
Combined Generators with Components from

Different Families

Pierre L’Ecuyer and Jacinthe Granger-Piché
lecuyer@iro.umontreal.ca, granger@iro.umontreal.ca

http://www.iro.umontreal.ca/∼lecuyer
Département d’Informatique et de Recherche Opérationnelle

Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, Canada

Abstract

Most random number generators used in practice are based on linear recurrences,
with linear output transformations. This gives long periods, fast implementations,
and structures that are easy to analyze. But the points produced by these generators
have very regular structures. Nonlinear generators can have less regular structures,
but they are generally slower and much harder to analyze when their period is long.

In this paper, combined generators with one large linear component, and a second
component of a different type (nonlinear or linear), are proposed and studied. The
structure of vectors of successive and non-successive output values produced by
the combined generators is analyzed. Under mild conditions, these vector sets are
proved to have at least as much uniformity than the corresponding sets for the linear
component alone. In empirical statistical tests, these combined generators perform
better than simple linear generator of comparable period lengths, because of their
less regular structure. Efficient implementation methods are suggested.

Key words: random numbers, uniformity, combined generators, statistical tests

1 Introduction

Combined random number generators with components from the same family
have been studied extensively. Specific generators of this form are now avail-
able in software packages. Examples include linear congruential generators

1 This work has been supported by NSERC-Canada Grant no. ODGP0110050 and
FCAR-Québec grant no. ER-3218 to the first author, and by an NSERC scholarship
to the second author

Preprint submitted to Elsevier Preprint 3 June 2002

(LCGs) and multiple recursive generators (MRGs) combined with a modulo 1
addition [6] and Tausworthe or linear feedback shift register (LFSR) genera-
tors combined via a bitwise exclusive-or [5,8,18]. The theoretical properties of
these linear generators are easy to analyze because they have the same type
of highly regular structure as their components. Having a lot of structure is
convenient from the analysis viewpoint but becomes a drawback from the “ap-
parent randomness” or “unpredictability” viewpoint. It is then interesting to
explore how much must be given away in terms of our understanding of the
structure and in the “guaranteed uniformity” of the point set produced by the
generator over its full period, in order to obtain a more complicated (or less
regular) structure.

In this paper, we consider combined generators with components taken from
different families, from the theoretical and empirical viewpoints. Our goal
is to construct combined generators with good (and guaranteed) uniformity
properties, less regular structure than purely linear generators, and fast imple-
mentations. We concentrate on the following two main classes of combinations:
(a) a LCG or MRG combined with another type of generator by adding the
outputs modulo 1, and (b) a LFSR generator combined with another type of
generator via a bitwise exclusive-or. The second type of generator used in the
combination can be nonlinear, with a complicated structure. Its purpose is to
scramble the regularity and increase the apparent randomness.

We analyze the structural properties of sets of t-tuples formed by successive
output values, or by non-successive output values at specified lags, for these
combined generators. Measuring the uniformity of such sets is a standard
way of assessing the approximate uniformity and independence of the output
values [11]. We show that a certain level of uniformity for these sets can be
guaranteed if the corresponding point sets produced by the LCG, MRG, or
LFSR are well distributed. On the other hand, these point sets have a much less
regular structure than the corresponding point sets for LCG, MRG, or LFSR.
This shows up in empirical testing: Standard statistical tests require a larger
sample size to detect the structure, or to find statistical deficiencies of the
generator, for a mixed combined generator than for a simple linear generator
of comparable period length. In our experiments, this trend is remarkably
systematic.

In the next section, we recall properties of two classes of linear generators.
In Sections 3 and 4, we analyze the structural properties of combined genera-
tors with one MRG component and with one LFSR component, respectively.
Section 5 summarizes our statistical experiments and Section 6 discusses im-
plementation issues. Further details can be found in [3].

2

2 Linear Generators and their Measures of Uniformity

A MRG is defined by the recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod m; (1)

un = xn/m, (2)

where the modulus m and the order k are positive integers, the coefficients ai
belong to Zm = {0, 1, . . . ,m− 1}, and un ∈ [0, 1) is the output at step n. For
prime m and properly chosen ai’s, the recurrence has period length ρ = mk−1
[4]. We have a LCG when k = 1.

For any fixed set of non-negative integers I = {i1, i2, · · · , it}, define

ΨI = {uI = (ui1 , . . . , uit) : (x0, . . . , xk−1) ∈ Zkm}, (3)

the set of all vectors (ui1 , . . . , uit) produced by the generator from its mk

possible initial states. (Formally speaking, ΨI is a multiset in the sense that
duplicate vectors are counted as many times as they appear in it, so ΨI always
has cardinality mk.) It is well known that in the case of a MRG, this set is the
intersection of a lattice LI with the t-dimensional unit hypercube [0, 1)t, where
LI contains the set Zt of all integer vectors [4,10]. This implies that ΨI lies on
a limited number of equidistant parallel hyperplanes, at a distance (say) dI
apart. A standard way of measuring the uniformity of ΨI is to compute this
dI , which must be as small as possible for all index sets I that one wishes to
consider. This is called the spectral test. It is customary to normalize dI by
computing d∗t/dI , where d∗t is an absolute lower bound on dI given m, k, and
t, and to select MRGs based on a figure of merit defined as the worst case
(smallest) of these ratios over a specified class of sets I [6,7,12]. A common
choice for this class is to consider the sets I = {0, . . . , t − 1} of successive
indices, for t ≤ t1, where t1 is an arbitrary constant.

The LFSR (or Tausworthe) generators considered here are defined by the
recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod 2; (4)

un =
w∑
i=1

xns+i−12−i, (5)

for some positive integers s and w [5,16–18]. The maximal period length is
ρ = 2k − 1. Specific parameter sets and implementations are given, e.g., in
[8,18] and some references therein.

LetB be an arbitrary set of selected bits of the output values. More specifically,
consider the bit string formed by concatenating the bits b0,1, . . . , b0,s0 in the

3

expansion of u0, the bits b1,1, . . . , b1,s1 in the expansion of u1, . . . , and the bits

bt−1,1, . . . , bt−1,st−1 in the expansion of ut−1, where s0 + . . .+st−1
def
= k′ ≤ k. Let

B denote the set of these k′ bit indices and let ΦB be the set of all bit strings
thus formed when the initial state of the generator runs over its 2k possible
values. (ΦB is called a set, but like ΨI , it should be interpreted as a multiset,
in the sense that each bit string must be counted as many times as it occurs.)
We say that the generator is B-equidistributed if ΦB is equidistributed, i.e., if it
contains every bit string of length k′ exactly 2k−k

′
times. This equidistribution

can be verified by checking if the linear transformation that expresses these
k′ bits in terms of (x0, . . . , xk−1) has full rank [5,13]. In (5), the bit bn,i of
un is xns+i−1, but our development easily extends to more general classes of
“LFSRs”, such as those considered in [13].

A special case is when B contains the ` most significant bits of the first t
successive output values u0, . . . , ut−1. In this case B-equidistribution, usually
called (t, `)-equidistribution, means that if each axis of the unit hypercube
[0, 1)t is partitioned into 2` equal parts, each of the 2`t small cubes of volume
2−`t thus determined contains exactly 2k−`t points from the set Ψt = {ut =
(u0, . . . , ut−1) : (x0, . . . , xk−1) ∈ {0, 1}k}. A generator is called asymptotically
random or maximally equidistributed (ME) for the word size w if it is (t, `)-
equidistributed whenever ` ≤ min(bk/tc, w), for 1 ≤ t ≤ k [5,18,19]. Such
generators are listed, e.g., in [8].

For nonlinear generators, the uniformity of Ψt is often assessed via discrepancy
bounds [16], which are sometimes averages over an entire family of generators.
For specific generator instances, they are not tight. No easily computable
uniformity measure is currently available for these generators. On the other
hand, certain types of nonlinear generators tend to perform better than the
linear ones in empirical statistical tests [11]. In the forthcoming sections, we try
to team up the guaranteed uniformity of linear generators with the irregularity
of the nonlinear ones.

3 Combining a MRG with another generator

In this section and the next one, we combine two generators, G1 and G2. For
j = 1, 2, let Sj be the state space of Gj, sj,0 ∈ Sj its initial state, uj,n ∈ [0, 1)
its output at step n, and ρj its period length. Let G denote the combined
generator, with state space S, initial state s0, output un at step n, and period
length ρ.

We suppose in this section that G1 is a MRG, G2 any other type of generator,
and that the output of G is defined by

un = (u1,n + u2,n) mod 1. (6)

4

un+1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 un

Fig. 1. Pairs (un, un+1) for the LCG with m = 29 and a1 = 8

For any I = {i1, i2, · · · , it}, let Ψj,I = {uj,I = (uj,i1, ..., uj,it) : sj,0 ∈ Sj} and
ΨI = {uI = (ui1 , ..., uit) : s0 ∈ S}. Here, Ψ1,I is the intersection with [0, 1)t of
a lattice LI that contains Zt. We also have ΨI = {(u1,I + u2,I) mod 1 : s1,0 ∈
S1 and s2,0 ∈ S2} = ∪s2,0∈S2(Ψ1,I + u2,I) mod 1, where the “mod 1” reduction
is applied coordinatewise. Thus ΨI is the superposition of |S2| different shifts,
modulo 1, of the set Ψ1,I . The next lemma shows that shifting Ψ1,I modulo 1
preserves its structure, in the sense that it is the same as shifting the lattice
LI and taking the intersection with [0, 1)t. Then, ΨI is the intersection with
[0, 1)t of the union of |S2| shifted copies of LI , and we can conclude that it
covers the unit hypercube [0, 1)t at least as well as Ψ1,I , in the sense that it
cannot leave bigger uncovered gaps.

Lemma 1 Let w ∈ Rt and let Ψ̃1,I = (Ψ1,I + w) mod 1. Then, Ψ̃1,I = (LI +
w) ∩ [0, 1)t, where LI + w is the lattice LI shifted by w.

Proof: Let x ∈ Ψ̃1,I . Then, x = (y + w) mod 1 for some y ∈ Ψ1,I . That
is, x = y + w − z where z ∈ Z

t. This implies that x ∈ (LI + w) ∩ [0, 1)t,
because y − z ∈ LI (recall that LI contains Zt) and x ∈ [0, 1)t. Conversely, if
x ∈ (LI + w)∩ [0, 1)t, then x = y + w ∈ [0, 1)t for some y ∈ LI , and therefore
x ∈ Ψ̃1,I .

Example 1 Let G1 be a LCG with parameters m = 29 and a1 = 8, and
let t = 2 and I = {0, 1}. The black disks in Figure 1 are the 29 points
u1,I = (u1,0, u1,1) of Ψ1,I . The two arrows in the figure represent the vectors
v1 = (4/29, 3/29) and v2 = (1/29, 8/29), which form a basis of LI ; i.e., LI
is comprised of all integer linear combinations of these two vectors. These
vectors determine a parallelogram P , also illustrated in the figure. Suppose
now that G2 has only three states and produces the output sequence 0.3, 0.6,
0.6. Then, Ψ2,I = {(0.3, 0.6), (0.6, 0.6), (0.6, 0.3)}. These points are marked
by three small squares in Figure 1. Figure 2 shows the 87 points of ΨI .

Each point u2,I ∈ Ψ2,I can be moved to the parallelogram P by adding to it

5

un+1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

un

Fig. 2. Pairs (un, un+1) for the combined generator

some integer multiples of v1 and v2; that is, moved to ũ2,I = u2,I + z1v1 +
z2v2 ∈ P for some integers z1 and z2. Let Ψ̃2,I ⊂ P be the set of points thus
obtained. These points are marked by the three arrows in Figure 2. Note that
LI + ũ2,I = LI + u2,I + z1v1 + z2v2 = LI + u2,I , because z1v1 + z2v2 ∈ LI .
Therefore ΨI = (LI + Ψ2,I) ∩ [0, 1)t = (LI + Ψ̃2,I) ∩ [0, 1)t, which means that
moving the points of Ψ2,I to P as we just did does not change ΨI .

The three points of Ψ̃2,I form a pattern in P that is reapeated (modulo 1) 29
times in ΨI (see Figure 2). The uniformity of the point set ΨI is determined by
two things: the quality of the lattice LI and the uniformity of the point set Ψ̃2,I

in P . To improve the quality of ΨI here, we could certainly choose G2 so that
the set Ψ̃2,I covers the parallelogram P more evenly. This could be viewed as
a criterion for choosing G2, given G1. The same idea applies in more than two
dimensions, and to other MRGs as well. However, constructing G2 so that Ψ̃2,I

covers the appropriate parallelogram for several sets I simultaneously seems
hard in practice, unless G2 and the combined generator also have a lattice
structure, but this is precisely what we want to get away from. Constructing
G2 to nicely cover these parallelograms seems incompatible with our goal of
introducing irregularity in G.

The bottom line: We are sure that ΨI covers [0, 1)t at least as well as Ψ1,I .
Since ΨI contains more points, the coverage could be expected to be improved ,
but its seems hard to guarantee an improvement while introducing irregularity
at the same time.

6

4 Combining a LFSR with another generator

Now let G1 be a LFSR, G2 another type of generator, and the output of G be
defined by

un = u1,n ⊕ u2,n, (7)

where ⊕ denotes the bitwise exclusive-or of the binary expansions of the two
fractions. For any bit selection B of size k′, let Φj,B and ΦB be the correspond-
ing sets of bit strings for Gj and G, respectively.

Proposition 1 If G1 is B-equidistributed, then Φ1,B ⊕ w is equidistributed
for each k′-bit vector w and G is also B-equidistributed.

Proof: Using the fact that x ⊕w = x′ ⊕w if and only if x = x′, it is easily
seen that Φ1,B ⊕w = ∪x∈Φ1,B

(x⊕w) is equidistributed if and only if Φ1,B is,
because the strings that are identical in one set are also identical in the other.
When this happens, ΦB = ∪w∈Φ2,B

(Φ1,B ⊕w) is also equidistributed because
the union of equidistributed sets is equidistribued.

As a special case of this proposition, if G1 is (t, `)-equidistributed, then G also
is. The proposition also holds with G1 replaced by G2. This implies, in par-
ticular, that if G1 is B1-equidistributed and G2 is B2-equidistributed for some
bit sets B1 and B2, then G is both B1-equidistributed and B2-equidistributed.
This does not imply, however, thatG is (B1∪B2)-equidistributed. For example,
suppose B1 = {1, 2}, B2 = {3}, B = {1, 2, 3}, and ΦB = {000, 000, 011, 011,
100, 100, 111, 111}. Then ΦB1 and ΦB2 are both equidistributed, but ΦB is
not.

5 Statistical Testing

We now report the results of our statistical testing with families of linear and
nonlinear generators, and their combinations. For each of the tests that we
have applied, n random points are thrown in the unit hypercube [0, 1)t, where
n is called the sample size. For the nearest pair test [9], the test statistic is the
distance between the two nearest points. For the birthday spacings [14] and
the collision [15] tests, the hypercube is partitioned into k = dt cubic cells of
equal sizes. The collision test computes the number of times a point falls in
a cell already occupied (number of collisions), whereas the birthday spacings
test computes the number of collisions in the spacings between the successive
numbers of the occupied cells. The reader can consult the references for precise
definitions and analyzes of these tests.

These tests have been chosen because they are powerful for detecting regu-
larities in linear generators. They have been applied in a systematic way, as

7

follows [9,11,14,15]. For each family of generators we seek an approximate re-
lationship of the form n0 = Kργ , for some constants γ and K, where ρ is the
period length of the generator and n0 is the minimal sample size for which
the p-value of the test is outside the interval (10−15, 1 − 10−15). The p-value
is defined as

p =

{
P [T ≥ t | H0] if P [T ≥ t | H0] < P [T ≤ t | H0],
1− P [T ≤ t | H0] otherwise,

(8)

where t is the value taken by the test statistic T , and the null hypothesis H0 is
that the un’s are i.i.d. U(0, 1) random variables. It is important to distinguish
the two cases in (8) because in some tests (e.g., the birthday spacings and
collision tests), T can only take integer values.

To estimate γ and K for any given family, we applied the tests to generators
of period length ρ ≈ 2e for all integer values of e in a certain range. After
determining γ in a heuristic way, we defined K = 2ν where ν is the smallest
integer i for which the p-value of the test with sample size n = 2i+γe is outside
the interval (10−15, 1− 10−15).

The generator families considered here are LCGs selected via the spectral test
in up to 8 dimensions and taken from Table 2 of [7], combined LFSR genera-
tors with good equidistribution properties [8], explicit inversive generators [1],
defined by xn = (an + c) mod m, zn = x−1

n mod m (the inverse of xn mod-
ulo m), and un = zn/m, and cubic congruential generators [2,11], defined by
xn = (ax3

n−1 +1) mod m and un = xn/m. For the latter two nonlinear genera-
tors, the parameters m, a and c for each value of e were taken from [11]. They
were selected so that the output sequence has maximal period length m. We
also consider the combination of a LCG with each other type of generator by
addition modulo 1, and a LFSR combined with each other type of generator
by bitwise exclusive-or. In these combinations, the period length of component
j is ρj ≈ 2ej and that of the combined generator is ρ ≈ 2e ≈ 2e12e2.

Tables 1 and 2 summarize the results (i.e., give our estimates of γ and K)
for a two-dimensional nearest pair test and for an eight-dimensional birthday
spacings test. We see in both tables that for the (nonlinear) inversive and cubic
generators, failure occurs only after the entire period length is exhausted. On
the other hand, LCGs fail with a sample size proportional to the square root
of the period length (γ = 1/2) for the nearest pair test and the cubic root
(γ = 1/3) for the birthday spacings test. When LCGs are combined with
a fixed-size nonlinear generator (e.g., e2 = 6 or e2 = 10), this rule (i.e., γ)
remains the same, although the constant K increases by a factor that depends
on e2. This means that the mixed combined generator stays alive longer than
the LCG in face of these tests if both have similar period lengths. If the size of
the nonlinear component increases with that of the LCG, i.e., if e2 increases
with e (e.g., e2 = e/4 or e2 = e/2), we see an improvement in the value of γ,

8

Table 1
Estimates of γ and K for the nearest pair test in t = 2 dimensions

Family e2 γ K

LCG 1/2 8
Inversive 1 1
Cubic 1 1
LCG + Inversive 6 1/2 32
LCG + Inversive 10 1/2 256
LCG + Inversive e/4 2/3 2
LCG + Inversive e/2 2/3 32
LCG + Cubic 6 1/2 32
LCG + Cubic 10 1/2 256
LCG + Cubic e/4 2/3 2
LCG + Cubic e/2 2/3 32
LCG + LFSR 10 1/2∗ 256
LCG + LFSR e/2 2/3∗ 16

Table 2
Estimates of γ and K for the birthday spacings test, with t = 8, k ≈ ρ, and
n3/4k ≈ 1

Family e2 γ K
LCG 1/3 8
LFSR 2/5 32
Inversive 1 2
Cubic 1 1
LCG + Inversive 6 1/3 16
LCG + Inversive 10 1/3 64
LCG + Inversive e/4 2/5 8
LCG + Inversive e/2 1/2 8
LCG + LFSR 10 1/3 64
LCG + LFSR e/2 3/5 1
LFSR ⊕ Inversive 6 2/5 128
LFSR ⊕ Inversive 10 1/2 128
LFSR ⊕ Inversive e/4 3/5 4
LFSR ⊕ Inversive e/2 3/5 32
LFSR ⊕ LCG 10 1/2 64
LFSR ⊕ LCG e/2 3/5 16

from 1/2 to 2/3 in Table 1 and from 1/3 to 1/2 in Table 2. Similar results are
obtained in Table 2 when the LCG is combined with a LFSR. We also obtain
the same types of results for a LFSR combined with another type of generator
via bitwise exclusive-or (the bottom part of Table 2).

Other tests were made, for other values of t and e2, and the results were simi-
lar. See [3] for more details. The “correct” values of γ and K were not always
clear from the results, especially for the collision tests. However, the following
was observed systematically: For comparable period lengths, the mixed com-
bined generators always did better in the tests than the linear ones, there was

9

more improvement when the value of e2 was larger, and γ was improved only
when e2 was increased together with e. This means that to destroy the regu-
larity, combining a large linear generator with a very small nonlinear one does
not suffice. The size of the nonlinear component must be significant enough.
Moreover, combining two different types of linear generators, such as a LCG or
MRG with a LFSR, seems to do as well as the linear-nonlinear combinations,
at least from the empirical perspective.

6 Implementations

One might argue that a combined generator with a large nonlinear component
would be unacceptably slow for many applications. However, nonlinear gen-
erators with arbitrarily long periods can be constructed by combining small
nonlinear generators with relatively prime period lengths, and very fast im-
plementations of these small nonlinear generators can be obtained simply by
precomputing their output sequences and storing them in tables. Moreover,
once it is decided to implement a generator component via a table, its defi-
nition can be made very complicated and this has no effect on the running
speed. In fact, for a component of period ρj , one can simply generate a random
permutation of the ρj output values, by any method, and store it in the table.

For a concrete illustration, we took the generator lfsr113 of [8], with period
length near 2113, and combined it by bitwise exclusive-or with a nonlinear
generator of period length 218 implemented in a table. The code was written
in C and compiled by the gcc compiler with full optimization options. The
CPU time needed to generate and add 10 million random numbers was 0.7
seconds with this combined generator, compared with 0.6 seconds for lfsr113
alone, on an AMD Athlon processor at 750 MHz. On a Pentium III at 500 MHz
and with the g++ compiler, the numbers were 1.9 and 1.3 seconds, respectively.

References

[1] J. Eichenauer-Herrmann. Inversive congruential pseudorandom numbers: A
tutorial. International Statistical Reviews, 60:167–176, 1992.

[2] J. Eichenauer-Herrmann and E. Herrmann. Compound cubic congruential
pseudorandom numbers. Computing, 59:85–90, 1997.

[3] J. Granger-Piché. Générateurs pseudo-aléatoires combinant des récurrences
linéaires et non linéaires. Master’s thesis, Département d’informatique et de
recherche opérationnelle, Université de Montréal, 2001.

[4] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., third edition, 1998.

10

[5] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation, 65(213):203–213, 1996.

[6] P. L’Ecuyer. Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1):159–164, 1999.

[7] P. L’Ecuyer. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation, 68(225):249–260, 1999.

[8] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation, 68(225):261–269, 1999.

[9] P. L’Ecuyer, J.-F. Cordeau, and R. Simard. Close-point spatial tests and their
application to random number generators. Operations Research, 48(2):308–317,
2000.

[10] P. L’Ecuyer and R. Couture. An implementation of the lattice and spectral tests
for multiple recursive linear random number generators. INFORMS Journal on
Computing, 9(2):206–217, 1997.

[11] P. L’Ecuyer and P. Hellekalek. Random number generators: Selection criteria
and testing. In P. Hellekalek and G. Larcher, editors, Random and Quasi-
Random Point Sets, volume 138 of Lecture Notes in Statistics, pages 223–265.
Springer, New York, 1998.

[12] P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214–1235, 2000.

[13] P. L’Ecuyer and F. Panneton. Construction of equidistributed generators
based on linear recurrences modulo 2. In K.-T. Fang, F. J. Hickernell, and
H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 318–330, Berlin, 2002. Springer-Verlag.

[14] P. L’Ecuyer and R. Simard. On the performance of birthday spacings tests for
certain families of random number generators. Mathematics and Computers in
Simulation, 55(1–3):131–137, 2001.

[15] P. L’Ecuyer, R. Simard, and S. Wegenkittl. Sparse serial tests of uniformity
for random number generators. SIAM Journal on Scientific Computing. To
appear.

[16] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,
volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia, 1992.

[17] R. C. Tausworthe. Random numbers generated by linear recurrence modulo
two. Mathematics of Computation, 19:201–209, 1965.

[18] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass., 1995.

[19] J. P. R. Tootill, W. D. Robinson, and D. J. Eagle. An asymptotically random
Tausworthe sequence. Journal of the ACM, 20:469–481, 1973.

11

