

s∑
j=1

ajBmj
(uj).

Example 10 told us that the error function for the jth term is gj,n(uj) =
n−mjBmj

(uj), so the error function for the sum is

gn(u) =

s∑
j=1

ajn
−mjBmj

(uj).

We also have

v2
s =

s∑
j=1

a2
jn
−2mj (mj !)

2|b2mj
|/(2mj)!

where bk is the k-th Bernoulli number, which can be defined as

bk =

k∑
j=0

j∑
`=0

(−1)`
(
j

`

)
`k

j + 1
,

and

w2+δ
s =

s∑
j=1

|aj |2+δn−(2+δ)mjE[|Bmj (U)|2+δ].
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Corollary 7 implies that if

lim
s→∞

supj∈{1,...,s} supu∈(0,1) a
2
jn
−2mjB2

mj
(u)∑s

j=1 a
2
jn
−2mj (mj !)2|b2mj

|/(2mj)!
= 0, (14)

then the CLT holds for the standardized version of gn(U).
It is known (Abramowitz and Stegun, 1970, page 805) that |bk| > 2k!/(2π)k

for k = 2, 4, . . . and that |Bk(u)| < 2k!/(2π)k(1 − 21−k) < 4k!/(2π)k for u ∈
(0, 1) and k ≥ 2. The latter inequality also holds for k = 1, since |B1(u)| < 1/2 <
4/2π for u ∈ (0, 1). Using these inequalities, we can derive an upper bound for
the left-hand side of (14), which implies that the CLT holds under the following
sufficient condition (in which we have dropped the constant factors):

lim
s→∞

supj∈{1,...,s} a
2
j (2πn)−2mj (mj !)

2∑s
j=1 a

2
j (2πn)−2mj (mj !)2

= 0. (15)

For the special case where mj = k (a positive integer) for all j, (15) is equivalent
to Corollary 8. �

Example 15. As a special case of Example 14, let f be a linear combination
of Bernoulli polynomials of degree 1:

f(u) =

s∑
j=1

aj(uj − 1/2). (16)

If aj = jk for all j, where k ≥ 0 is fixed, Corollary 8 applies, because

lim
s→∞

s2k∑s
j=1 j

2k
≤ lim
s→∞

s2k∫ s
0
u2k du

= lim
s→∞

2k + 1

s
= 0.

If aj = ρj for all j, where 0 < ρ < 1, then

(ws/vs)
2+δ = c(δ)

∑s
j=1 ρ

(2+δ)j(∑s
j=1 ρ

2j
)1+δ/2

= c(δ)
1− ρ(2+δ)(s+1)

(1− ρ2(s+1))1+δ/2
→ c(δ) 6= 0

when s → ∞, where c(δ) = 31+δ/2/(3 + δ), so Corollary 8 does not apply. One
can show that the CLT does not hold in this case; the aj ’s are converging to 0
too fast.

5.4. Normal P-P plots for numerical examples.

We report a few representative illustrations of simulation experiments we made
to assess the normality of the error. For these experiments, and all other nu-
merical examples in the rest of the paper (unless otherwise indicated), we use
a rank-1 lattice rule in 20 dimensions with n = 8192, v1 = a1/n where

a1 = (1, 2431, 3739, 1689, 3185, 2609, 4343, 1525, 71, 6083,

2585, 1583, 5385, 3359, 7759, 3055, 2627, 4535, 4475, 1623),
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and vj = ej (the jth unit vector) for j = 2, . . . , 20. When the integrand has
s < 20 dimensions, we just use the first s coordinates of each point.

In our experiments, we compute m independent replicates of the RQMC
estimator µ̂n,rqmc in (3) and we subtract the global average (or the exact mean
µ when we know it) to each replicate to obtain estimates of the corresponding
replicates of gn(U), say gn(U1), . . . , gn(Um). We then compute their empirical
variance S2

n,m and the standardized errors Zn,j = gn(Uj)/Sn,m for j = 1, . . . ,m.
Finally, we plot the empirical distribution of these standardized errors, defined
by

F̂Zn,m(z) =
1

m

m∑
j=1

I[Zn,j ≤ z]

against Φ(z), where Φ is the standard normal distribution function. Unless oth-
erwise specified, we take m = 104, in order to obtain good accuracy in the
estimation of the error distribution.

Example 16. Figure 9 shows normal P-P plots of the error for a function f
defined by (16) with aj = j2 and with aj = 2−j , as in Example 15. As expected,
the P-P plots indicate a nearly normal distribution when s is large enough in
the first case, for which the CLT holds, but not for the second case. We made a
similar plot for aj = 1 (not shown), and the fit was already excellent for s = 2
and looked perfect (to the eye) for s = 10 and 20. We also performed similar ex-
periments by replacing the first-degree Bernoulli polynomials by second-degree
or by third-degree Bernoulli polynomials, and we observed similar behaviors for
the same three choices of coefficients aj . �
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Fig 9. Normal P-P plot of the error for Example 16, with f as in (16) with aj = j2 (left)
and with aj = 2−j (right). On the left, the curves with s = 10 and s = 20 almost superpose
each other, while on the right, all three curves almost superpose each other.

Example 17. Another interesting special case of Example 14 is when f is
a mixed sum of first-degree and of second-degree Bernoulli polynomials with
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aj = 1 for all j:

f(u) =

r∑
j=1

B1(uj) +

s∑
j=r+1

B2(uj) (17)

for some r < s. Figure 10 shows normal P-P plots of error for functions f defined
as in (17) in s = 2, 10 and 20 dimensions, for r = s− 1 and for r = 1. In both
cases, the error gn(U) is dominated by the errors on the polynomials of degree
1. In the first case (r = s−1), when s = 10 or 20, this dominant part of the error
is a sum of several independent terms and the normal approximation provides a
very good fit (the P-P plots look perfect) for this reason. For s = 2, the normal
approximation is not good, as expected. In the second case (r = 1), the P-P
plots show a bad fit (and almost superpose each other) for all values of s. This
can be explained by the fact that the dominant part of the error comes from a
single polynomial of degree 1 for all s. By looking at this plot, one may conclude
that the CLT does not hold here if r = 1 and s → ∞. But the expression in
(15) in that case becomes

lim
s→∞

max[(2πn)−2, 4(2πn)−4]

(2πn)−2 + 4(s− 1)(2πn)−4
=

1

1 + (s− 1)(πn)−2
= 0, (18)

so the CLT does apply, but the convergence in s is very slow and does not show
up in Figure 10. �

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F̂Zn,m(z)

Φ
(z

)

s = 2

s = 10

s = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F̂Zn,m(z)

Φ
(z

)

s = 2

s = 10

s = 20

Fig 10. Normal P-P plot of the error for Example 17, with f as in (17) with r = s− 1 (left)
and r = 1 (right). The behavior of all the curves is somewhat similar to that in Figure 9,
except that the non-normality on the right panel is more accentuated.

We say that f has effective dimension d in proportion ρ in the truncation
sense (Owen, 1998) if ∑

u⊆{1,...,d}

σ2
u ≥ ρσ2. (19)
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If (19) holds for small d and ρ close to 1, this means that f depends almost only
on the first few variables (or random numbers) Uj . A low effective dimension
in the truncation sense is incompatible with meeting (even approximately) the
conditions of Proposition 6. Various techniques have been designed to transform
the integrand f to reduce its effective dimension in the truncation sense in or-
der to improve the effectiveness of RQMC (L’Ecuyer, 2009). The PCA method
in Section 7 is one such technique. One side effect of these techniques is that
they tend to reduce significantly the normality of the RQMC estimator. On
the other hand, a low effective dimension in the superposition sense is not in-
compatible with the conditions of Proposition 6. In fact, all the integrands in
Examples 16 and 17 have effective dimension 1 in the superposition sense and
yet the proposition applies.

6. Error Distribution for Multi-Dimensional Integrals

6.1. A First-Order Error Decomposition

For a general s-dimensional integrand f , we will separate the sum of its one-
dimensional ANOVA components from the rest, and apply the results of Sec-
tion 5 to this sum. If f{j} is the jth one-dimensional ANOVA component of f
and if each f{j} has an integrable second derivative, then the integration error
for the sum is a random variable whose distribution can be approximated as in
(11) by that of

E1 = E1(U) =

s∑
j=1

(
Uj −

1

2

)
f{j}(1)− f{j}(0)

n
.

This provides a first-order approximation for the situation where the one-dimens-
ional ANOVA components are not all c-periodic. The importance of the contri-
bution of E1 to the total error gn(U) will depend on f . On the other hand, it
does not depend on the choice of lattice, because all integration lattices have
the same one-dimensional projections.

From a different perspective, we have seen that when we randomize the points,
we can first choose a small hypercube [0, 1/n)s + K/n at random, where K
is a random vector uniformly distributed in {0, . . . , n − 1}s, and then sample
a random shift U/n uniformly inside that hypercube, where U ∼ U(0, 1)s.
Equivalently, we can sampleK uniformly over a restricted subset of ns−1 distinct
hypercubes that satisfy the conditions of Proposition 1, instead of over all ns
hypercubes. The corresponding error is

g̃n(K,U) =
1

n

n−1∑
i=0

f((ui + K/n) mod 1 + U/n)− µ (20)

and the expected error conditional on K is

E2 = E2(K) =

∫
[0,1)s

g̃n(K,u) du.
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This E2 depends only on the choice of K and represents the error due to the
difference of means across the small hypercubes. In contrast, E1 does not depend
on K and depends only on the random shift U/n. Thus, E1 and E2 are two
independent components of the error gn(U).

An equivalent way of viewing this is to write the first terms of the ANOVA
decomposition of g̃n(K,U) after conditioning on K:

g̃n(K,U) = g̃n,∅(K) +
1

s

s∑
j=1

g̃n,{j}(K,U) +
∑

u⊆{1,...,s}, |u|≥2

g̃n,u(K,U)

= E2(K) + E1(U) +O(n−2) +
∑

u⊆{1,...,s}, |u|≥2

g̃n,u(K,U),

where we have used the fact (easy to verify) that the one-dimensional ANOVA
components conditional on K, g̃n,{j}(K,U), do not depend on K. Let

E3 = E3(K,U) = g̃n(K,U)− E1 − E2

be the remainder of the error. We will show in what follows that when f is
smooth enough, E3 becomes negligible compared with E1 and E2 when n in-
creases, and E2 is typically the dominant part of the error when n→∞.

6.2. Convergence of the Error Terms

We see from its definition that |E1| converges as O(n−1) (unless it is zero), and
that E1 depends neither on K nor on the choice of lattice. Its variance is

Var[E1] =
1

12n2

s∑
j=1

[
f{j}(1)− f{j}(0)

]2
.

In contrast, it is difficult to obtain a simple formula for the variance of E2,
because it depends on both f and the lattice. We saw earlier that if f is smooth
enough, namely if all its mixed partial derivatives of order one are absolutely
integrable, then for any ε > 0, it is easy to find rank-1 lattice rules for all n,
such that for any shift U, the integration error gn(U) converges as O(n−1+ε).
Then, |E2| and |E3| will converge at that speed or faster.

Proposition 10 below shows that under a slightly stronger smoothness as-
sumption on f , there are lattice rules for which |E3| converges almost as O(n−2).
In fact, this convergence holds on average over rank-1 lattice rules, so it repre-
sents the typical behavior as soon as we make some effort to select a good rule.
This means that E3 would typically become negligible compared with E1 + E2

when n → ∞. We then obtain |E2| = O(n−1+ε) while |E1| = O(n−1), so E2

should eventually dominate when n→∞. For a typical (moderate) n, however,
E1 may still dominate, and the distribution of n(E1 +E2) can be taken as an ap-
proximation of the distribution of ng̃n(K,U). We will use the following lemma
in the proof.
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Lemma 9. Suppose that f has integrable mixed partial derivatives of second
order over [0, 1)s. Then, for any ε > 0, there exist rank-1 lattice rules for which

sup
K,U

∂g̃n(K,u)

∂uj
−
f{j}(1)− f{j}(0)

n
= O(n−2+ε),

and this property actually holds on average over all rank-1 lattice rules.

Proof. Let fj denote the partial derivative of f with respect to its jth coordinate.
The partial derivative of g̃n(K,u) with respect to the jth coordinate of u can
be expanded as

∂g̃n(K,u)

∂uj
=

1

n

n−1∑
i=0

fj((ui + K/n) mod 1 + u/n)

n
.

From the theory of lattice rules, as we have seen earlier, if all the mixed partial
derivatives of first order of fj are absolutely integrable, then for any ε > 0, and
for all n, on average over all rank-1 lattice rules, the worst-case integration error
on fj by the lattice rule converges as O(n−1+ε) uniformly in the shift U. If we
use a rule at least as good as the average, we obtain

1

n

n−1∑
i=0

fj((ui + K/n) mod 1 + u/n)

n
=

1

n

∫
[0,1)s

fj(u)du +
1

n
O(n−1+ε)

=
f{j}(1)− f{j}(0)

n
+O(n−2+ε).

Proposition 10. If f has integrable mixed partial derivatives of second or-
der over [0, 1)s, then for any ε > 0, there exist rank-1 lattice rules for which
E3(K,U) = O(n−2+ε) uniformly in K and U, and this holds on average over
all rank-1 lattice rules.

Proof. Fix the components of u equal to those of U, except for the first one,
and denote U′ = (U2, . . . , Us) and U′′ = (U3, . . . , Us). By applying Lemma 12
of the appendix with m = 1 to the function F (u1) = g̃n(K, u1,U

′), given that
this function has two integrable derivatives, we obtain that for all U1 ∈ (0, 1),∫ 1

0

g̃n(K, u1,U
′) du1 = g̃n(K, U1,U

′)

− (U1 − 1/2) [g̃n(K, 1,U′)− g̃n(K, 0,U′)] +O(n−2). (21)

In the O(n−2) term here and in all the O(n−2) terms that follow, the implied
constants can be taken independent of K and U. The error difference in the
square brackets on the right can be approximated by

∂g̃n(K,U)

∂U1
+O(n−2) =

f{1}(1)− f{1}(0)

n
+O(n−2+ε),
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where we have used, for the left side, the fact that the second-order partial
derivatives of g̃n are O(n−2), and Lemma 9 for the right side. Substituting this
approximation into (21), we find∫ 1

0

g̃n(K, u1,U
′) du1 = g̃n(K, U1,U

′)

− (U1 − 1/2)
f{1}(1)− f{1}(0)

n
+O(n−2+ε). (22)

Next, we let u2 vary again and integrate with respect to u2:∫ 1

0

∫ 1

0

g̃n(K, u1, u2,U
′′) du1 du2 =

∫ 1

0

g̃n(K, U1, u2,U
′′) du2

− (U1 − 1/2)
f{1}(1)− f{1}(0)

n
+O(n−2+ε).

Applying (22) to the integral on the right-hand side of the above equation, but
with u2 taking the place of u1, we obtain∫ 1

0

∫ 1

0

g̃n(K, u1, u2,U
′′) du1 du2 = g̃n(K, U1, U2,U

′′)

− (U1 − 1/2)
f{1}(1)− f{1}(0)

n
− (U2 − 1/2)

f{2}(1)− f{2}(0)

n
+O(n−2+ε).

This procedure can be applied repeatedly up to the last coordinate and this
yields the result.

We just saw that with well-chosen lattice rules, E2 becomes the dominating
part of the error when n→∞. However, we do not have an explicit form for the
limiting distribution of E2, and it seems unlikely that a practically useful form
(for computing confidence intervals in general) can be obtained. In fact, it seems
that the distribution of E2 could be almost arbitrary. More specifically, for any
pre-specified continuous cdf F with finite support, by taking n large enough and
picking any lattice rule with n points, one can construct a smooth function f
for which the cdf of E2 = E2(K) is arbitrarily close to F . It suffices to specify
f so that the average error E2(K) takes the values F−1((j + 1/2)n−s+1) for
j = 0, . . . , ns−1 when K runs through its ns−1 possibilities, and then smooth the
function across the boundaries of the small hypercubes. This means that for large
n, the error g̃n(K,U) can have (approximately) essentially any distribution. On
the other hand, it is unclear if this can be done for a fixed function f with
integrable mixed partial derivatives of order two, and independent of n.

6.3. Two-Dimensional Examples

Figure 11 compares the cdf of nE2 (in red) and that of ngn(U) (in blue) for
Examples 4 and 5, where n = 8. In these figures, the cdf of nE2 was com-
puted exactly whereas that of ngn(U) is an empirical version obtained from 104

independent replications.
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For Example 4, it turns out that E1(U) = 0 for all U, so g̃n(K,U)−E2(K) =
O(n−2+ε), which explains the good agreement between the two distributions
plotted in Figure 11 (top).

For Example 5, we have E1(U) = −(U1−1/2)/(2n)+(U2−1/2)/(3n), whose
possible values range from −5/(12n) to 5/(12n), and whose cdf is a spline of
second degree, according to Proposition 5. That is, for any k ∈ {0, . . . , n − 1},
ng̃n(k,U) can depart from its average in the small square by up to 5/12 ≈ 0.417
(if we neglect the O(n−2+ε) term), which is more than twice the largest distance
between any two consecutive jumps of the cdf of nE2, which is 0.200 (the dis-
tance between the first and last jumps of that cdf is approximately 0.571). This
explains the fact that the cdf of ngn(U) here is not well approximated by that
of nE2. It is much smoother. If we increase n, the steps of nE2 become smaller
and its discrete distribution gets closer to the empirical error distribution, but
the gap between these two distributions does not converge to zero very quickly.
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Fig 11. Exact cdf of nE2 (piecewise constant function) and empirical cdf of ngn(U) for
Example 4 (top) and Example 5 (bottom), with n = 8.
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6.4. Error Distribution via Fourier Expansion

6.4.1. The General Case

We saw earlier that the Fourier expansion of gn(u), for an arbitrary shift u ∈
[0, 1)s, is

gn(u) =
∑

06=h∈L∗s

f̂(h) exp(2πihtu). (23)

Let w1, . . . ,ws be a basis of the dual lattice L∗s and let W be an s× s matrix
with columns w1, . . . ,ws. These vectors have only integer coordinates. Thus,
L∗s is the set of all integer vectors h that can be written as

h = Wz =

s∑
j=1

zjwj

for z = (z1, . . . , zs)
t ∈ Zs. By summing over the vectors z instead of the vectors

h (a change of variable), we can rewrite

gn(u) =
∑

06=z∈Zs

f̂(Wz) exp(2πiutWz) (24)

=
∑

06=z∈Zs

v̂n(z) exp(2πiutWz) = vn(utW)

for some function vn whose Fourier coefficients are v̂n(z) = f̂(Wz). This func-
tion vn depends on n and on the selected lattice, via W.

If we can recover vn explicitly from its Fourier coefficients, this would give an
explicit formula for gn(u), the error as a function of the shift. More generally,
we may be able to approximate from this expression at least the most impor-
tant Fourier coefficients in the expansion of gn, and eventually from this, the
distribution of gn(U).

Note that there is a link between this function vn and the generation of the
shift uniformly in the parallelotope P . Indeed, if U has the uniform distribution
over P , then we can writeU = VŨ where Ũ ∼ U(0, 1)s andV is the s×smatrix
whose columns are the basis vectors v1, . . . ,vs. Then, WtV = I, and therefore
gn(U) = vn(WtU) = vn(WtVŨ) = vn(Ũ). This implies that if U ∼ U(0, 1)s,
then gn(U) and vn(U) have the same distribution (but they are not the same
function of U).

6.4.2. A Few Multidimensional Examples

Example 18. In one dimension, the dual lattice contains all multiples of n.
Thus, the matrix W is one by one and contains the single entry n. The Fourier
coefficients of vn are then v̂n(z) = f̂(nz), for z ∈ Z, and we have gn(u) = vn(nu).
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As a special case, if f is the kth Bernoulli polynomial Bk, then its Fourier
expansion is

Bk(u) =
∑

06=h∈Z

−k!

(2πih)k
e2πihu

for u ∈ (0, 1), and we have

v̂n(z) =
−k!

(2πinz)k
= B̂k(z)n−k.

We can then conclude that vn(u) = n−kBk(u) and gn(u) = vn(nu) = n−k

Bk(nu mod 1) for all u ∈ (0, 1). But if U is U(0, 1), then nU mod 1 is also
U(0, 1), and therefore nkgn(U) has exactly the same distribution as Bk(U).
This agrees with Example 10. �

Example 19. Suppose that f : [0, 1)s → R is a product of Bernoulli polynomi-
als:

f(u) = f(u1, . . . , us) =

s∏
j=1

Bmj
(uj).

Its Fourier expansion is then

f(u) =
∑

0 6=h∈Z

s∏
j=1

−mj !

(2πihj)mj
e2πihjuj =

(−1)sm1! · · ·ms!

(2πi)m1+···+ms

∑
06=h∈Z

1

hm1
1 · · ·hms

s
e2πihtu

for u = (u1, . . . , us)
t ∈ (0, 1)s. In this case, the Fourier coefficient v̂n(z) =

f̂(Wz) can be written as

v̂n(z) =

s∏
j=1

−mj !

(2πi)mj (w(j)z)mj
,

where w(j) is the j-th row of the matrix W. Here, (w(j)z)mj is a multivariate
polynomial in z. Example 20 illustrates the specific case where mj = 1 for all j.

�

Example 20. Figure 12 shows a normal P-P plot of the error for

f(u) =

s∏
j=1

(uj − 1/2), (25)

The discrepancy from the normal distribution becomes more obvious for s = 20.
For this special case, for s = 2, the Fourier coefficients of the error function for
a rank-1 lattice rule can be written explicitly as

v̂n(z1, z2) =
−1

4π2nz1(−a1z1 + z2)
.

�
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Fig 12. Normal P-P plot of the error for Example 20. The departure from normality is clearly
visible only for s = 20.

6.5. Sampling the Error in the Dual Space

So far, we saw asymptotic distributions and convergence conditions for the error.
Here we point out that expansion formula in (24) can sometimes be used to
estimate the error distribution. The idea is to compute a truncated version of
this expansion,

g̃n(u) =
∑

06=z∈Z̃

f̂(Wz) exp(2πi ztWtu), (26)

where Z̃ = {z = (z1, . . . , zs) : −zj,0 ≤ zj ≤ zj,0} for some positive integers
zj,1, . . . , zj,s. If we know the Fourier coefficients f̂(h) of f , then the error distri-
bution can be estimated by the empirical distribution of m independent repli-
cates of g̃(U) instead of m independent replicates of µ̂n,rqmc as explained in
Subsection 5.4. This could be advantageous if n is large and |f̂(Wz)| converges
quickly to zero as ‖z‖ increases. This convergence speed may depend on the
choice of W, i.e., the choice of dual basis.

Example 21. Consider the two five-dimensional functions

f1(u) =

5∏
j=1

B1(uj) and f2(u) =

5∏
j=1

B2(uj).

We take the same lattice with n = 8192 as in Subsection 5.4. For W, we com-
puted a Minkowski-reduced basis of the dual lattice (Afflerbach and Grothe,
1985); this gives basis vectors which are as short as possible and of almost the
same length. Then we approximated the error distribution with m = 105 in-
dependent realizations of g̃(U) in (26), for both f1 and f2. We did this with
z1,0 = z2,0 = z0 first with z0 = 1 and then with z0 = 4. The Fourier coefficients
converge much faster for f2 than for f1, so we expect a better approximation
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for f2. This is confirmed empirically in Figure 13, which shows a P-P plot of the
empirical distribution F̃ of the m independent replicates of ng̃n(U) against the
empirical distribution F̂ of m replicates of ngn(U) sampled as in Subsection 5.4.
Note that here, g̃n(U) is much less time-consuming to sample than gn(U). We
observe an excellent fit in the case of f2, even with z0 = 1. For f1, the approx-
imation with z0 = 1 is poor, while that with z0 = 4 is reasonable but the lack
of fit is still visible. �
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Fig 13. P-P plots between F̂ and F̃ for Example 21 for f1 (left) and f2 (right).

7. A Real-Life Example: Pricing an Asian Option

Here we take an application used as an example in many articles. We compare
two ways of applying RQMC, which can be seen as two ways of defining the
function f to estimate the same µ. We examine empirically the RQMC error
distribution and see how far it is from normal. Based on the asymptotic results
of Section 5.3, we expect the error distribution to be generally closer to normal
when f depends more or less equally on several coordinates of u, and farther
from normal in the opposite case. Our results agree with this intuition.

Consider the pricing of an Asian option based on a geometric Brownian mo-
tion (GBM) {S(t), t ≥ 0} observed at discrete time points 0 = t0 < t1 <
· · · < ts = T . The GBM process can be written as S(t) = S(0) exp[X(t)] where
X(t) = (r − σ2/2)t + σB(t), {B(t), t ≥ 0} is a standard Brownian motion, r
is the risk-free interest rate, and σ is the volatility parameter. The option’s net
discounted payoff is Y = e−rT max(0, S −K) where K > 0 is a constant called
the strike price and S = (S(t1) + · · · + S(ts))/d, and the price of the option is
µ = E[Y ] where the expectation is under the risk neutral measure (Glasserman,
2004; Hull, 2000).

To simulate S and Y we need to sample the vector X = (X(t1), . . . , X(ts))
from an s-dimensional normal distribution with mean µ = (r−σ2/2)(t1, . . . , ts)
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and covariance matrix C with elements cj,k = σ2 min(tj , tk). The standard way
of sampling X with Monte Carlo is to factorize C as C = AAt, generate Z =
(Z1, . . . , Zs) = (Φ−1(U1), . . . ,Φ−1(Us)) where U = (U1, . . . , Us) ∼ U(0, 1)s, and
return X = µ+AZ. This expresses Y as Y = f(U) for some function f , so this
example fits our initial framework, and we can compute an RQMC estimator
via (3) for some RQMC point set Pn.

The factorization C = AAt is not unique and its choice has an impact on
the performance of RQMC. Perhaps the most standard one is the Cholesky
factorization, where A is lower triangular. Using it turns out to be equivalent
to simulating via the recurrence X(tj) = X(tj−1) + (r − σ2/2)(tj − tj−1) +
σ
√
tj − tj−1Φ−1(Uj) for j = 1, . . . , s. A second way of factorizing is an eigen-

decomposition, for whichA = PD1/2 whereD is a diagonal matrix that contains
the eigenvalues of C in decreasing order and P is an orthogonal matrix whose
columns are the corresponding unit-length eigenvectors. This is the decompo-
sition used in principal component analysis (PCA). It selects A so that the
maximum amount of variance of Y comes from Z1, then the maximum amount
of variance conditional on Z1 comes from Z2, and so on. By concentrating the
variance in the first coordinates of Z as much as possible, the method reduces
the effective dimension in the truncation sense (if we consider the variance of
Y) and often makes RQMC much more effective for this reason (Glasserman,
2004; L’Ecuyer, 2009). But we expect this to have the side effect of making the
error distribution further away from the normal.

For a numerical illustration, we take S(0) = 100, T = 1, r = 0.05, σ =
0.5, K = 100, and tj = jT/s for 1 ≤ j ≤ s. We consider three values of s,
namely s = 2, 10, and 20. Figure 14 shows normal P-P plots of the error on the
expected payoff µ = E[Y ], using Cholesky factorization (left) and using PCA
decomposition (right). We observe that the standardized error distribution is
very close to normal for Cholesky, especially when s increases, but for PCA
it is asymmetric and does not get close to normal when we increase s (it
seems almost independent of s). Additional insight on why this happens can be
obtained by performing an ANOVA decomposition of the resulting function f in
each case. We have estimated the variance components by Monte Carlo, using
the method explained in Sobol’ and Myshetskaya (2007). With Cholesky, for
s = 2, 10, and 20, we find that the one-dimensional ANOVA components account
for about 87%, 70% and 67% of the variance, respectively. This variance is
also spread among all coordinates with comparable magnitude, although slowly
decreasing with increasing coordinate index. In other words, the payoff function
is well approximated by a sum of univariate functions of independent variables
as in (8), with comparable variances, and for this reason the error distribution
approaches a normal when s increases. With PCA, in contrast, more than 98%
of the variance is concentrated on the first coordinate of u, which means that f
looks more like a single one-dimensional function rather than a sum of several
independent one-dimensional functions.
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Fig 14. Normal P-P plots of the error for the Asian option payoff, using Cholesky factoriza-
tion (left) and PCA decomposition (right).
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Appendix A: Derivation of the generalized Euler–MacLaurin
expansion

The following is the derivation of the generalized Euler–MacLaurin expansion
given in Theorem 2. Here we use { · } to denote the component-wise modulo-1
operator.

Lemma 11. If F has an integrable (k + 1)-th derivative over [0, 1], then, for
k = 0, 1, . . . and any U ∈ (0, 1),∫ 1

0

Bk({U − u})

k!
F (k)(u) du = δk,0F (U)

− Bk+1(U)

(k + 1)!

[
F (k)(1)− F (k)(0)

]
+

∫ 1

0

Bk+1({U − u})

(k + 1)!
F (k+1)(u) du,

where δk,j = 1 if k = j and 0 otherwise.

Proof. We have∫ 1

0

Bk({U − u})

k!
F (k)(u) du =

∫ U

0

Bk(U − u)

k!
F (k)(u) du

+

∫ 1

U

Bk(U − u+ 1)

k!
F (k)(u) du.

Integration by parts of the first and second terms on the right-hand side yields

−Bk+1(0)F (k)(U)−Bk+1(U)F (k)(0)

(k + 1)!
+

∫ U

0

Bk+1(U − u)

(k + 1)!
F (k+1)(u) du

and

−Bk+1(U)F (k)(1)−Bk+1(1)F (k)(U)

(k + 1)!
+

∫ 1

U

Bk+1(U − u+ 1)

(k + 1)!
F (k+1)(u) du,

respectively, where we have used the identity B′k+1(u) = (k+1)Bk(u). Summing
the latter two expressions and using B1(0)−B1(1) = 1, Bk(0)−Bk(1) = 0 for
k ≥ 2, Lemma 11 is readily obtained.

Lemma 12. If F has m + 1 integrable derivatives over [0, 1], then for any
U ∈ (0, 1),

∫ 1

0

F (u) du = F (U)−
m∑
k=1

Bk(U)

k!

[
F (k−1)(1)− F (k−1)(0)

]
+

∫ 1

0

Bm+1({U − u})−Bm+1(U)

(m+ 1)!
F (m+1)(u) du.
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Proof. First note that
∫ 1

0
F (u)du =

∫ 1

0
F (0)(u)B0({U − u}) du, then apply

Lemma 11 recursively:

∫ 1

0

F (u) du = F (U)−
m+1∑
k=1

Bk(U)

k!

[
F (k−1)(1)− F (k−1)(0)

]
+

∫ 1

0

Bm+1({U − u})

(m+ 1)!
F (m+1)(u) du.

Next, we take the term with k = m + 1 out of the sum and into the integral,
which yields Lemma 12.

Now, to prove Theorem 2, we first write the integral of f as∫ 1

0

f(u) du =
n−1∑
i=0

∫ (i+1)/n

i/n

f(u) du =

∫ 1

0

1

n

n−1∑
i=0

f((i+ u)/n) du. (27)

Next, we set F (u) = (1/n)
∑n−1
i=0 f((i+ u)/n) so that

F (k)(u) = (1/nk+1)

n−1∑
i=0

f (k)((i+ u)/n),

then we invoke Lemma 12 on the right-hand side of (27):

∫ 1

0

f(u) du =
1

n

n−1∑
i=0

f((i+ U)/n)

−
m∑
k=1

Bk(U)

nkk!

n−1∑
i=0

[
f (k−1)((i+ 1)/n)− f (k−1)(i/n)

]
+

∫ 1

0

Bm+1({U − u})−Bm+1(U)

nm+2(m+ 1)!

n−1∑
i=0

f (m+1)((i+ u)/n) du.

The sum over the index i in the second term on the right-hand side is telescop-
ing and reduces to f (k−1)(1) − f (k−1)(0). From here, obtaining Theorem 2 is
straightforward.

Appendix B: An Additional Example: A Stochastic Activity
Network

This additional example was removed from the paper to save space. We put it
here just for informational purpose.

We consider the graph of Figure 15, where each arc j has a random length
Vj with cdf Fj(·), for j = 1, . . . , 13, and these lengths are assumed independent.
Let T be the length of the longest path from node 1 to node 9 in this graph. We
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are interested in estimating both E[T ] and q(x) = P[T > x] for a given constant
x, by simulation. This type of graph may represent the precedence relationships
between the activities of a project, with the arc lengths representing activity
durations and T the (random) time needed to complete the project. This par-
ticular example is taken from Elmaghraby (1977), where the Fj ’s can be found;
see also Avramidis and Wilson (1996) and L’Ecuyer and Lemieux (2000).

1

source

2
V1

3
V2

V3

4
V4

5

V8

6

V5

V6

V10

7
V7

8
V9

V12

9

sink
V11

V13

Fig 15. Example of a stochastic activity network, taken from Elmaghraby (1977)

To estimate E[T ] and q(x) = P[T > x] by Monte Carlo, it suffices to generate
the random variables V1, . . . , V13 and compute T by a standard longest-path
algorithm, repeat this n times to obtain n realizations T1, . . . , Tn of T , and then
estimate E[T ] by Tn = (T1 + · · ·Tn)/n and q(x) by Y n = (1/n)

∑n
i=1 I[Ti > x].

For RQMC, we generate the n replicates of (V1, . . . , V13) by inversion from the
n points of the lattice rule Yj = F−1

j (Uj) where Uj is the jth coordinate of the
RQMC point, and we repeat this for each point.

Figures 16 and 17 (left) show the normal P-P plots of the error for m = 104

independent replicates of Tn and Y n, respectively, with RQMC. We observe
a surprisingly good agreement with the normal distribution for Tn. This can
be explained (intuitively) by the fact that the length of each path is a sum
of independent random variables and some of these random variables already
have the normal distribution. On the other hand, the empirical distribution of
Y n appears to be concentrated on a small number of values, and that number
becomes even smaller (the steps are larger) when q(x) gets closer to 0 or 1.
Among the 104 independent replications with RQMC, we have observed exactly
40, 113 and 55 distinct values of Y n (these are the number of jumps in the
empirical distribution) for x = 30, 64, 100, respectively. Here we have E[T ] ≈ 64,
q(64) ≈ 0.420 (thus the mean value of T is below the median), q(30) ≈ 0.992 and
q(100) ≈ 0.066 In the figure, the (horizontal) jumps in F̂Zn,m corresponds to the
numbers (or counts) of observed values. The (vertical) jumps in Φ correspond
to spacings between observed values, and since all observed values are equally
spaced, the magnitude of a jump in Φ is the probability that a standard normal
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variable falls between the two consecutive (standardized) observed values. The
biggest jumps in F̂Zn,m are in the same region (the middle of the plot) as the
biggest jumps in Φ. This means that the discrete distribution F̂Zn,m behaves
very much like a normal.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F̂Zn,m(z)

Φ
(z

)

Fig 16. Normal P-P plot of the error on Tn for the stochastic activity network example.
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Fig 17. Normal P-P plot of the error on Y n for the stochastic activity network example using
crude Monte Carlo (left) and CMC (right).

For this example, an estimator with lower variance than Y n can be con-
structed by conditional Monte Carlo (CMC) as follows; see Avramidis and Wil-
son (1998), Section 4.1, and references therein. Let L = {5, 6, 7, 9, 10} be the
set of arcs that separate the nodes {1, 2, 3, 4, 5} from the nodes {6, 7, 8, 9}, and
let B be the eight other arcs. For the CMC estimator, we generate only the arc
lengths Vj for j ∈ B and we estimate P[T > x] by the conditional expectation



P. L’Ecuyer, D. Munger, and B. Tuffin/Error Distribution for Shifted Lattice Rules 43

of I[T > x] given {Vj , j ∈ B}, that is, by W = P[T > x | {Vj , j ∈ B}]. Let Wn

be the average of the n replicates of W .
A normal P-P plot for the error on this CMC estimator Wn is given in

Figure 17 (right). The error distribution is now smooth, and this comes from
the fact that W is no longer an indicator function; now it has a density. But it
still departs significantly from the normal distribution for x = 100; in fact, it is
actually not far from a uniform distribution in that case.
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