Proceedings of the 2002 Winter Simulation Conference

E. Yiicesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SSJ: A FRAMEWORK FOR STOCHASTIC SIMULATION IN JAVA

Pierre L’Ecuyer, Lakhdar Meliani, and Jean Vaucher

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT

We introduce SSJ, an organized set of software tools
implemented in the Java programming language and
offering general-purpose facilities for stochastic simula-
tion programming. It supports the event view, process
view, continuous simulation, and arbitrary mixtures of
these. Performance, flexibility, and extensibility were
key criteria in its design and implementation. We il-
lustrate its use by simple examples and discuss how we
dealt with some performance issues in the implementa-
tion.

1 INTRODUCTION

SSJ is a Java-based framework for simulation program-
ming. It has been designed primarily for discrete-event
stochastic simulations (Law and Kelton 2000), but it
also supports continuous and mixed simulation. Some
ideas in its design are inherited from the packages DE-
MOS (Birtwistle 1979) (based on the Simula language)
and SIMOD (L’Ecuyer and Giroux 1987) (based on the
Modula-2 language), among others.

Simulation models can be implemented in a variety
of languages, including general-purpose programming
languages such as FORTRAN, C, C++, Java, etc., spe-
cialized simulation languages such as GPSS, SIMAN|,
SLAM, SIMSCRIPT, etc., and point-click-drag-drop
graphical simulation environments such as Arena, Au-
tomod, etc.

Specialized languages and environments provide
higher-level tools but usually at the expense of be-
ing less flexible than general purpose programming
languages. In commercial simulation languages and
environments, one must frequently revert to general-
purpose languages (such as C or VisualBasic) to pro-
gram the more complex aspects of a model or unsup-
ported operations. Compilers and supporting tools for
specialized languages are less widely available and cost
more than for general purpose languages. Another ob-
stacle to using a specialized language: one must learn

it. This is a non-negligible time investment, especially
for an occasional use, given that these languages have
their own (sometimes eccentric) syntax and semantic.
Some high-level simulation environments propose a “no-
programming” approach, where models are specified by
manipulating graphical objects on the computer screen
by point-click-drag-drop operations, as in computer
games. This approach is very handy for building mod-
els that happen to fit the frameworks pre-programmed
in the software. But for large and complex real-life sys-
tems, such nice fits are more the exception than the
rule.

SSJ is implemented as a collection of classes in the
Java language. It provides convenient tools for simu-
lation programming without giving away the general-
ity and the power provided by a widely-used, general-
purpose programming language reputed to be highly
portable. These predefined classes contain facilities for
generating random numbers for various distributions,
collecting statistics, managing a simulation clock and a
list of future events, synchronizing the interaction be-
tween simulated concurrent processes, etc. SSJ sup-
ports both the event view and the process view, as well
as continuous simulation (where certain variables evolve
according to differential equations), and the three can
be combined.

In the process-oriented paradigm, active objects in
the system, called processes, have a method that de-
scribe their behavior in time. The processes can in-
teract, can be suspended and reactivated, can be wait-
ing for a given resource or a given condition, can be
created and destroyed, etc. These processes may rep-
resent “autonomous” objects such as machines and
robots in a factory, customers in a restaurant, vehi-
cles in a transportation network, etc. Process-oriented
programming is a natural way of describing complex
systems (Franta 1977; Birtwistle, Lomow, Unger, and
Luker 1986; Kreutzer 1986; Law and Kelton 2000). On
the other hand, certain systems are more conveniently
modeled simply with events, which are instantaneous



L’Ecuyer, Meliani, and Vaucher

in the simulation time frame. Sometimes, the use of
events is preferred because it gives a faster simulation
program, by avoiding the process-synchronization over-
head. Events and processes can be mixed freely in SSJ.

Other Java-based simulation frameworks and li-
braries proposed in the last few years include Silk
(Healy and Kilgore 1997; Kilgore 2000), a SimJava from
New Zealand (Kreutzer, Hopkins, and van Mierlo 1997),
a simjava from Scotland (Howell and McNab 1998),a
JavaSim from the U.K. (Little 1999), a JavaSim from
Ohio (Tyan and Hou 2002), JSIM (Miller, Ge, and Tao
1998), and Simkit (Buss 2000, 2001). Some of them are
specialized (e.g., for queueing systems, computer net-
works and protocols, etc.). Our framework has a differ-
ent design, in several aspects, than each of these. We
won’t discuss them all, but for illustration we will make
some timing comparisons with Silk, which is perhaps
the best known of these products in the WSC commu-
nity.

SSJ was designed to be open and very flexible from
bottom to top. As an example, at the lower level, the
event list has a default implementation and the user
need not worry about it, but it is also easy to change the
type of data structure used for its implementation (dou-
bly linked list, binary tree, heap, splay tree, etc.), by
adding one extra parameter to the “clock and event list
initialization” method. As another example, different
types of uniform random number generation algorithms
are available in SSJ, and random streams (which are
objects acting roughly like independent random num-
ber generators) can be created at will using any of
these types. Some of these algorithms may correspond
to quasi-Monte Carlo methods, i.e., they produce (de-
terministic or randomized) low-discrepancy sequences
(see, e.g., L'Ecuyer and Lemieux (2002)) instead of
pseudo-random numbers. This provides a nice way of
mixing Monte Carlo and quasi-Monte Carlo methods
in a given simulation program, and switching between
them, without changing the simulation code: It suffices
to change the constructor at stream creation to change
the type of stream. Convenient tools are also available
to manipulate and control the streams in order to facili-
tate the implementation of variance reduction methods
that require some form of synchronization (L’Ecuyer,
Simard, Chen, and Kelton 2002; Law and Kelton 2000).

We have been attentive to performance issues. Exe-
cution speed remains important for many (if not most)
serious simulation applications. In some cases (e.g.,
when pricing financial derivatives by simulation) it is
because precise estimates are required within a few sec-
onds or minutes; in other cases (e.g., when optimizing
complex stochastic systems by simulation) a well-tuned
efficient program may already run for several hours or
even a few days, so slowing it down by a factor of 10

(say) makes a significant difference. The constant in-
crease of cheap computing power will not change this
state of affairs in the foreseeable future: People just
adapt by considering larger and more detailed models,
and by attacking more difficult optimization problems.

Java has a bad reputation for execution speed, so if
performance is important, why choose it? It is true that
the early versions of the Java Virtual Machine (JVM),
which interprets the portable byte code, were slow. But
things have changed dramatically with the most recent
versions. The JVMs are now optimized and comple-
mented with just-in-time compilers. In these environ-
ments, Java programs can run almost as fast as C or
C++ programs compiled in native code. Given the fact
that simulation programs in Java are much more ele-
gant, clean, and portable than their counterparts in C,
the small “speed tax” is worth the price.

The remainder of this paper is organized as follows.
The next section gives a brief overview of SSJ. To give
a taste of how simulation programs look like with SSJ,
we develop and discuss small examples in Section 3.
Section 4 explains how we have implemented the pro-
cesses, by harnessing Java threads. Section 5 outlines
intended future developments. A complete documenta-
tion of all the classes provided by SSJ so far, and several
additional examples, are given by L’Ecuyer (2001b) and
Meliani (2002).

2 OVERVIEW OF SSJ

Low-level classes in SSJ implement basic tools such
as random number generators, statistical probes, and
general-purpose lists. Each class providing a uniform
random number generator must implement an inter-
face named RandomStream, which looks pretty much
like the interface of the class RngStream described by
L’Ecuyer (2001a) and L’Ecuyer, Simard, Chen, and
Kelton (2002), with multiple streams and substreams.
Other classes provide methods for generating non-
uniform random variates from several kinds of distri-
butions.

The class StatProbe and its subclasses Tally and
Accumulate provide elementary tools for collecting
statistics and computing confidence intervals. The class
List implements doubly linked lists, with tools for in-
serting, removing, and viewing objects in the list, and
automatic statistical collection. These list can contain
any kind of Object.

Event scheduling is managed by the class Sim, which
contains the simulation clock and a central monitor.
The classes Event and Process provide the facilities for
creating and scheduling events and processes in the sim-
ulation. Each type of event or process must be defined
by defining a class that extends Event or Process. The



L’Ecuyer, Meliani, and Vaucher

class Continuous provide tools for continuous simula-
tion, where certain variables vary continuously accord-
ing to ordinary differential equations.

The classes Resource, Bin, and Condition, provide
additional mechanisms for process synchronization. A
Resource corresponds to a facility with limited capacity
and a waiting queue. A Process can request an arbi-
trary number of units of a Resource, may have to wait
until enough units are available, can use the Resource
for a certain time, and eventually releases it. A Bin
allows producer/consumer relationships between pro-
cesses. It corresponds essentially to a pile of free tokens
and a queue of processes waiting for the tokens. A pro-
ducer adds tokens to the pile whereas a consumer (a
process) can ask for tokens. When not enough tokens
are available, the consumer is blocked and placed in
the queue. The class Condition supports the concept
of processes waiting for a certain boolean condition to
be true before continuing their execution.

3 EXAMPLES

3.1 An M/M/1 Queue

Our first example is a traditional M/M/1 queue, with
arrival rate of 1 and mean service time of 0.8. The sys-
tem initially starts empty. We want to simulate its op-
eration and compute statistics such as the mean waiting
time per customer, the mean queue length, etc. Simu-
lation is not necessarily the best tool for this very sim-
ple model (queueing formulas are available for infinite-
horizon averages; see, e.g., Kleinrock 1975), but we find
it convenient for illustrating SSJ.

Figure 1 shows a SSJ-based process-oriented simu-
lation program simulates the M/M/1 queue for one
million time units (i.e., approximately one million
customers). The constants meanArr, meanServ, and
timeHorizon represent the mean time between arrivals,
the mean service time, and the time horizon, respec-
tively. The server is an object of class Resource, with
capacity 1. The two random number streams genArr
and genServ (instances of the class RandMrg) are used
to generate the interarrival times and service times, re-
spectively. These objects are created when QueueProc
is instantiated by the main program.

The program defines one type of process (Customer)
by extending the pre-defined class Process. The
method actions (which must be implement by any ex-
tension of Process) describes the life of a customer.
Upon arrival, the customer first schedules the arrival
of the next customer in an exponential number of time
units. Behind the scenes, this effectively schedules an
event, in the event list, that will start a new customer
instance. The customer then requests the server by

invoking server.request. If the server is free, the
customer gets it and can continue its execution im-
mediately. Otherwise, it is automatically (behind the
scenes) placed in the server’s queue, is suspended, and
resumes its execution only when it obtains the server.
When its service starts, the customer invokes delay to
freeze itself for a duration equal to its exponential ser-
vice time. After this delay has elapsed, the customer
releases the server and disappears. Several distinct cus-
tomer instances can co-exist in the simulation at any
given point in time, and be at different phases of their
actions method.

The program also defines one type of event
(End0£Sim) by extending the class Event and defining
its method actions. This method describes what to do
when this event occurs (at the end of the simulation).

The constructor QueueProc initializes the simulation,
invokes collectStat to specify that detailed statistical
collection must be performed automatically for the re-
source server, schedules an event End0fSim at time
10%, schedules the first customer’s arrival, and starts
the simulation. The End0OfSim event prints a detailed
statistical report on the resource server (average uti-
lization, average waiting time, average queue length,
number of customers served, etc.).

One can also write an event-oriented version of this
M/M/1 queue simulation program, where the event
classes are Arrival, Departure, and End0fSim, as
shown in Figure 2. This program is written at a lower
level and is less compact than its process-oriented coun-
terpart. On the other hand, it runs faster (see below).
This is often true, due to the fact that processes involve
more overhead. Working at a lower level is also conve-
nient in situations where the logic implemented in the
available higher-level constructs is not exactly what we
want.

Here, the customers waiting and in service are main-
tained in lists waitList and servList. The statistical
probe custWaits collects statistics on the customer’s
waiting times. It is of class Tally, which is appropriate
when the statistical data of interest is a sequence of ob-
servations X1, Xo,.... Every call to waitList.update
brings a new observation X; (a new customer’s wait-
ing time). The statistical probe totWait, of class
Accumulate, computes the integral (and eventually the
time-average) of the queue length as a function of time.
It is updated each time the queue size changes. Inter-
estingly, in the program of Figure 1, the Resource and
Process objects use these same lower-level constructs
(lists, statistical probes, etc.), but this is hidden in SSJ.

Note that in this program, only one Arrival event
and one Departure event are instantiated. These
events are recycled. This contributes to improving the
speed by reducing the number of objects that must be



L’Ecuyer, Meliani, and Vaucher

public class QueueProc {

static final double meanArr =1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

new Resource (1, "server");
new RandMrg () ;
new RandMrg ();

Resource server =
RandMrg genArr =
RandMrg genServ =

public QueueProc () {
Sim.init();
server.collectStat (true);

Sim.start();

public void actions () {
server.request (1);

server.release (1);

}

class End0fSim extends Event {
public void actiomns () {

server.report();

}

class Customer extends Process {

public static void main (String[] args) {new QueueProc(); }

new End0fSim().schedule (timeHorizon);
new Customer().schedule (Randl.expon (genArr, meanArr));

new Customer().schedule (Randl.expon (genArr, meanArr));

delay (Randl.expon (genServ, meanServ));

Sim.stopQ);

Figure 1: Process-oriented simulation of an M/M/1 queue.

created. This is allowed because there is never more
than one instance of these events planned at the same
time. Of course, this program could be further simpli-
fied in several ways. In fact, the successive customer’s
waiting times can be simulated without an event list by
using Lindley’s recurrence W; 1 = max(0, W;+S5;—A4;)
where A;, S;, and W, are the ith interarrival time, ser-
vice time, and waiting time, respectively. Our goal here
is not to make the simplest program for the M/M/1
queue, but to illustrate SSJ.

We made some timing experiments with these two
programs on a 750 MHz AMD-Athlon computer run-
ning Redhat Linux 7.1. With the JDK-1.2.2 vir-
tual machine, the javacomp just-in-time compiler, and
Java green threads, QueueProc took 21.9 seconds to
run and QueueEv2 took 7.1 seconds. These numbers
are the “user time” returned by the Linux command
“time”. With JDK-1.3.1 and the “hotspot” optimizer
from SUN, QueueEv2 took 3.6 seconds. However, the
hotspot optimizer allows only native threads (which are
real threads managed at the operating system level, as
opposed to green threads which are simulated threads in

the Java environments). QueueProc runs much slower
under this setup (over a minute), because native threads
involve a large amount of overhead. A program that
simply implements Lindley’s recurrence to compute the
average waiting time of 10 customers takes approx-
imately 2.1 seconds under JDK-1.3.1 + hotspot, and
more than 3/4 of this time is used to generate the ex-
ponential random variables.

A Silk version of QueueProc (taken from Healy and
Kilgore (1997), with straightforward adaptation) took
190 seconds under JDK-1.2.2 with javacomp, using
Silk’s academic version 1.2.

SSJ actually has a brother named SSC (L’Ecuyer
2002). It is a library implemented in ANSI-C, offering
tools similar to those of SSJ, but without the process-
view facilities. We tried a version of QueueEv2 in SSC
and it ran in 2.8 seconds on the same machine (with
gce and optimization level -03). This gives a Java/C
speed ratio of 3.6/2.8 ~ 1.3, i.e., a time penalty of ap-
proximately 30%.



L’Ecuyer, Meliani, and Vaucher

public class QueueEv2 {

static final double meanArr =1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

new Arrival();

new Departure();
new RandMrg ();
new RandMrg Q) ;

Arrival arrival
Departure departure
RandMrg genArr
RandMrg genServ

List waitList new List ("Customers waiting in queue");
List servlList new List ("Customers in service");
Tally custWaits = new Tally ("Waiting times");

Accumulate totWait new Accumulate ("Size of queue");

class Customer { double arrivTime, servTime; }
public static void main (String[] args) { new QueueEv2(); }

public QueueEv2() {
Sim.init();
new End0fSim().schedule (timeHorizon);
arrival.schedule (Randl.expon (genArr, meanArr));
Sim.start();

class Arrival extends Event {
public void actions() {

arrival.schedule (Randl.expon (genArr, meanArr));

// The next arrival.

Customer cust = new Customer(); // Cust just arrived.

cust.arrivTime = Sim.time();

cust.servTime = Randl.expon (genServ, meanServ);

if (servList.size() > 0) { // Must join the queue.
waitList.insert (cust, List.LAST);

// totWait.update (waitList.size());

} else { // Starts service.
servList.insert (cust, List.LAST);
departure.schedule (cust.servTime);
custWaits.update (0.0);

}
}
}
class Departure extends Event {
public void actions () {
servList.remove (List.FIRST);
if (waitList.size () > 0) {
// Starts service for next one in queue.
Customer cust = (Customer) waitList.remove (List.FIRST);
servlList.insert (cust, List.LAST);
departure.schedule (cust.servTime);
custWaits.update (Sim.time () - cust.arrivTime);
// totWait.update (waitList.size ());
}
}

class EndOfSim extends Event {
public void actions () {
custWaits.report(); // totWait.report();
Sim.stopQ);
}

Figure 2: Event-oriented simulation of an M/M/1 queue.




L’Ecuyer, Meliani, and Vaucher

3.2 Two Queues in Series with a Batch Server

This example is adapted from Healy and Kilgore (1998).
Customers must pass through two queues in series: Af-
ter being served at the first queue, they joint the sec-
ond queue, and when their service is over at the second
queue, they disappear. The first queue is M/M/1 as in
the previous example while the second one serves cus-
tomers in batches of sizes 10 to 20. The server at the
second queue waits until there are at least 10 customers
ready to be served, then serves all these customers
simultaneously. After completing its service time, if
C > 10 customers are waiting in queue 2, the server
starts another batch immediately with min(C, 20) cus-
tomers. Otherwise it waits until there are 10.

Suppose the arrival rate is 1, the service time at the
first queue is exponential with mean 0.8, and the ser-
vice time at the second queue is exponential with mean
0. We want to compare the mean sojourn time in the
system for two different values of . To be specific, let
X1 (resp., X2) be the average sojourn time of the first
10000 customers for § = 6; = 12 (resp., 8 = 6 = 13).
We want to estimate po — p11 where p; = E[X;]. To do
this, we will perform 10 pairs of simulation runs, where
each pair produces a replicate of the vector (Xi, Xs)
using common random numbers across the two values
of 0 (see, e.g., Law and Kelton 2000 for an introduction
to this variance reduction technique). The 10 replicates
of D = X5 — X, are independent random variables that
are approximately normally distributed, so we can com-
pute a confidence interval on ps — 1 by assuming that
V10(D — (pg — p1))/Sp has the Student distribution
with 9 degrees of freedom, where D and S, are the em-
pirical mean and variance of the 10 values of D. The
program of Figure 3 computes such a confidence inter-
val and produces the printout shown in Figure 4.

The constructor of BatchServer repeats the fol-
lowing 10 times: It performs one simulation run at
0 = 12.0, memorizes the average sojourn time in vari-
able meani, resets the three random number streams
to the beginning of their current substreams so that
the next simulation run at 8§ = 13.0 will use exactly
the same sequences of random numbers as that at
0 = 12.0, performs the second simulation, gives the
value of D = X9 — X3 to the collector statDiff, and
then resets the random number streams to new sub-
streams in order to get independent random numbers
for the next pair of runs. When the 10 pairs of runs
are completed, the 90% confidence interval on po — pu;
is printed.

Here, the server at the first queue is implemented as
a Resource as in the M/M/1 example, but the second
server is implemented as a Process, using a Bin as a
synchronization mechanism. When a customer arrives

at queue 2, if he is the tenth customer in the queue and
the server is free, he wakes up the server. The customer
then requests a token from that bin and is automatically
suspended until he receives the token (when its service
ends). The method binServ2.waitList().size() re-
turns the number of processes currently waiting for to-
kens at the bin; this is the size of the queue at the
second server.

The behavior of the second server is described in the
actions method of Server2. When this server becomes
free and the queue size is less than 10, it suspends it-
self, waiting to be waken up by a customer when the
queue size reaches 10. The server then becomes busy
and serves a new batch of customers. The size of this
batch may exceed 10 if the server just completed the
previous batch (and was not suspended). After ser-
vice completion, a number of tokens equal to the batch
size is put on the bin, so that the appropriate num-
ber of customers can resume their execution. Note
that the method Sim.init() automatically cleans up
all Process objects; for this reason, server2 must be
created at the beginning of each simulation run.

In contrast to the previous examples, here there is no
End0fSim event; customer number 10000 takes care of
stopping the simulation when he leaves the system.

Under JDK-1.2.2 with javacomp, this program takes
about 7.8 seconds to execute. We tried the Silk im-
plementation of the same model, given in Healy and
Kilgore (1998), and it took approximately 100 seconds
for a single run (compared with roughly 0.4 seconds per
run with SSJ) on the same platform.

4 IMPLEMENTING PROCESSES

In discrete event simulation, execution centers around
an ordered list of event notices. In SSJ, events are rep-
resented by objects which are sub-classes of a predefined
Event class and which must implement an appropriate
actions method. Sequencing of events is done by an
executive which repeatedly takes the next Event off the
event list, updates the simulation clock and executes the
actions method of the event.

SSJ also handles Processes. These operate like
threads: they execute a sequence of events spread over
time so that their actions are intermingled with those
of other processes. In a Java package, it seems natural
to use Java Threads to execute the events of Processes.
However, Java Threads are designed to implement real
parallelism (exploiting multi-processor architectures) or
pseudo parallelism via time-slicing so that the relative
execution speed is unpredictable. In simulation, where
there is no actual parallel operation, one must find an
efficient way to pass control between the executive and
the process threads in a strictly sequential way.



L’Ecuyer, Meliani, and Vaucher

class BatchServer {

static final double meanArr
static final double meanServi

O~

0 O

static double meanServ2;

RandMrg genArr
RandMrg genServl
RandMrg genServ2

Resource serverl

new RandMrg(); // For times between arrivals.
new RandMrg(); // For service times at server 1.
new RandMrg(); // For service times at server 2.

new Resource (1, "Server 1");

Server2 server2;

Bin

Tally statSojourn
Tally statDiff

binServ2 = new Bin ("Server 2 Bin ");
new Tally ("Sojourn times in one run");
new Tally ("Differences on averages");

public static void main (String[] args) { new BatchServer(); }

public BatchServer () {

}

for (int rep = 0; rep < 10; rep++) {
meanServ2 = 12.0; simulOneRun() ;
double meanl = statSojourn.average();
genArr.resetStartSubstream ();
genServl.resetStartSubstream ();
genServ2.resetStartSubstream ();
meanServ2 = 13.0; simulOneRun() ;
statDiff .update (statSojourn.average() - meanl);
genArr.resetNextSubstream () ;
genServl.resetNextSubstream ();
genServ2.resetNextSubstream ();

statDiff.printConfIntStudent (0.90);

private void simulOneRun () {

}

statSojourn.init(); serverl.init(); binServ2.init();
Sim.init(); // Note: this method kills all processes.
server2 = new Server2(); server2.schedule(0.0);

new Customer().schedule(0.0);

Sim.start();

class Customer extends Process {

}

public void actions() {
new Customer().schedule (Randl.expon (genArr, meanArr));
double arrivalTime = Sim.time();
serverl.request(1);
delay (Randl.expon (genServl, meanServl));
serverl.release(1);
if (binServ2.waitList().size() >= 9 && !server2.busy)

server2.resume() ;

binServ2.take(1); // Blocked until end of service.
statSojourn.update (Sim.time() - arrivalTime);
if (statSojourn.numberObs() >= 10000) Sim.stop();

}

class Server2 extends Process {

boolean busy = false;
int batchSize; // Num. served in current batch.
public void actions() {
while (true) {
if (binServ2.waitList().size() < 10) {
busy = false; suspend(); // Wait for enough customers.
};

busy = true; // Starts serving new batch.
batchSize = Math.min (20, binServ2.waitList().size());

delay (Randl.expon (genServ2, meanServ2));

binServ2.put (batchSize); // Unblocks customers in batch.

Figure 3: Simulation program for two Queues in Series with a Batch Server.




L’Ecuyer, Meliani, and Vaucher

REPORT on Tally stat. collector ==> Differences on averages
min max average standard dev. nb. obs
3.373 8.050 4.958 1.644 10

90.0% confidence interval for mean ( 4.005, 5.911 )

Figure 4: Output of the program of Figure 3.

Basically, the required control operation is the re-
sume(t) operation of coroutines where the active thread
suspends execution and passes control to another
thread t so that there is always at most one ac-
tive thread. In early implementations, Java provided
two useful operations: resume(t) and suspend. The
Java resume does not automatically suspend the active
thread so that the necessary sequencing required the
following sequence: resume(t); suspend;.

To allow both Fwvent and Process orientations to
be used in SSJ, processes are provided with special
Event objects whose actions method resumes the pro-
cess. Similarly, the scheduling operations (like delay
or schedule) resume the executive.

Presently, as Java implementations have evolved, the
use of resume(X) and suspend has been deprecated;
we have also found that correct passage of control can-
not be garanteed. Therefore, in SSJ, process synchro-
nization is implemented via semaphores (Holub 2000),
based on the wait and notify methods. Furthermore,
with semaphores we have implemented safe and cor-
rect versions of resume (X) and suspend for processes.
These were the ones used in the BatchServer example.

As mentioned previously, Java Threads are meant to
deal with real—not simulated—parallelism. As a result,
creating and starting a new thread is very time con-
suming: easily the equivalent of creating 100 ordinary
objects. To improve efficiency, we do not implement
processes as Threads; rather we have an intermediate
(private) class Thread2 that extends Event and imple-
ments Runnable. These Thread2 objects each have a
Thread which is used to execute the actions method
of the processes.

The advantage of this organization is that we do not
need to create a new Thread for every new Process.
The Thread2 objects are organized in a thread pool
(Holub 2000). When a process ends its life, its asso-
ciated Thread2 object is put on a stack of free threads.
When a new process is instantiated, an old Thread2
object is taken from the stack, or created if the stack is
empty. Thus, the total number of threads that are cre-
ated does not exceed the maximum number of threads
that are simultaneously active during the simulation.

Efficiency is also improved by short-circuiting the

central executive when control is passed from process
to process. When it is time for a process to relinquish
control, its thread does the same job as the executive,
executing the upcoming events (if any) from the event
list (and updating the clock), until it comes upon an-
other process. Then, the current thread can resume
directly the thread of this other process. As soon as a
process takes control, the executive never takes control
again until the simulation stops. This mechanism re-
duces by half the number of transfers between threads.

5 FUTURE DEVELOPMENTS AND CON-
CLUSION

We have presented SSJ, a framework written in Java
which allows both discrete and continuous simulation
and supports both events and processes. Its strength
lies partly in the state-of-the-art support for random
number generation, efficient implementation, and use of
novel scheduling techniques adapted to Java’s strengths
and weaknesses.

Our work has also allowed us to draw some conclu-
sions about the suitability of Java for simulation. For
sequential programming or event oriented simulation,
the code runs almost as fast as C (30% penalty in our
example). Surprisingly, Java’s support for real paral-
lel activity via the Thread class is ill-adapted to the
pseudo-parallelism of simulation processes.

In the near future, we plan to beef up SSJ’s library
of alternate event list implementations, random number
generators, statistical analysis tools, as well as adding
classes adapted to specific areas of applications such as
finance.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada
Grant No. ODGP0110050 and FCAR-Québec Grant
No. 00ER3218 to the first author.

REFERENCES

Birtwistle, G. M. 1979. Demos—a system for discrete
event modelling on Simula. London: MacMillan.



L’Ecuyer, Meliani, and Vaucher

Birtwistle, G. M., G. Lomow, B. Unger, and P. Luker.
1986. Process style packages for discrete event mod-
elling. Transactions of the Society for Computer Sim-
ulation 3-4:279-318.

Buss, A. 2001, November. Discrete event programming
with Simkit. Simulation News Europe (32/33): 15—
26.

Buss, A. H. 2000. Component-based simulation mod-
eling. In Proceedings of the 2000 Winter Simulation
Conference, 964-971. Pistacaway, New Jersey: IEEE
Press.

Franta, W. R. 1977. The process view of simulation.
New York: North Holland.

Healy, K. J., and R. A. Kilgore. 1997. Silk: A Java-
based process simulation language. In Proceedings
of the 1997 Winter Simulation Conference, 475-482.
Piscataway, NJ: IEEE Press.

Healy, K. J., and R. A. Kilgore. 1998. Introduction to
silk and Java-based simulation. In Proceedings of the
1998 Winter Simulation Conference, 327-334. Pis-
cataway, NJ: IEEE Press.

Holub, A. 2000. Taming Java threads. APress (dis-
tributed by Springer-Verlag, NY).

Howell, F. W., and R. McNab. 1998. Simjava: a discrete
event simulation package for Java with applications
in computer systems modelling. In Proceedings of the
First International Conference on Web-based Mod-
elling and Simulation. San Diego, CA: The Society
for Computer Simulation.

Kilgore, R. A. 2000. Silk, Java, and object-oriented sim-
ulation. In Proceedings of the 2000 Winter Simulation
Conference, 246-252. Piscataway, NJ: IEEE Press.

Kleinrock, L. 1975. Queueing systems, vol. 1. New York:
Wiley.

Kreutzer, W. 1986. System simulation - programming
styles and languages. New York: Addison Wesley.
Kreutzer, W., J. Hopkins, and M. van Mierlo. 1997.
SimJAVA—a framework for modeling queueing net-
works in Java. In Proceedings of the 1997 Winter Sim-
ulation Conference, 483-488. Pistacaway, New Jer-

sey: IEEE Press.

Law, A. M., and W. D. Kelton. 2000. Simulation model-
ing and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer, P. 2001a. Software for uniform random num-
ber generation: Distinguishing the good and the bad.
In Proceedings of the 2001 Winter Simulation Con-
ference, 95-105. Pistacaway, NJ: IEEE Press.

L’Ecuyer, P. 2001b. SSJ: A Java library for stochastic
simulation. Software user’s guide.

L’Ecuyer, P. 2002. SSC: A library for stochastic simu-
lation in C. Software user’s guide.

L’Ecuyer, P., and N. Giroux. 1987. A process-oriented
simulation package based on Modula-2. In 1987 Win-
ter Simulation Proceedings, 165-174.

L’Ecuyer, P., and C. Lemieux. 2002. Recent advances in
randomized quasi-monte carlo methods. In Modeling
Uncertainty: An Examination of Stochastic Theory,
Methods, and Applications, ed. M. Dror, P. L’Ecuyer,
and F. Szidarovszki, 419-474. Boston: Kluwer Aca-
demic Publishers.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kel-
ton. 2002. An object-oriented random-number pack-
age with many long streams and substreams. Opera-
tions Research. To appear.

Little, M. C. 1999. JavaSim user’s guide. Available on-
line at http://javasim.ncl.ac.uk/.

Meliani, L. 2002. Un cadre d’application pour la sim-
ulation stochastique en Java. Master’s thesis, DIRO,
Université de Montréal. Forthcoming.

Miller, J. A.; Y. Ge, and J. Tao. 1998. Component-
based simulation environments: JSIM as a case study
using Java beans. In Proceedings of the 1998 Win-
ter Simulation Conference, 373—381. Piscataway, NJ:
IEEE Press.

Tyan, H.-Y., and C.-J. Hou. 2002. JavaSim on-line
manuals and tutorials. Available on-line at http:
//javasim.cs.uiuc.edu.

AUTHOR BIOGRAPHIES

PIERRE L’ECUYER is professor in the
“Département d’Informatique et de Recherche
Opérationnelle”, at the University of Montreal,
Canada. His main research interests are random
number generation, quasi-Monte Carlo methods,
efficiency improvement via variance reduction, sen-
sitivity analysis and optimization of discrete-event
stochastic systems, and discrete-event simulation in
general. He obtained the prestigious E. W. R. Steacie
Grant in 1995-97 and the Killam Grant in 2001-03.
His recent research articles are available on-line at
http://www.iro.umontreal.ca/~lecuyer.

LAKHDAR MELIANTI is a M.Sc. Student at the
University of Montreal, Canada. His main interests are
software engineering and objected-oriented program-
ming.

JEAN VAUCHER is professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at the
University of Montreal, Canada. In the early seven-
ties, he designed GPSSS, a simulation package based on
Simula, and made several contributions related to effi-
cient event list implementations. Presently, his main
research interest are in object-oriented programming,
distributed systems and intelligent agents.



