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Abstract We present a versatile Monte Carlo method

for estimating multidimensional integrals, with applica-

tions to rare-event probability estimation. The method

fuses two distinct and popular Monte Carlo simula-
tion methods — Markov chain Monte Carlo and im-

portance sampling — into a single algorithm. We show

that for some illustrative and applied numerical exam-
ples the proposed Markov Chain importance sampling

algorithm performs better than methods based solely

on importance sampling or MCMC.
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1 Introduction

1.1 Background

A hallmark problem of Monte Carlo simulation is the

efficient estimation of high-dimensional integrals of the

Z. I. Botev
School of Mathematics and Statistics
University of New South Wales
Sydney NSW 2052 Australia

P. L’Ecyuer
Department of Computer Science and Operations Research,
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form:

Z =

∫
f(x)H(x) dx = EfH(X) , (1)

where the functionH : Rd → R andX is a d-dimensional
random variable with probability density function (pdf)

f . Such high-dimensional integrals arise in Bayesian

statistics, financial mathematics, statistical mechanics,
reliability analysis, queuing analysis, and combinatorial

counting problems in computer science; see [2,20,23].

When direct simulation methods are impractical,

a popular method for estimating Z efficiently is the

importance sampling method [2,26]. A common prob-
lem in applying the method is that the selection of a

good importance sampling density is not easy, and a

poor choice, even if a priori appealing, may lead to
mediocre estimators with infinite variance [26]. For spe-

cific problems it is possible to construct an efficient

importance sampling density derived from large devia-
tions and other asymptotic approximations; see, for ex-

ample, [1,10,16,21,22]. The resulting importance sam-

pling schemes are thus always problem-specific and rely

on analytical tractability in a some asymptotic regime.
In contrast, adaptive importance sampling schemes are

more broadly applicable and typically do not require

any preliminary asymptotic analysis. There are many
proposals for the adaptive (or automatic) selection of

the importance sampling density. These include the cross-

entropy and the variance minimization methods [2,28],
which have recently been shown (under some strong

assumptions) to have similar asymptotic performance

on many prominent rare-event probability estimation

problems [13]. All of these methods employ an impor-
tance sampling density from a given parametric family.

As a result, these approaches do not resolve the selec-

tion problem satisfactorily, because the choice of the
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parametric family remains subjective and rarely con-

tains the minimum variance density for the estimation
of (1) (which is the reason why problem-specific meth-

ods are used if possible).

Given these shortcomings of importance sampling,

a number of alternatives have been proposed that use

MCMC. The literature on MCMC methods for esti-
mating Z is vast, but it appears that one of the most

efficient and popular methods is Chib’s method [15],

which has found applications in Bayesian statistics and
beyond. A lingering problem with Chib’s and other

MCMC estimation methods is that the resulting esti-

mators are always biased, because the Markov chain

does not sample perfectly from the target density. In
addition, MCMC sampling does not generate iid sam-

ples and this makes assessment of the estimation error

and construction of confidence intervals difficult and
convoluted.

Inspired by Chib’s approach and new advances in
importance sampling, we formulate a novel method called

Markov Chain Importance Sampling (MCIS), which com-

bines importance sampling and MCMC sampling in an

elegant framework that takes advantage of both. In par-
ticular, the MCIS method makes the selection of the im-

portance sampling density more specific to the estima-

tion problem and less subjective. Unlike traditional im-
portance sampling methods [2], the MCIS importance

sampling density is model free, that is, it is not part of

an arbitrarily selected parametric family of densities.
Unlike other MCMC estimators, the MCIS estimator is

unbiased and the calculation of the confidence intervals

and other error criteria is straightforward.

The rest of the paper is organized as follows. In Sec-

tion 1.2 we review the standard procedures for con-

structing importance sampling schemes, and in Sec-
tion 1.3 we review the currently used MCMC estima-

tion methods. In Section 2 we describe how MCMC and

importance sampling can be fused into a single MCIS
framework. This is followed by an illustrative numerical

example comparing the MCIS method with well-known

Monte Carlo integration methods. In Section 3 we focus
on applying the MCIS procedure to rare-event probabil-

ity estimation. Finally, in Section 4 we give concluding

remarks and point to directions for future research.

1.2 Importance sampling

One of the most popular variance reduction techniques

in Monte Carlo estimation of (1) is importance sam-
pling [2,29]. Briefly, the method works as follows. Let g

be another probability density such that H(x) f(x) is

dominated by g, that is, g(x) = 0 ⇒ H(x) f(x) = 0.

Using the density g we can represent Z as

Z =

∫
H(x)

f(x)

g(x)
g(x) dx = EgW (X)H(X),

where the ratio of densities W (x) = f(x)/g(x) is called

the likelihood ratio. Consequently, if X1, . . . ,Xm
iid∼ g,

where
iid∼ g denotes an iid population with pdf g, then

an unbiased estimator of Z is

Ẑ =
1

m

m∑

k=1

Zk with Zk = H(Xk)
f(Xk)

g(Xk)
. (2)

If σ̂ denotes the sample standard deviation of Z1, . . . , Zm,

then the estimated relative error of Ẑ is σ̂/(
√
m |Ẑ|)

and a normal approximation based 1−α confidence in-

terval for Z is
(
Ẑ − z1−α/2

σ̂√
m
, Ẑ + z1−α/2

σ̂√
m

)
, where

zγ denotes the γ-quantile of the N(0, 1) distribution.

This estimator is called the importance sampling esti-
mator and g is called the importance sampling density.

The main difficulty in importance sampling is to se-

lect an importance sampling density which yields an

estimator with small variance. It is well known that
a poor choice of g may seriously compromise the es-

timate and the confidence intervals [2]. The optimal

importance sampling density is the one that minimizes
the variance of Ẑ, and is therefore the solution to the

functional minimization program

min
g

Varg (H(X)W (X)) . (3)

It is well-known (see, for example, [29]) that the solu-
tion to this program is the minimum variance impor-

tance sampling pdf:

π(x) =
|H(x)| f(x)∫
|H(x)| f(x) dx . (4)

Note that if H > 0, then (4) is the zero variance im-

portance sampling pdf. Unfortunately, π(x) depends on

the unknown quantity Z̆ =
∫
|H(x)| f(x) dx = Z −

2
∫
H(x)<0

H(x) f(x) dx and cannot be used as an im-
portance sampling density. Nevertheless, a “good” im-

portance sampling density g should be “close” to the

minimum variance density π. The closeness between
two pdfs π and g is frequently measured by the φ-

divergence distance
∫

π(x) φ

(
g(x)

π(x)

)
dx , (5)

where φ : R+ → R is twice continuously differentiable,

and φ(1) = 0, φ′′(x) > 0, for all x > 0. The φ-

divergence subsumes as special cases most of the infor-

mation-theoretic distances such as the cross-entropy dis-
tance, the Hellinger distance, the Havrda-Charvat α-

entropy, Burg’s divergence, and Pearson’s χ2 distance;

see [29].
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Suppose that the density f is parameterized by a

vector θ ∈ Θ, and that f(·;θ) is embedded in the
parametric family of pdfs {f(·;η),η ∈ Θ}. In general,

the importance sampling density g can be a member

of some parametric family of densities, which may be
very different from the family {f(·;η),η ∈ Θ}. How-
ever, it is often convenient to select the importance

sampling distribution from the parametric family of f .
More precisely, we select the importance sampling pdf

g(·) ≡ f(·;η∗) that minimizes a suitable φ-divergence

distance to π:

η∗ = argmin
η∈Θ

∫
f(x;θ) |H(x)|φ

(
f(x;η)

π(x)

)
dx . (6)

In practice η∗ is not available, because the φ-divergence

cannot be easily computed, and it has to be estimated
from the stochastic counterpart of (6):

η̂∗ = argmin
η∈Θ

1

n

n∑

k=1

φ

(
f(Xk;η)

π(Xk)

)
, X1, . . . ,Xn ∼ π .

(7)

Cross entropy method. The choice φ(x) = − ln(x) for

the φ-divergence gives the popular Cross Entropy (CE)

method [28] for the optimal selection of the parameter
η∗. In the CE method, the program (7) simplifies to the

maximum likelihood estimation program:

η̂
CE

= argmax
η∈Θ

1

n

n∑

k=1

ln(f(Xk;η)), X1, . . . ,Xn ∼ π ,

(8)

where (approximate) sampling from π is typically ac-

complished using MCMC and we assume that the argmax
exists. Note that if f(·;η) is a model from the exponen-

tial family, then (8) is a convex optimization program

and finding the global maximizer η̂
CE

is not difficult;

see [20].

Variance minimization method. The choice φ(z) = 1/z
for the φ-divergence gives the Variance Minimization

(VM) method [2,29]. In the VM method the stochastic

counterpart (7) simplifies to the nonlinear optimization
program

η̂
VM
= argmin

η∈Θ

1

n

n∑

k=1

|H(Xk)|f(Xk;θ)

f(Xk;η)
, X1, . . . ,Xn ∼ π.

(9)

Theoretical analysis has shown that the solutions to the
VM and CE programs are qualitatively similar [13], and

that an advantage of the CE over the VM approach is

that often one can compute η̂
CE

analytically (whenever

maximum likelihood estimation yields closed form so-

lutions) without resorting to costly nonlinear optimiza-
tion.

A disadvantage of both the CE and VM methods is

that the choice of the parametric family {f(·;η),η ∈ Θ}
is frequently arbitrary and there is no reason why it

should contain a good (or at least a near optimal) im-

portance sampling density. Instead of restricting the
search for a good importance sampling density g to a

simple parametric form g(·) ≡ f(·;η), we may optimize

(5) over a flexible and complicated class of paramet-

ric densities. Unfortunately, expanding the paramet-
ric family does not necessarily lead to better efficiency

of the importance sampling estimator. There are two

reasons for this. First, the larger the family of impor-
tance sampling densities, the more difficult it is to esti-

mate Eπφ(f(X;η)/π(X)) on the right-hand side of the

stochastic counterpart (7) (necessitating large sample
size n) and the more noisy is the estimator η̂∗. This un-

desirable phenomenon is related to the so-called curse

of dimensionality, because increasing the complexity of

the parametric family typically increases the dimension-
ality of the parameter vector η∗. Second, a more flexible

and complex parametric family of densities makes the

nonlinear optimization in (7) more complex (for exam-
ple, by increasing the dimension of the search space).

We will show that the MCIS method provides a

model-free (nonparametric or semi-parametric) impor-
tance sampling density with the advantage that there is

no need for a costly nonlinear optimization as in (7) or

for tuning a bandwidth parameter as in standard kernel

density estimation [30].

1.3 MCMC sampling and estimation

Markov chain Monte Carlo (MCMC) was proposed by
Metropolis et al. [24] for (approximate) sampling from

an arbitrary complex target density π. The main idea

is to generate a Markov chain whose limiting distri-

bution is equal to the desired distribution. The Gibbs
sampler (see, for example, [2,29]) is a special MCMC

algorithm for generating d-dimensional random vectors

by constructing a Markov chain from a sequence of con-
ditional distributions. Briefly, the Gibbs sampler works

as follows. Suppose that we wish to generate a random

vector X = (X1, . . . , Xd) with (approximate) density π.
Let π(· |x1, . . . , xi−1, xi+1, . . . , xd) be the conditional

pdf of the Xi component, given all the other compo-

nents x1, . . . , xi−1, xi+1, . . . , xd.

Algorithm 11 (Systematic Gibbs Sampler)

Require: An initial state X1 and sample size n.

for t = 1, . . . , n− 1 do
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SetY = Xt. Generate Y1 ∼ π(y1 |Xt,2, . . . , Xt,d).

for i = 2, . . . , d− 1 do

Draw Yi ∼ π(yi |Y1, . . . , Yi−1, Xt,i+1, . . . , Xt,d).

Draw Yd ∼ π(yd |Y1, . . . , Yd−1). Set Xt+1 = Y.

The pdf of the transition x → y in the resulting Markov

chain is given by

κ(y |x) =
d∏

i=1

π(yi | y1, . . . , yi−1, xi+1, . . . , xd) . (10)

It is well known [26] that

∫
π(x)κ(y |x) dy = Eπ[κ(y |X)] = π(y) , (11)

from which we can conclude that π is the stationary pdf

of the Markov chain {Xt, t = 1, 2, . . .} with transition

density κ(y |x). In addition, if for every y ∈ R
d the

positivity condition holds:

d∏

i=1

πi(yi) > 0 implies π(y) > 0 (12)

(here πi is the i-th marginal density of π), then the
Markov chain {Xt, t = 1, 2, . . .} is irreducible and recur-

rent with limiting pdf π; see [26], where much weaker

technical conditions are given as well. As a consequence,
to estimate, for example, the φ-divergence (5) one can

use the estimator 1
n

∑n
t=1 φ(g(Xt)/π(Xt)).

One of the most widely used MCMC methods for

estimation of Z using the output of a MCMC sampler
is Chib’s method [15]. For simplicity assume that H(x)

in (4) is positive. Then from (4), we have the iden-

tity H(x∗)f(x∗)/π(x∗) = Z for any point x∗ in the
support of π. It follows that if π̂(x∗) is an estimator

of π(x) at x∗, then we may estimate Z via Ẑ
Chib

=

H(x∗)f(x∗)/π̂(x∗), where for numerical accuracy x∗ is
a carefully chosen point — typically a mode of π. We

now introduce the following notation:

– π
1
(x1) denotes the marginal density of X1 evaluated

at x1;
– π

2 | 1
(x2 |x1) denotes the marginal density ofX2 given

X1 = x1;

– π
3 | 1,2

(x3 |x1, x2) denotes the marginal density ofX3

given X1 = x1 and X2 = x2;

Note that we use a subscript notation like π
3 | 1,2

only

for marginal densities, but not for the full conditional

densities π(· |x1, . . . , xi−1, xi+1, . . . , xd), i = 1, . . . , d.
Given the identity

π(x∗) = π1(x
∗
1)π2 | 1

(x∗
2 |x∗

1)

×π
3 | 1,2

(x∗
3 |x∗

1, x
∗
2) · · · π(x∗

d |x∗
1, . . . , x

∗
d−1) ,

Chib proposes to estimate π(x∗) by estimating each

of the d terms on the right-hand side of the identity
and then computing their product. In particular, the

marginal pdf ofXk given (X1, . . . , Xk−1) =(x∗
1, . . . , x

∗
k−1),

that is π
k | 1,...,k−1

(· |x∗
1, . . . , x

∗
k−1), is estimated at the

point x∗
k via

π̂
k | 1,...,k−1

=
1

m

m∑

t=1

π(x∗
k |x∗

1, . . . , x
∗
k−1, Xt,k+1, . . . , Xt,d) ,

(13)

where

(Xt,k, Xt,k+1, . . . , Xt,d)
approx∼ π(xk, . . . , xd |x∗

1, . . . , x
∗
k−1)

for t = 1, . . . ,m are obtained from a Gibbs run (dif-

ferent for each k) in which (x1, . . . , xk−1) is fixed to

(x∗
1, . . . , x

∗
k−1), the component xk is discarded, and the

Gibbs sampler runs over (xk, . . . , xd). Hence, the Chib
estimator is simply

Ẑ
Chib

=
H(x∗)f(x∗)

π(x∗
d |x∗

1, . . . , x
∗
d−1)

∏d−1
k=1 π̂k | 1,...,k−1

, (14)

where each π̂
k | 1,...,k−1

is given in (13) and the con-

ditional density π(· |x1, . . . , xd−1) is available analyti-
cally. Possible problems with this approach include the

difficulty in computing empirical and asymptotic error

estimates for (14), the bias of the Chib estimator, and
the reliance of the estimator on multiple Markov chains

(as opposed to a single one). Note also the problem

of the somewhat arbitrary location of a suitable high-
density point x∗.

2 Markov Chain Importance Sampling

Similar to the cross entropy and variance minimization
methods, the MCIS method consists of two stages:

– Markov Chain (MC) stage, in which we construct

an estimator of the minimum variance importance
sampling density (4).

– Importance Sampling (IS) stage, in which we

use the constructed pdf as an importance sampling
density to estimate Z.

Suppose that we have used an MCMC sampler to gen-

erate the population

X1, . . . ,Xn
approx∼ π(x), Xi = (Xi,1, . . . , Xi,d) . (15)

For simplicity and concreteness we may assume that

the sample was generated by the Gibbs sampling Algo-

rithm 11. We now present two possible ways (one semi-
parametric and the other nonparametric) in which the

Markov chain output (15) can be used to construct an

importance sampling density (the IS stage).
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2.1 Construction of a semi-parametric importance

sampling density

Suppose that instead of minimizing (5) over a simple

parametric family of densities {g(·) ≡ f(·;η),η ∈ Θ},
we minimize the φ-divergence over all densities of prod-
uct form:

g(y) =
d∏

i=1

gi(yi),

where

gi ∈ G ≡
{
g : R → [0,∞),

∫
g(y) dy = 1

}
.

In other words, instead of solving the parametric op-

timization program (6), we now solve the functional

optimization program:

min
gi∈G

i=1,...,d

∫
π(y)φ

(∏d
i=1 gi(yi)

π(y)

)
dy. (16)

With φ(y) = − ln(y) (giving the cross entropy dis-

tance), the solution is gi(yi) = πi(yi) for all i, where
πi is the marginal density of Yi with Y ∼ π(y). To see

this, write

−
∫

π(y) ln

(∏d
i=1 gi(yi)

π(y)

)
dy

=

∫
π(y) ln (π(y)) dy −

d∑

i=1

∫
πi(yi) ln(gi(yi)) dyi

=

d∑

i=1

∫
πi(yi) ln

(
πi(yi)

gi(yi)

)
dyi + terms without gi .

The functional optimization program (16) is then equiv-

alent to

min
gi∈G

∫
πi(yi) ln

(
πi(yi)

gi(yi)

)
dyi, i = 1, . . . , d,

which we recognize as the cross entropy distances be-

tween πi and gi for all i. These distances are zero if

and only if gi ≡ πi for all i. Hence, the pdf g(y) =∏d
i=1 πi(yi), which is the product of the marginal den-

sities of (4), is the best (in the cross entropy sense)

importance sampling density of product form. Since
the marginals are typically not available in closed form,

we use the Markov chain output (15) to estimate each

marginal density πi(yi) via:

π̂i(yi) =
1

n

n∑

k=1

π(yi |Xk,−i) ,

where Xk,−i is the same as vector Xk, except that the

i-th component is removed. Thus, in the MC stage we
can construct the semi-parametric importance sampling

pdf :

ĝ(y) =
d∏

i=1

π̂(yi) =
d∏

i=1

1

n

n∑

k=1

π(yi |Xk,−i) , (17)

which looks similar to Besag’s pseudo-likelihood [4].

Note that generating Y ∼ ĝ(y) is straightforward, be-

cause each Yi is generated from the mixture π̂i(yi) and,

given {Xk}, independently from all other components
of Y. The estimator ĝ is semi-parametric (as opposed

to nonparametric), because ĝ does not converge to π as

n ↑ ∞ (unless π is of product form).

In the IS stage of the MCIS method we generate
the iid population Y1, . . . ,Ym from the pdf ĝ and then

deliver the estimator:

Ẑ =
1

m

m∑

k=1

|H(Yk)| f(Yk)

ĝ(Yk)
. (18)

We defer giving an example to the next section and
we first explain how we can use the Markov chain sam-

ple (15) to construct a fully nonparametric estimator of

π.

2.2 Construction of nonparametric importance

sampling density

From the global balance equation (11) and the avail-
ability of the transition density (10) in closed form, we

can construct the nonparametric importance sampling

pdf :

π̂(y) =
1

n

n∑

i=1

κ(y |Xi)

=
1

n

n∑

i=1

d∏

j=1

π(yj | y1, . . . , yj−1, Xi,j+1, . . . , Xi,d) . (19)

Note that, while the normalization constant of π it-

self is not available, the availability of the normaliza-
tion constants of the conditional densities of π in (19)

is what makes π̂ practicable as an importance sam-

pling density. The advantage of the importance sam-
pling density (19) is that we are no longer restricted

by rigid parametric models such as those used in (8)

and (9). Unlike in the CE and VM methods, we have

P (limn→∞ π̂(y) = π(y)) = 1 for every y, see, for exam-
ple, [26, Page 240]. It is in this sense that we classify π̂

as a nonparametric estimator—we can recover the true

π as n ↑ ∞, at least in principle. We also classify the
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product model (17) as a semi-parametric model, be-

cause, while in general not converging to π as n ↑ ∞,
it involves the estimation of the infinite dimensional

marginal densities {πi}.
Another advantage of the MCIS construction of the

importance sampling density is that here we need not
solve any nonlinear optimization programs such as (8)

and (9). A disadvantage of the nonparametric estima-

tor (19) is that it may suffer from the curse of dimen-
sionality — the variance of the estimator π̂ of π may

deteriorate with increasing d. In this sense, the semi-

parametric importance sampling density (17) is a com-
promise between the nonparametric model (19) and the

parametric models of the CE and VM methods. On the

one hand, the semi-parametric model does not require

any nonlinear optimization and is less sensitive to the
curse of dimensionality, because it estimates densities

on subspaces of R
d. On the other hand, the product

form of the semi-parametric model may fail to capture
some important interdependence between the compo-

nents of Y ∼ π(y).

Note that sampling from π̂ is straightforward using

the composition method: Sample a random index J uni-
formly from the set {1, . . . , n} and then generate Y ∼
κ(y |XJ ). The IS stage of the MCIS method simply

consists of generating the iid population Y1, . . . ,Ym

using the composition method above, and then com-
puting the estimator:

Ẑ =
1

m

m∑

k=1

|H(Yk)| f(Yk)

π̂(Yk)
. (20)

Note that if the positivity condition (12) holds, then π̂

dominates π, that is π̂(y) = 0 ⇒ |H(y)|f(y) = 0 for
all y. In Section 3 we discuss problems for which (12)

does not hold.

2.3 Generic MCIS algorithm

In summary, a generic version of the MCIS algorithm

reads as follows.

Algorithm 21 (MCIS for the estimation of Z)

1. MC step. Run any MCMC sampler with stationary

density (4) to generate the population X1, . . . ,Xn.

2. IS step. Generate an iid population Y1, . . . ,Ym

from the semi-parametric importance sampling pdf

(17) (or from the nonparametric importance sam-

pling pdf (19)) and deliver the importance sampling

estimator (18) (or the importance sampling estima-
tor (20)). The estimated relative error of the estima-

tor is σ̂/(
√
m |Ẑ|), where σ̂ is the sample standard

deviation of the population {|H(Yk)| f(Yk)/ĝ(Yk)}

(or the sample standard deviation of the population

{|H(Yk)| f(Yk)/π̂(Yk)}).

Remark 1 (Different transition densities) In principle

the MC step can be executed using a Markov transition

density different from the κ used in the IS step. While
the IS step requires the transition density to have a sim-

ple form and satisfy the positivity condition (12), there

are no such requirements for the MC step (the positiv-
ity condition is not required for ergodicity [26]). Thus,

for the MC step we may use, for example, an MCMC

sampler based on the generalized splitting method [6].

Remark 2 (Dependence of error on Markov chain)

Whether the estimated relative error σ̂/(
√
m|Ẑ|) in the

IS step of Algorithm 21 is small or large depends in part

on the mixing speed of the Markov chain in the MC
step. This is because the quality of the nonparametric

or semi-parametric approximation to the optimal im-

portance sampling density π depends on the MCMC
output X1, . . . ,Xn.

2.4 Numerical example

We illustrate the effectiveness of the nonparametric ver-
sion of the MCIS method (that is, using (19) as impor-

tance sampling pdf) as a Monte Carlo variance reduc-

tion method on a simple bridge network test problem

borrowed from [20] and depicted on Figure 1.

BA

X1X2 X3 X4X5

1

Fig. 1 A bridge network with four nodes and five links. The
i-th link has a random length given by Xi.

The problem is to compute the expected length, say Z,

of the shortest path between the nodes A and B, where

the five links have lengths given by the random vari-
ables X1, . . . , X5. We assume that the lengths are inde-

pendent and Xi ∼ U(0, ai) for all i with (a1, . . . , a5) =

(1, 2, 3, 1, 2). In other words, we wish to compute Z =

EfH(X), where f is the uniform density

f(x) =

5∏

i=1

I{0 < xi < ai}
ai

, x ∈ R
5 (21)

and the functionH is defined as follows (a∧b def
= min{a, b})

H(x) = (x1+x4)∧(x2+x5)∧(x1+x3+x5)∧(x2+x3+x4) .
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To apply the MCIS Algorithm 21 we first derive the

conditional densities of (4). Defining x+ def
= max{0, x},

we can, after some straightforward manipulations, write
the conditional densities as

π(yi |x−i) ∝

{
αi, ηi < yi < ai

yi + βi, 0 < yi < ηi
, ηi = ai∧(αi−βi)

+,

where

α1 = (x2 + x3 + x4) ∧ (x2 + x5), β1 = x4 ∧ (x3 + x5)

α2 = (x1 + x3 + x5) ∧ (x1 + x4), β2 = x5 ∧ (x3 + x4)

α3 = (x1 + x4) ∧ (x2 + x5), β3 = (x1 + x5) ∧ (x2 + x4)

α4 = (x1 + x3 + x5) ∧ (x2 + x5), β4 = x1 ∧ (x2 + x3)

α5 = (x1 + x4) ∧ (x2 + x3 + x4), β5 = x2 ∧ (x1 + x3),

(22)

and the constant of proportionality is δi = αi(ai−ηi)+
1
2η

2
i +βiηi. In other words, the conditional densities can

be written as a mixture of two uniform densities (on
disjoint intervals) and the density

yi I{0 < yi < ηi}
η2i /2

,

that is,

π(yi |x−i) =
αi(ai − ηi)

δi

I{ηi < yi < ai}
ai − ηi

+
η2i
2δi

yi I{0 < yi < ηi}
η2i /2

+
βi ηi
δi

I{0 < yi < ηi}
ηi

.

Given these conditional densities, for the Markov chain

step of the MCIS algorithm (Step 1) we apply the Gibbs
Algorithm 11 with n = 100 and X1 = (a1, . . . , a5)/2.

For the IS step (Step 2) we use a sample size of m = 104

with the importance sampling density given in (19).

To compare the MCIS method with another Markov

chain based method for estimation, we implemented

Chib’s estimator (14) as follows. We used a Gibbs sam-
ple size of m = 104 for the estimation of all components

(13) with x∗ = (a1, . . . , a5)/2. To estimate the relative

error of (14) we repeated the simulation ten indepen-
dent times. The result is given in Table 1, which also

shows the comparative performance of the Cross En-

tropy and Variance Minimization methods. For both
the VM and CE methods we used the importance sam-

pling estimator (2) with m = 104 and importance sam-

pling density

g(x) ≡ f(x;η) =

5∏

i=1

ηi
ai

(
xi

ai

)ηi−1

, xi ∈ (0, ai) .

(23)

Note that f(x;1) yields the original uniform distribu-

tion. For the VM method we used the estimated param-
eter η̂

VM
= (1.26, 1.08, 1.01, 1.23, 1.06), computed from

(9) with n = 103. For the CE method we used the esti-

mated CE parameter η̂
CE

= (1.27, 1.12, 1.00, 1.32, 1.07),
computed from (8) with n = 103. For all methods we

used a Monte Carlo sample size of m = 104 in the

importance sampling stage, and for each method we
recorded the resulting estimate together with the es-

timated relative error and the corresponding variance

reduction factor (relative to crude Monte Carlo). For

example, the VM approach gives an estimator with vari-
ance approximately 3 times smaller than the variance

of the crude Monte Carlo estimator.

From the table we can see that for this particular

example the MCIS method gives the smallest relative

error and the largest variance reduction factor of 810.
In our implementation the computational time for the

MCIS method was roughly the same as that for the

Chib estimator.

3 MCIS for rare-event probability estimation

An important class of estimation problems of the form
(1) is rare-event probability estimation, in whichH(x) =

I{S(x) > γ} for some function S(x) and a level or

threshold parameter γ. In this case Z = EfH(X) =
Pf (S(X) > γ). In many interesting problems Z hap-

pens to be a very small probability, say, smaller than

10−4, and in such cases the event {S(X) > γ} is called

a rare-event and Z is called a rare-event probability [2,
5,27].

Suppose for the moment that f(x) =
∏d

j=1 fj(xj),

that is, the components of the vectorX are independent

and we wish to estimate the rare-event probability Z =

Pf (S(X) > γ) using Algorithm 21. Then, a straightfor-
ward calculation shows that the estimator (20) simpli-

fies to Ẑ = n
m

∑m
k=1

(∑n
i=1

∏d
j=1 Ik,i,j/ck,i,j

)−1
, where

the conditional probability ck,i,j is given by

ck,i,j = P(S(Yk,1, . . . , Yk,j , Xi,j+1, . . . , Xi,d) > γ |

given everything except Yk,j) ,

and Ik,i,j is the indicator of the event:

{S(Yk,1, . . . , Yk,j , Xi,j+1, . . . , Xi,d) > γ}.

Note that in the rare-event setting the positivity condi-
tion (12) does not hold and for a finite n it is possible

that
∑

i

∏
j Ik,i,j = 0 for at least one k, making the es-

timator Ẑ invalid. The reason for this is that for a valid

importance sampling estimator (20) we need to ensure
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Table 1 Empirical performance of widely used importance sampling and MCMC integration methods on the bridge network.

method of integration estimate relative error variance
reduction factor

5 crude Monte Carlo 0.93 0.43% 1.00
4 cross entropy method 0.9289 0.25% 3
3 variance minimization 0.9295 0.24% 3
2 Chib’s method 0.9296 0.09% 23
1 MCIS method 0.92978 0.015% 810

that the importance sampling density π̂ dominates π.

However, while

P( lim
n→∞

π̂(y) = π(y)) = 1

for all y, for finite n there is no simple way to en-

sure that π̂ will have the same support as the density
π(y) ∝ f(y)I{S(y) > γ} (unless the transition density

(10) dominates π). One way to avoid this problem is to

use the fact that the product of the marginal densities∏d
i=1 πi(xi) (approximated by ĝ(x)) has equal or larger

support than the joint density π(x). Thus, in rare-event

settings we may use the following mixture density as an

importance sampling pdf:

π̂w(x) = w ĝ(x) + (1− w) π̂(x), w ∈ (0, 1) , (24)

where ĝ is the density in (17). In this way, if we can
ensure that ĝ dominates π, then π̂w will dominate π

for any w ∈ (0, 1), and we have the valid importance

sampling estimator (Y1, . . . ,Ym
iid∼ π̂w(y))

Ẑw =
1

m

m∑

k=1

f(Yk)I{S(Yk) > γ}
w ĝ(Yk) + (1− w)π̂(Yk)

. (25)

Typically, it is easier to ensure that ĝ dominates π than

to ensure that π̂ dominates π. For example, (17) sim-

plifies to

ĝ(x) =
1

nd

d∏

i=1

n∑

k=1

f(xi |Xk,−i)

P(S(Xk) > γ |Xk,−i)
×

I{S(Xk,1, . . . , Xk,i−1, xi, Xk,i+1, . . . , Xk,d) > γ} ,

which dominates π if

S(Xk,1, . . . , Xk,i−1, xi, Xk,i+1, . . . , Xk,d) > γ

for at least one k, for all i. In other words, for each

problem we verify that for each i there is at least one

vector out of the n samples (15) such that

S(Xk,1, . . . , Xk,i−1, xi, Xk,i+1, . . . , Xk,d) > γ .

If this condition is not true, then we must increase n

until it is satisfied.

Example 1 (Tail probabilities for sums of correlated log-

normals)

Consider the estimation of the rare-event probabil-
ity

Z = P(eX1 + · · ·+ eXd > γ) =

∫
f(x) I{S(x) > γ}dx ,

where x = (x1, . . . , xd), X = (X1, . . . , Xd) ∼ N(µ, Σ),
S(x) = ex1 + · · ·+ exd , and f is the density of the mul-

tivariate normal distribution with mean µ and covari-

ance matrix Σ = (Σi,j) with associated precision ma-
trix Λ = (Λi,j) = Σ−1. Such rare-event probabilities are

of significant interest in financial engineering [18]. We

now estimate Z via the importance sampling estima-

tor (25). To compute the nonparametric (17) and semi-
parametric (19) densities we derive the conditional den-

sities of the optimal importance sampling pdf π(y) =

f(y)I{S(x) > γ}/Z:

π(yi |y−i) ∝

{
f(yi |y−i) if

∑
j 6=i e

yj > γ

f(yi |y−i) I
{
yi > ln(γ −∑j 6=i e

yj )
}

if
∑

j 6=i e
yj < γ

,

where via standard calculations (see, for example, [20,

Page 146]) f(yi |y−i) is the univariate normal density

with mean

µi +
1

Λi,i

∑

j 6=i

Λi,j(µj − yj) and variance
1

Λi,i
.

Thus, depending on
∑

j 6=i e
yj , the distribution of Yi ∼

π(yi |y−i) is either a normal or a truncated normal den-
sity with the above mean and variance.

As a numerical example consider Table 2, where we

compute Z for various values of the common correlation
coefficient

Σi,j√
Σi,iΣj,j

= ̺, for all i 6= j.

The rest of the parameters of the density f are set

to: d = 10, µi = i − 10, σ2
i = i (i = 1, . . . , d), γ = 5 ×

105. We used the estimator (25) with m = 5×105, w =

0.01 and a Markov chain sample of size n = 80 obtained

using the splitting Algorithm A1 given in Appendix A.
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We compare the MCIS results with two recommended

importance sampling schemes given in [1] — the im-
portance sampling vanishing relative error estimator

(ISVE) and the cross entropy vanishing relative error

estimator (CEVE) with a sample size of 5× 105. Both
of these estimators rely on the decomposition of the

probability Z(γ) into two parts:

Z(γ) = P(max
i

eXi > γ) + P(S(X) > γ, max
i

eXi < γ),

where the asymptotically dominant term P(maxi e
Xi >

γ) is estimated via an importance sampling estima-

tor and (the so called residual term) P(S(X) > γ,

maxi e
Xi < γ) is estimated by a second and different

importance sampling estimator in a way that guaran-

tees the strong efficiency of the sum of the two estima-

tors. The first term is asymptotically dominant in the
sense that

lim
γ→∞

P(S(X) > γ, maxi e
Xi < γ)

P(maxi eXi > γ)
= 0 .

For more details, see [1].

From the table we can see that for medium and high

correlation (and Z of the order 10−5) the MCIS esti-
mator outperforms the ISVE and CEVE importance

sampling estimators, both of which enjoy the property

of vanishing relative error [1] as Z ↓ 0. Note that the
ISVE and CEVE estimators deteriorate as the corre-

lation coefficient ̺ becomes larger, and the MCIS esti-

mator performs significantly better for large values of

̺.
Table 3 illustrates that the ISVE estimator enjoys

the property of vanishing relative error when γ ↑ ∞
(so that Z ↓ 0). The table was generated using the
same algorithmic and problem parameters as the ones

used for Table 2, except that ̺ = 0.9 in all cases. The

third and fourth columns of the table show the relative
error achieved by MCIS and ISVE methods using the

same sample size of m = 5 × 105. Although the esti-

mates for the relative error of both MCIS and ISVE

methods are noisy, from the table we can see the trend
that the MCIS method is more accurate in estimating

probabilities larger than about 10−14, and the ISVE

method eventually becomes more accurate for probabil-
ities smaller than 10−14. In addition, although we have

not been able to prove it, the numerical results suggests

that the MCIS estimator might enjoy bounded relative
error properties. The fifth and sixth columns of the ta-

ble show the estimated work normalized relative vari-

ance (WNRV) used here as a performance measure that

takes into account the simulation time. For an estima-
tor Ẑ computed in τ seconds, this performance measure

is defined as

WNRV =
τVar(Ẑ)

Z2
.

Using this measure the conclusions remain the same

— the MCIS estimator is more efficient than the ISVE
estimator for probabilities larger than about 10−14.

Example 2 (Large portfolio losses modeled via Student’s

t copula) Suppose we have a portfolio of loans consisting
of n∗ obligors each of whom may default with probabil-

ity pi = P(Xi > xi), i = 1, . . . , n∗, where each Xi is a

continuous random variable describing the underlying
financial liabilities of the i-th obligor; see [3,14]. Usu-

ally each Xi is not directly observable by the lender and

is thus a latent random variable. The lender can only

observe the default event {Xi > xi}, where xi is some
critical level of financial liability beyond which the i-th

obligor is bankrupt. The total loss incurred from the

defaults is given by

L(X) =

n∗∑

i=1

eiI{Xi > xi}, X = (X1, . . . , Xn∗) , (26)

where each ei represents the size of the loan to the i-th

obligor. We wish to estimate the probability of a large
loss, Z = P(L(X) > γ), where the random vector X is

specified by the t copula model:

Xi =
(
̺Z +

√
1− ̺ηi

)/√
V , i = 1, . . . , n∗ ,

with Z ∼ N(0, 1), η1, . . . ,ηn∗

iid∼ N(0, σ2), 0 < ̺ < 1,
and V ∼ Gamma(ν/2, ν/2). We denote random vari-

ables in upper case font (η = (η1, . . . ,ηn∗)) and their

realizations in smaller case font (η = (η1, . . . , ηn∗)).
Note that each Xi has marginally a Student’s t distri-

bution with ν > 0 degrees of freedom. SinceX is a func-

tion of η, Z, V , we can write Z = P(S(η, Z, V ) > γ),

where S(η, z, v) = L(x), and hence the zero-variance
importance sampling density can be written as

π(η, z, v) ∝

exp
(
− ‖η/σ‖2 + z2 + ν v

2

)
vν/2−1 I{S(η, z, v) > γ} .

We now estimate Z via the importance sampling esti-

mator (25) with w = 1. Using the estimator (25) with

say, w = 0.5, did not yield any dramatic improvement
in efficiency for this example. To construct the semi-

parametric importance sampling density (19) we now

derive the conditional densities of π(η, z, v).

The density π(z |V,η).

Define Qk = xkV
1/2 −

√
1− ̺2 ηk (note that xk are

fixed thresholds in (26) and not realizations of Xk) and

let (p1, . . . , pn∗) be the permutation corresponding to

the order statistics: Qp1
< · · · < Qpn∗ . In other words,
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Table 2 Empirical performance of MCIS compared to importance sampling schemes with vanishing relative error properties.

relative error %

̺ MCIS est. Ẑ MCIS CEVE ISVE
0 1.7950× 10−5 0.0092 0.0063 0.0069
0.4 1.8077× 10−5 0.093 0.17 0.23
0.7 1.9014× 10−5 0.04 0.65 2.85
0.9 2.0735× 10−5 0.068 0.63 2.80
0.93 2.0997× 10−5 0.17 3.5 4.59
0.95 2.1412× 10−5 0.11 6 8.09
0.99 2.1882× 10−5 0.29 15 4.35

Table 3 Empirical performance of MCIS and ISVE algorithms for various values of the threshold parameter γ = 5×10c+3, c =
1, . . . , 14.

relative error % WNRV
γ ISVE estimate MCIS ISVE MCIS ISVE

5× 104 3.9865× 10−4 0.049 1.6 25 1500
5× 105 2.0802× 10−5 0.067 4.3 75 10000
5× 106 6.4385× 10−7 0.077 5.5 64 22000
5× 107 1.2039× 10−8 0.041 3.0 21 5000
5× 108 1.3468× 10−10 0.034 6.1 12 20000
5× 109 8.9791× 10−13 0.036 7.6 17 30000
5× 1010 3.5899× 10−15 0.043 0.014 27 0.11
5× 1011 8.5302× 10−18 0.079 0.029 81 0.50
5× 1012 1.2082× 10−20 0.025 0.024 7 0.32
5× 1013 1.0148× 10−23 0.042 0.00064 28 0.00021
5× 1014 5.0428× 10−27 0.042 0.00030 27 4.6× 10−5

5× 1015 1.4898× 10−30 0.024 0.00014 7 1.0× 10−5

5× 1016 2.5961× 10−34 0.023 3.87× 10−15 8.2 7.7× 10−27

5× 1017 2.6754× 10−38 0.012 4.22× 10−13 2.6 9.1× 10−23

Qpk
= Q(k) for all k. Let k = min{j : γ <

∑j
i=1 epi

},
then L(X) > γ if and only if ̺Z > Q(k). It follows
that the conditional density of Z given η and V is a

truncated normal density:

π(z |V,η) =
exp

(
− z2/2

)
I{z > Q(k)/̺}

Φ(−Q(k)/̺)
.

The density π(v |Z,η).

Next define Ek =
(√

1− ̺2 ηk + Z
)/

xk and let the

vector (p1, . . . , pn∗) be the permutation corresponding

to the ordering: Ep1
> · · · > Epn∗ . Let k = min{j :

γ <
∑j

i=1 epi
}, then L(X) > γ if and only if V < E2

pk
.

Therefore, the conditional density of V given Z and η
is a right-truncated gamma density:

π(v |Z,η) =
exp(−ν v/2) vν/2−1 I{V < E2

pk
}

P(ν/2, E2
pk
ν/2)

,

where P(ν, x) is the incomplete gamma function [20,

Page 716]. Note that efficient random variable genera-
tion from a right-truncated gamma distribution is ac-

complished via the accept-reject algorithm of Philippe

[25].

The density π(η |Z, V ).

Finally, the conditional density of η given Z and V is

the multivariate truncated normal density:

π(η |Z, V ) ∝ exp
(
−‖η/σ‖2/2

)
I
{∑

i

ei I{ηi > ti} > γ
}

with ti
def
= xi

√
V−̺Z√
1−̺2

, from whence the conditional den-

sity of ηi is straightforward to derive:

π(ηi |Z, V,η−i) ∝
{
exp

(
− η2i /2σ

2
)

if
∑

j 6=i ej I{ηj > tj} > γ

exp
(
− η2i /2σ

2
)
I {ηi > ti} otherwise.

In other words, the distribution of ηi given Z and V is
either N(0, σ2) or a truncated version of it.

For a numerical example we consider the same set of

parameters used in Bassamboo et al. [3]: σ2 = 9, n∗ =
250, γ = n∗/4, x1 = · · · = xn∗ =

√
n∗/2, e1 = · · · =

en∗ = 1. Table 4 shows the performance of the (semi-

parametric) MCIS method for various values of the cor-

relation parameter ̺ and degrees of freedom ν. We used
the estimator (25) with n = 80 andm = 5×105. The ta-

ble also includes the importance sampling schemes pro-

posed and recommended in [3], namely the one based
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Table 4 Estimated relative error of MCIS compared to exponential and hazard rate twisting. In the left panel the correlation
parameter is ̺ = 0.25 and in the right panel the degree of freedom is ν = 12.

ν Ẑ1 MCIS ECM HRT
8 2.39× 10−4 0.79 0.9 1.8
12 1.06× 10−5 1.05 1.7 2.6
16 6.11× 10−7 1.4 2.8 3.6
20 4.43× 10−8 1.9 3.7 5.4

̺ Ẑ1 MCIS ECM HRT
0.1 8.536× 10−6 0.79 0.9 1.8
0.2 9.76× 10−6 0.98 1.2 2.3
0.3 1.18× 10−5 1.1 1.7 3.2
0.4 1.42× 10−5 1.1 3.1 4

on exponential change of measure (ECM) and hazard
rate twisting (HRT). Both ECM and HRT estimators

are the average of m = 5× 105 replications.

From the table we can see that the MCIS estimator

yields smaller relative error than the exponential change
of measure and the hazard rate twisting methods. Note

that while the ECM and HRT methods are applicable

only to the case where V has a light tailed distribution
[3], the MCIS recipe remains unchanged regardless of

the distribution of V .

Example 3 (A random walk hitting a non-convex set)

Consider the problem of estimating the probability

P({Sd > γ} ∪ {Sd < −(γ + ε)}), ε, γ > 0 (27)

where Sd = (X1 + · · · + Xd)/d and Xi ∼ N(µi, σ
2
i )

for all i, independently. Standard importance sampling

methods such as exponential or hazard rate twisting do

not work in this case [19].
The purpose of this toy example is not only to show

how the MCIS method can be used to tackle nonstan-

dard rare-event settings, but, more importantly, to ex-
plore some of its limitations due to the effects of the

curse of dimensionality. Note that while the methods

proposed in [19] and more recently in [9] to estimate
(27) explicitly exploit the decomposition of the rare-

event into two disjoint events, the MCIS method has the

much more difficult task of learning about this decom-

position automatically and without any prior knowl-
edge of it.

As in the previous examples, the first step is to

derive the conditional densities of the optimal impor-
tance sampling pdf π(x). Here the conditional densities

are all mixtures of two truncated Gaussian densities

(i = 1, . . . , d):

π(xi |X−i) =
1√
2πσi

exp

(
− (xi − µi)

2

2σ2
i

)
×

I{xi < a}+ I{xi > b}
Φ((a− µi)/σi) + Φ(−(b− µi)/σi)

,

where a
def
= −d(γ + ε + Sd) +Xi, b

def
= d(γ − Sd) +Xi,

and Φ(·) is the cdf of the N(0, 1) distribution. Simula-
tion from π(xi |X−i) entails sampling from a mixture:

generate a Bernoulli variable B with success probabil-

ity Φ((a−µi)/σi)/(Φ((a−µi)/σi)+Φ(−(b−µi)/σi)). If

B = 1, then generate Xi from a distribution N(µi, σ
2
i ),

truncated to (−∞, a]; otherwise generate Xi from a dis-

tribution N(µi, σ
2
i ), truncated to [b,∞). For simplicity

here we generate the population X1, . . . ,Xn in (15)

without any approximation error using the accept-reject
method. In this way any influence of the mixing of

the Gibbs Markov chain is eliminated from the ensu-

ing analysis.
As a particular example consider the problem with

parameters γ = 1.3, ε = .01, d = 6, and µi = 0, σi =

1 for all i, which gives the exact probability of Z =
0.0013918....

Note that the estimator (25) requires that we esti-

mate both the marginal densities of all d components of

X via the semi-parametric estimator (17), and the joint
density of X via the nonparametric estimator (19). We

now consider an alternative to (25):

Z̃w =
1

m

m∑

k=1

f(Yk)I{S(Yk) > γ}
w ĝ(Yk) + (1− w)π̃(Yk)

, (28)

where π̃w(y) = wĝ(y) + (1 − w)π̃(y), Y1, . . . ,Ym
iid∼

π̃w, and π̃ is an estimator of (π
i,j

denotes the marginal

density of the vector (Xi, Xj))

π
1,2

(x1, x2)π3,4
(x3, x4)π5,6

(x5, x6)

as opposed to π(x1, . . . , x6). In other words, π̃(y) =
π̂

1,2
(y1, y2)π̂3,4

(y3, y4)π̂5,6
(y5, y6), where

π̂
1,2

(y1, y2)
def
=

1

n

n∑

i=1

π(y1 |Xi,2, . . . , Xi,6)π(y2 | y1, Xi,3, . . . , Xi,6)

and similarly for π̂
3,4

and π̂
5,6

. Thus, instead of esti-

mating the full joint density model π(x) via (19), we
consider estimating the joint densities of three blocks

of X, namely, (X1, X2), (X3, X4), (X5, X6), and then

take the product of these three densities. We can also

consider other models such as

π̃(y) = π̂
1,2,3

(y1, y2, y3)π̂4,5,6
(y4, y5, y6), where

π̂
1,2,3

(y1, y2, y3)
def
=

1

n

n∑

i=1

π(y1 |Xi,2, . . . , Xi,6)π(y2 | y1, Xi,3, . . . , Xi,6)×

π(y3 | y1, y2, Xi,4, Xi,5, Xi,6) .
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Table 5 shows the results of using estimator (28)

with m = 105, w = 0.01, n = 100, and different
models for π̃. The second column of the table shows the

proportion of wasted samples for which the rare-event

{S(Y) < γ} has not occurred. In the table Model 1
corresponds to the case where π̃ ≡ π̂ and estimators

(28) and (25) coincide. Model 4 corresponds to the case

where π̃ ≡ ĝ and hence Z̃w = Ẑ1.
From the table we can see that for this example es-

timation of the joint density of x1, . . . , x6 (Model 1)

gives the smallest relative error. However, this does not

imply that we should always aim to estimate the joint
density of X (as opposed to any sub-blocks of X), be-

cause we expect that estimating the full joint density

π(x) via (19) will become inefficient as the dimension of
x increases. This is indeed confirmed by the numerical

results given in Table 6, where d = 12. The best perfor-

mance is achieved by Model 3 and not Model 1. Even
though Model 1 generates 99% of the time samples for

which S(Y) > γ, the estimation of the full joint pdf

π̂(x) is not good enough and the simpler model of case

3 (which wastes 84% of the generated samples) yields a
smaller relative error.

In conclusion, the numerical results suggest that it

is better to have a good estimator of an approximation
to π (like the product of marginals density

∏d
i=1 πi(xi)

or Model 3 in Table 6), than have a poor estimator of

π itself.
Ultimately estimation of the optimal π is less effi-

cient in high dimensions and we may need to devise sim-

pler semi-parametric models such as models 2 through

6 given in the first column of Table 6. Of course, there
is a vast number of possible semi-parametric models.

For example, we may choose the model

π̃(x) = π̂
1
(x1) π̂2

(x2) π̂3,4,12
(x3, x4, x12)×

π̂5,6,7,8,9,10,11(x5, x6, x7, x8, x9, x10, x11) .

Which model proves to be good depends on the par-

ticular problem at hand. This freedom of choice is a
mixed blessing, because it is not different from the in-

finite number of ways that one can devise an MCMC

sampler.

Example 4 (Network reliability) Consider the static net-

work reliability problem, in which we want to estimate

the probability Z that the nodes 1 and 20 of the dodec-
ahedron network on Figure 2 are not connected, given

that each of the 30 edges (or links) fails independently

with probability ε. This problem is considered by many

authors; see [7,11,12,17] and the references therein.
More specifically, suppose each edge e ∈ {1, . . . , d}

is assigned a random weight Xe and X1, . . . , Xd are in-

dependent N(0, σ2) random variables with σ = −1/Φ−1(ε)

Fig. 2 A dodecahedron network with 20 nodes and 30 links.
The nodes 1 and 20 are shown in bold circles. Links 1, 2, 3
and 28, 29, 30 are indicated.

(Φ−1 is the inverse of the cdf of the standard normal

distribution). Note that ε = P(Xe > 1) for all edges and
the event {Xe > 1} is equivalent to the event that edge

e has failed. Let P = {Pj} denote the set of all paths

connecting nodes 1 and 20 (here each Pj represents a

sequence of edges connecting nodes 1 and 20). For ex-
ample, Figure 2 shows three distinct paths connecting

nodes 1 and 20 (the edges belonging to the paths are

in bold). The failure probability Z can be expressed as

Z = Pf (S(X) > 1),

where X = (X1, . . . , Xd) ∼ f , the pdf f is the density

of the multivariate normal distribution N(0, σ2I), and

S is defined via

S(X) = min
Pj∈P

max
e∈Pj

Xe . (29)

When ε is small, say, smaller than 10−3, the probabil-

ity Z is typically a rare-event probability. To estimate

this probability we now explain how to apply the MCIS
method.

In the first (MC) stage, we use the adaptive split-
ting Algorithm A1 (see appendix) to generate a Markov

chain sample X1, . . . ,Xn with approximate density π.

In the second (IS) stage, we use the mixture (24) as

the importance sampling density, where the transition

density κ is given by (10). Here, the conditional pdfs of
π(x) are [7,8]:

π(xe |X−e) =





1√
2πσ

exp
(
−x2

e/(2σ
2)
)

if Se > 1

1√
2πσ

exp
(
−x2

e/(2σ
2)
) I{xe > 1}

ε
otherwise ,

for e = 1, . . . , d, where

{Se > 1} ≡ {S(X1, . . . , Xe−1, 0, Xe+1, . . . , Xd) > 1}
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Table 5 Effect of the curse of dimensionality with d = 6 dimensions on the estimator Z̃w. Here γ = 1.3, ε = 0.01 and
m = 105, n = 100, w = 0.01.

Model π̃(x) = 1
m

∑
m
k=1 I{S(Yk) < γ} relative error %

1 π̂(x1, x2, x3, x4, x5, x6) 0.0099 1.62
2 π̂

1,2,3
(x1, x2, x3)π̂4,5,6

(x4, x5, x6) 0.69 5.40
3 π̂

1,2
(x1, x2)π̂3,4

(x3, x4)π̂5,6
(x5, x6) 0.84 2.21

4
∏6

i=1 π̂i(xi) 0.95 3.63

Table 6 Effect of the curse of dimensionality with d = 12 dimensions on the estimator Z̃w. Here γ = 1.3, ε = 0.01,Z ≈
6.184686× 10−6 and m = 105, n = 103, w = 0.01.

Model π̃ ≡ 1
m

∑
m
k=1 I{S(Yk) < γ} relative error %

1 π̂ 0.099 4.00
2 π̂

1,2,3,4,5,6
π̂

7,8,9,10,11,12
0.69 2.27

3 π̂
1,2,3,4

π̂
5,6,7,8

π̂
9,10,11,12

0.84 2.00
4 π̂

1,2,3
π̂

4,5,6
π̂

7,8,9
π̂

10,11,12
0.92 2.69

5 π̂
1,2

π̂
3,4

π̂
5,6

π̂
7,8

π̂
9,10

π̂
11,12

0.96 4.20
6

∏12
i=1 π̂i 0.99 11.76

Table 7 Empirical performance of the MCIS and merge process methods on the dodecahedron network.

relative error % WNRV
ε MCIS estimate MCIS merge MCIS merge

10−2 2.03× 10−6 0.82 1.33 270 730
10−4 2.03× 10−12 1.11 1.36 500 770
10−6 2.01× 10−18 0.32 1.39 60 800
10−8 2.00× 10−24 0.38 1.38 87 790
10−10 1.97× 10−30 0.91 1.39 470 790
10−12 2.01× 10−36 0.59 1.38 220 800
10−14 2.01× 10−42 0.52 1.38 200 900
10−16 2.73× 10−48 0.46 1.37 160 1000

is the event that the nodes are not connected given that
edge e is forced to work (which is the same as Xe < 1).

That is, if adding link e does not make the network op-

erational, no change of measure is applied when sam-
pling this link, otherwise the distribution is truncated

to [1,∞). Note that in the importance sampling step it

is sufficient to sample the Bernoulli events {Xe > 1},
instead of the random variables Xe.

Table 7 shows the MCIS performance for the fail-
ure probabilities ε = 10−c, c = 2, 4, . . . , 16 obtained

with w = 0.01, m = 104, and n = 103. For comparison

we also show the performance of the merge process al-

gorithm for network reliability estimation. The merge
process algorithm is specifically designed for network

reliability estimation and is one of the most efficient

and widely used algorithms; see [11,17]. The numerical
results suggests that for this particular graph the MCIS

performs well compared to the merge process algorithm.

4 Conclusions

In this paper we have presented a novel Monte method

that combines importance sampling with Markov chain

Monte Carlo methodology. An advantage of the MCIS
method over other adaptive importance sampling meth-

ods is that our construction of the importance sampling

density does not require the specification of a rigid para-
metric model and the concomitant estimation of any pa-

rameters via nonlinear optimization. The MCIS method

provides a nonparametric density that directly aims to

estimate the minimum variance importance sampling
density. Unlike Chib’s estimator, the MCIS estimator

is unbiased and provides a straightforward empirical

estimate of the relative error.

The numerical results show that for the problems
we consider the proposed method is efficient. We show

that for two light- and heavy-tailed rare-event prob-

lems, the proposed approach can handle successfully
dependence specified by a Gaussian copula model. In

particular, when the tail probability of sums of corre-

lated log-normals is not too small, the MCIS method

compares favorably to the currently recommended van-
ishing relative error estimator.

As future research we intend to examine the rare-

event robustness properties of the MCIS estimator as

the probability of the rare-event decreases to zero.
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A Adaptive splitting sampler

Here we briefly present the MCMC sampling algorithm that
is used to generate an approximate sample from the zero-
variance density π in the rare-event setting in our examples.
The main idea is to use the splitting method [6,7]. Suppose
we are given an integer s > 2, called the splitting factor.
Initially, we generate n×s independent states X from density
f , and determine a threshold parameter γ1 so that exactly
n of them have S(X) > γ1. Then at each step t, for t =
2, 3, . . . , we run for s steps a Markov chain with stationary
density f(x)I{S(x) > γt−1}

/
P(S(x) > γt−1), from each of

those n states X for which S(X) > γt−1. We denote the
transition kernel density of this Markov chain by κ̃t−1. This
gives another n × s states and we select a parameter γt so
that exactly n of them have S(X) > γt. This is done until
γt ≥ 1 for some t. This iterative procedure is summarized in
the following algorithm.

Algorithm A1 (Adaptive splitting sampler) Require:

an integer s ≥ 2
q ← n× s− n
X1 ← ∅
for i = 1 to n× s do

generate a vector Y from density f and add it to X1

sort the elements of X1 by increasing order of S(X), say
X(1), . . . ,X(n×s)

γ1 ← [S(X(q)) + S(X(q+1))]/2
t← 1
while γt 6 1 do

t← t+ 1
Xt−1 ← {X(q), . . . ,X(n×s)} {retain only the best n
elements from Xt−1}
Xt ← ∅
for all X0 ∈ Xt−1 do

for j = 1 to s do

sample Xj from the density κ̃t−1(· | Xj−1)
and add it to Xt

sort the elements of Xt by increasing order of S(X),
say X(1), . . . ,X(n×s)

γt ← min{[S(X(q)) + S(X(q+1))]/2, 1}
return X1 . . . ,Xn, for which S(X) > 1, as a sample with

approximate density π(x) = f(x)I{S(x) > 1}
/
Z

In this algorithm, Xt denotes a set of vectors X for which
S(X) > γt−1. When this set contains n× s elements, we sort
it to retain the n vectors having the largest value of S(X),
and we remove the other vectors from this set. The threshold
parameter γt is placed midway between the n-th and the
(n+ 1)-th largest values of S(X). In this paper we set s = 2
and select the transition density κ̃t−1 to be the transition
density of the corresponding systematic Gibbs sampler with
stationary density f(x)I{S(x) > γt−1}

/
P(S(x) > γt−1).
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