
Sorting methods and convergence rates for
Array-RQMC: some empirical comparisons

Pierre L’Ecuyera, David Mungerb, Christian Lécotc, Bruno Tuffind

aDIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7,
Canada; and Inria Rennes – Bretagne Atlantique, lecuyer@iro.umontreal.ca

bDIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7,
Canada, mungerd@iro.umontreal.ca

cUniversité Savoie Mont Blanc, LAMA, UMR 5127 CNRS, 73376 Le Bourget-du-Lac
Cedex, France, Christian.Lecot@univ-savoie.fr

dInria Rennes – Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France, bruno.tuffin@inria.fr

Abstract

We review the Array-RQMC method, its variants, sorting strategies, and con-

vergence results. We are interested in the convergence rate of measures of dis-

crepancy of the states at a given step of the chain, as a function of the sample

size n, and also the convergence rate of the variance of the sample average of

a (cost) function of the state at a given step, viewed as an estimator of the ex-

pected cost. We summarize known convergence rate results and show empirical

results that suggest much better convergence rates than those that are proved.

We also compare different types of multivariate sorts to match the chains with

the RQMC points, including a sort based on a Hilbert curve.

Keywords: Low discrepancy, quasi-Monte Carlo, Markov chain, variance

reduction, simulation, Array-RQMC

1. Introduction

Array-RQMC is a method to simulate an array of n dependent realizations of

a Markov chain in a way that each chain is generated from its exact probability

law, and with the aim that the empirical distribution of the states at a given

step of the chain provides a “low-discrepancy” approximation of the theoretical5

distribution of the state at that step. At each step, the n copies of the chain

Preprint submitted to Mathematics and Computers in Simulation July 28, 2016

are sorted in a particular order and then moved forward by one step using a

randomized quasi-Monte Carlo (RQMC) point set of cardinality n. If the state

space has more than one dimension, the sort can be multidimensional and the

performance may depend strongly on the sorting method. More details on the10

method, intuitive justifications, convergence results, applications, and empirical

evaluations, can be found in [4, 5, 7, 8, 13, 15, 16, 17, 18, 20, 25].

The aim of this paper is to review briefly what is known and what has been

done so far with this method, report new experimental results on convergence

rates, and compare different types of multivariate sorting methods, including15

sorts based on space-filling curves. Those types of curves are widely used to

map points from the multivariate unit cube [0, 1]` to the unit interval [0, 1]

in various areas of applications such as sorting multivariate objects, mapping

them to memory addresses in database systems and multiprocessing computers,

storing and reconstructing images in computer graphics, etc., see [1]. They also20

provide one of the most effective heuristics to quickly obtain a good solution

for a traveling salesman problem with a large number of points in two or more

dimensions [2, 3, 23]. Thus, their use to reduce the dimension and order the

states in Array-RQMC seems natural, and was suggested in [25]. A Hilbert

sort to map two-dimensional points to [0, 1) is also proposed in [24] for QMC25

sampling in computer graphics. Recently, Gerber and Chopin [9] proposed to

use the Hilbert space-filling curve to sort multidimensional states in a variant

of Array-RQMC combined with particle filtering, which they named sequential

quasi-Monte Carlo, and proved that under some conditions, the variance of the

filtering estimator converges as o(n−1/2), i.e., faster than for Monte Carlo. He30

and Owen [11] study the Hilbert curve as a way of reducing the dimension from

d > 1 to 1 in the context of estimating a d-dimensional integral by QMC or

RQMC (not for Markov chains). They prove convergence rate bounds on the

MSE under different sets of conditions on the integrand and the points. We

discuss this type of sort and compare it empirically to other multivariate sorts35

proposed previously. We also survey currently known convergence rate results

for Array-RQMC, and show examples in which the observed convergence rates

2

are much better than those that are proved.

The remainder is organized as follows. We review the Array-RQMC algo-

rithm in Section 2, multivariate sorts in Section 3, and theoretical convergence40

results in Section 4. In Section 5, we compare the convergence rates observed

empirically in some examples with those that are proved, for the mean square

L2-discrepancy and the variance of cost estimators.

Note: It is customary to define space-filling curves over the closed hypercube

[0, 1]s, QMC points over the semi-open hypercube [0, 1)s in s dimensions, and45

uniform random variables over the open interval (0, 1), because the inverse cdf

may be infinite at 0 or 1. We follow these conventions as much as we can

in the paper, but there are inevitable occasional clashes (when two different

conventions would apply to the same box). This may appear inconsistent, but

in our practical implementations, no coordinate will ever equal 1, so it does not50

matter if the interval is open or closed.

2. Array-RQMC

We consider a discrete-time Markov chain whose state evolves in a measur-

able space X according to a stochastic recurrence defined by

X0 = x0 ∈ X and Xj = ϕj(Xj−1,Uj) for j ≥ 1,

in which U1,U2, . . . are independent and identically distributed (i.i.d.) uniform

random variables over the unit hypercube (0, 1)d, and each ϕj : X ×(0, 1)d → X

is a measurable mapping. Suppose we want to estimate

µ = E[Y], where Y =

τ∑
j=1

gj(Xj)

for some measurable cost (or reward) functions gj : X → R, where τ is a fixed

time horizon (a positive integer). The methods we describe also work if τ is a

random stopping time, as explained in [18].55

The standard Monte Carlo (MC) method estimates µ by Ȳn = 1
n

∑n−1
i=0 Yi

where Y0, . . . , Yn−1 are n independent realizations of Y . One has E[Ȳn] = µ and

Var[Ȳn] = Var[Y]/n = O(n−1) if E[Y 2] <∞.

3

A naive way of using RQMC in this setting would be to replace the n inde-

pendent dτ -dimensional uniformly distributed vectors Vi = (Ui,1, . . . ,Ui,τ) ∈60

(0, 1)dτ by a dτ -dimensional RQMC point set, in (0, 1)dτ . However, when dτ

increases, this RQMC scheme typically becomes ineffective, because E[Y] is a

high-dimensional integral.

The Array-RQMC method was designed to address this issue. To provide

an intuitive explanation of how it works, let us assume that we have a one-to-65

one mapping h : X → [0, 1)c, for some small integer c ≥ 1 (to implement the

method, it is not essential to define such a mapping h explicitly, and h does

not have to be one-to-one). If h is one-to-one, X̃j = h(Xj) contains all the

information in Xj that is relevant for the probability law of the future evolution

of the chain. At each step j, the n realizations of the chains are “sorted” in70

some order, based on the realizations of the transformed state X̃j , and then

matched to n RQMC points based on that order. In [18], it was assumed that

c = 1, so h maps the states to the interval [0, 1), and the states were sorted

by increasing order of X̃j . The function h was then called a sorting function.

Implementations with c > 1 were also examined in [7, 8] in a QMC setting and75

in [16], in which multidimensional sorts match the chains to RQMC points.

Under our assumptions, we can write Xj = ϕj(Xj−1,Uj) = ϕ̃j(X̃j−1,Uj)

for some function ϕ̃j . If X̃j−1 has a density fj over [0, 1)c, then

µj = E[gj(Xj)] = E[gj(ϕ̃j(X̃j−1,Uj))] =

∫
[0,1)c+d

fj(w)gj(ϕ̃j(w,u))dudw.

To simplify the argument, we assume that fj is uniform over [0, 1)c. This can

generally be achieved by incorporating an appropriate change of variable in

h. Since the choice of h will only affect the pairing between the states and

the RQMC points at each step j, this change of variable does not have to be80

computed explicitly if it does not change this pairing. In particular, if c = 1 and

if X̃j−1 has a continuous cdf Fj , then Fj(X̃j−1) ∼ U(0, 1), so we can replace

h by Fj ◦ h to obtain the required uniformity. But in a situation where the

method sorts the states by increasing order of value of X̃j−1, this replacement

would never change the ordering, so there is no need to implement it explicitly.85

4

Let X0,j , . . . , Xn−1,j be the n realizations of Xj and X̃i,j = h(Xi,j). Given

that X̃j−1 is assumed uniform over [0, 1)c, the idea is to construct a (semi)-

randomized point set Qn = {(X̃i,j−1,Ui,j), 0 ≤ i < n} such that each Ui,j has

the uniform distribution over [0, 1)d and Qn as a whole has low discrepancy with

respect to the uniform distribution over [0, 1)c+d. Note that the X̃i,j−1 cannot

be chosen, since they come from the previous evolution of the chain. We will

assume that they form a low-discrepancy point set with respect to the uniform

distribution over [0, 1)c. This property will have to be preserved at the next

step, for the points X̃i,j , so we can use induction to argue that it holds at all

steps. We construct a point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)}

in which the wi ∈ [0, 1)c are fixed, Ui,j ∼ U(0, 1)d for each i, and Q̃n has low

discrepancy with probability 1. Then we find a permutation πj of the n states

Xi,j−1 for which X̃πj(i),j−1 is “close” to wi for each i, so Q̃n is close to Qn after

the points are permuted, and we compute Xi,j = ϕj(Xπj(i),j−1,Ui,j) for each

i. The integral µj = E[gj(Xj)] is then estimated by

µ̂arqmc,j,n = Ȳn,j =
1

n

n−1∑
i=0

gj(Xi,j)

=
1

n

n−1∑
i=0

gj(ϕ̃j(X̃πj(i),j−1,Ui,j)) ≈
1

n

n−1∑
i=0

(gj ◦ ϕ̃j)(wi,Ui,j)),

which can be seen as a semi-RQMC estimator. The first c coordinates of the

points are (in general) not randomized; they are only used to match the points

to the chains. As a special case, if c = 1, one can take wi = (i+ 0.5)/n or i/n

and the best match is obtained by just sorting the states by increasing order of

X̃i,j−1. In this case, this wi can be only implicit (not stored explicitly) because90

the points do not need to be sorted at each step.

The estimator µ̂arqmc,j,n is essentially a low-discrepancy estimator of µj . An

intuitive explanation for why the discrepancy of the points h(Xi,j) is expected

to be small is that this discrepancy can be written (at least for some discrepancy

measures) as an average of the form 1
n

∑n−1
i=0 g(Xi,j), similar to µ̂arqmc,j,n.95

5

Algorithm 1: : Array-RQMC procedure (general outline)

Xi,0 ← x0 for i = 0, . . . , n− 1;

for j = 1, 2, . . . , τ do

Compute an appropriate permutation πj of the n states X0,j , . . . , Xn−1,j ,

based on the h(Xi,j−1), to match them with the RQMC points;

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;

Xi,j = ϕj(Xπj(i),j−1,Ui,j), for i = 0, . . . , n− 1;

µ̂arqmc,j,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi,j);

end for

Estimate µ by the average Ȳn = µ̂arqmc,n =
∑τ
j=1 µ̂arqmc,j,n.

With these ingredients, Algorithm 1 gives a general (high-level) description

of the Array-RQMC method. There are of course many possibilities for the

choices of QMC point sets, randomization, and permutation strategy. Regard-

less of the choice of h and of the distribution of the X̃j , we have that (see [18],

Propositions 1 and 2): (i) the average Ȳn = µ̂arqmc,n is an unbiased estimator100

of µ; and (ii) the empirical variance of m independent realizations of µ̂arqmc,n

gives an unbiased estimator of Var[Ȳn].

3. How to sort the states

When the state space X is one-dimensional, e.g, X ⊆ R, the states are simply

sorted in natural order. Otherwise, one can either define a mapping h : X → R105

(of which h : X → [0, 1) is a special case) and then use the natural order, or

define h : X → Rc for c > 1 and use a multivariate sort as follows.

3.1. Multivariate sorts

Suppose the (potentially transformed) states X̃i,j are in [0, 1)c for c > 1. A

multivariate batch sort considered in [7, 12, 16] operates as follows. We select110

positive integers n1, . . . , nc and assume that n = n1 · · ·nc. We first sort the

states by their first coordinate in n1 packets of size n/n1, in a way that the

6

states in any given packet have first coordinates that are no larger than those in

the next packet. Then we sort each packet in n2 packets of size n/(n1n2) in the

same way but by the second coordinate, and so on. At the last level, we sort115

each packet of size nc by the last coordinate. To do the matching, we also sort

the RQMC points Q̃n in exactly the same way, using their first c coordinates,

and then match the corresponding states and points. Figure 1 illustrates this

procedure for c = 2 and n1 = n2 = 4. The best choice of n1, . . . , nc depends on

the application.120

If the same sort is used at all steps and the method is applied several times

with the same n, and the first c coordinates of Q̃n are not randomized, it suffices

to sort the points Q̃n in the right order once and for all at the beginning, and

randomize their last d coordinates at each step.

The multivariate split sort is a variant in which we assume that n = 2e (a125

power of 2), and we take n1 = n2 = · · · = ne = 2. We first sort (split) the

points in 2 packets by the first coordinate, then split each packet in two by the

second coordinate, and so on. If e > c, after having reached the last coordinate

we start again with the first one and continue in a round-robin fashion.

3.2. Mapping the states to the one-dimensional unit interval130

In [18], several examples are given in which sorting functions h : X → R are

defined in a heuristic manner, in a similar way as the importance functions in the

splitting methodology for rare-event simulation (this is discussed in [15]). The

idea is to try to select h so that h(x) approximates in some way the expected

future costs when we are in state x at a given stage. We could also make the135

function h depend on the step number j, because an “optimal” h (in terms of

variance) may generally depend on j.

The choice of sorting function is further discussed in [25], in which the au-

thors suggest using a space-filling curve, a widely-used tool for ordering mul-

tivariate objects [1, 3]. Suppose that the objects already correspond to points140

in [0, 1]`. A space-filling curve for [0, 1]` is defined as a surjective continuous

mapping ψ : [0, 1] → [0, 1]`. It is known that ψ cannot be invertible, but one

7

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s0

s1

s2

s3

s4

s
5

s6 s7

s8

s9

s10
s11

s
12

s13

s14
s15

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s0

s1

s
2

s3

s4

s
5

s6
s7

s
8

s9

s10

s11

s12
s13

s14

s
15

Figure 1: Illustration of the batch sort with 16 points in 2 dimensions, with n1 = n2 = 4. The

states are in the left panels and the points of a Sobol’ net after random digital shift are in

the right panels. Above, the states and points are split in four batches of size 4 using the first

coordinate. Below, each batch is then split according to the second coordinate. After that,

the boxes (and the points inside them) in the first column in the left picture are matched to

the corresponding ones on the first column in the right picture, then similarly for the second

column, etc. Each point on the left is matched with the point having the same number on

the right.

8

can define a pseudoinverse h = ψ−1, use it to map any set of n points in [0, 1]`

to [0, 1], and sort these points by natural order of their mapping.

In practice, one would use a discrete version of the curve, as follows. In base145

b ≥ 2 at iteration level m ≥ 1, the inverse is a map hm : {0, 1, . . . , bm − 1}` →

{0, 1, . . . , bm` − 1}. Suppose we partition [0, 1)` into bm` subcubes of equal

size, and define the integer coordinates of a point x = (x1, . . . , x`) ∈ [0, 1)` by

(i1, . . . , i`) where ik = bbmxkc. These integer coordinates identify the subcube

that contains the point x and hm enumerates these subcubes from 0 to bm`−1. If150

no subcube contains more than one point, this sorts the points uniquely. If some

subcube contains more than one point (a collision), we may divide it again in b`

smaller subcubes by splitting each of its edges in b equal parts. But it is simpler

and usually more effective to just select a fixed m large enough so that collisions

are not too frequent (if they happen occasionally, the two points that collide155

can be ordered arbitrarily and this will not make much difference in numerical

computations). For fixed ` and m, the mapping hm can be precomputed once

and for all and stored as an index that gives direct access to the subcube number

given the integer coordinates of the point.

A Hilbert space-filling curve in [0, 1]` uses base b = 2. It visits the subcubes160

in a way that successive subcubes are always adjacent to each other. A Peano

curve also has this property, but is defined in base b = 3. For a partition in bm`

subcubes, if the discrete curve is assumed to start and end on the cube boundary

and visit each subcube center, then it has at least bm` − 1 linear segments of

length b−m each, plus two of length b−m−1, so its total length is at least bm(`−1).165

A Hilbert curve and a Peano curve reach this minimal length. For ` = 1 (one

dimension), this length is 1, otherwise it increases exponentially in both m and

`. The true space-filling curve is actually defined as the limiting (continuous)

curve obtained when m → ∞, and its length is infinite, but in practice we use

a finite m.170

For a crude intuition for wanting a shorter curve that visits all the n states

Xi,j , suppose g : [0, 1)` → R is a continuous cost function whose integral is

estimated by the average value at the n evaluation points. For a given ordering of

9

the points, consider a curve that connect them in this order, by linear segments.

The average can also be seen (roughly) as an RQMC estimator of the integral175

of g along this curve, after rescaling the curve to length 1. Generally speaking,

the shorter the curve, the smaller the total variation of g along it is likely to be.

For example, if the absolute slope of the gradient of g in any direction never

exceeds K, the total variation along the curve does not exceed K times the

length of the curve. This suggests that a good strategy to sort the points in180

[0, 1)` would be to find the shortest curve that connects all the points. This

is nothing else than a traveling salesman problem (open loop version). Solving

this problem exactly is known to be NP-hard (as a function of n), but there are

effective heuristics that provide good solutions rapidly. Interestingly, one of the

fastest good heuristics when n is very large is to sort the points using a Hilbert185

or Peano curve [2, 3, 23]. It is proved for ` = 2 (and conjectured for larger `)

that the ratio of the length of the path found by this heuristic divided by the

length of the shortest path is O(log n) in the worst case. For n independent

random points in [0, 1)`, the average length of the shortest path is O(
√
n).

Using the Hilbert curve for sorting the points was mentioned in [25], but the190

authors ended up using a Lebesgue Z-curve, which visits successive subcubes

that are not necessarily adjacent. Gerber and Chopin [9] proposed sorting the

states with a Hilbert curve after mapping them to the unit hypercube via a

component-wise rescaled logistic transformation. They proved that the Hilbert

map preserves low discrepancy and that the resulting unbiased Array-RQMC195

estimator has o(1/n) variance, under certain smoothness conditions.

Note that the batch sort and split sort discussed earlier do not require to map

the states to the unit hypercube. As an alternative mixed strategy, one may

first apply one of these two sorts to the states, so the n states are mapped to n

subboxes that partition R`, and then enumerate these subboxes (and states) in200

the same order as they would be by a Hilbert curve. We call these sorts Hilbert

curve batch sort and Hilbert curve split sort. One advantage of this strategy is

it does not require an explicit mapping to the unit hypercube; it suffices that

the states can be ordered w.r.t. any coordinate.

10

4. Some theoretical convergence results205

Here we summarize known convergence results for Array-RQMC. Suppose

X = [0, 1] and Xj has a continuous distribution with cdf Fj , for each j > 0. Let

F̂j be the empirical cdf of the n states at step j. The star discrepancy of the

states at step j is

∆j = sup
x∈X
|F̂j(x)− Fj(x)|.

The corresponding variation of a function gj : [0, 1]→ R is

V∞(gj) =

∫ 1

0

∣∣∣∣dgj(x)

dx

∣∣∣∣ dx
and the standard Koksma-Hlawka inequality gives∣∣Ȳn,j − E[gj(Xj)]

∣∣ ≤ ∆jV∞(gj). (1)

The square L2 discrepancy (or Cramer von Mises statistic) at step j is

D2
j =

∫ 1

0

(F̂j(x)− Fj(x))2dx =
1

12n2
+

1

n

n−1∑
i=0

((i+ 0.5/n)− Fj(X(i),j))
2,

where theX(i),j are the order statistics ofX0,j , . . . , Xn−1,j (see, e.g., [6], Chapter

4). Obviously, D2
j ≤ ∆2

j . With the corresponding square variation

V 2
2 (gj) =

∫ 1

0

(dgj(x)/dx)2dx,

one obtains the variance bound (it suffices to square the two sides and take the

expectation in the second displayed inequality on page 965 of [22], for example):

Var[Ȳn,j] = E[(Ȳn,j − E[gj(Xj)])
2] ≤ E[D2

j]V
2
2 (gj). (2)

We recall some bounds on ∆j which hold under the following assumptions,

in the Array-RQMC setting.210

Assumption 1. Suppose that ` = d = 1 and ϕj(x, u) is non-decreasing in u.

That is, we use inversion to generate the next state from the cdf Fj(z | ·) =

P [Xj ≤ z | Xj−1 = ·]. Suppose also that n = k2 for some integer k and that

each square of the k × k grid contains exactly one RQMC point.

11

Define215

Λj = sup
0≤z≤1

V (Fj(z | ·)),

which bounds the variation of the cdf of Xj as a function of Xj−1. The following

Proposition was proved in [18]:

Proposition 1. (Worst-case error.) Under Assumption 1,

∆j ≤ n−1/2
j∑
`=1

(Λ` + 1)

j∏
i=`+1

Λi. (3)

Corollary 2. If Λj ≤ ρ < 1 for all j, then

∆j ≤
1 + ρ

1− ρ
n−1/2. (4)

Using this to boundD2
j in (2) can only give anO(1/n) bound on the variance,

which does not beat the MC rate. However, [18] also proved Proposition 3 below,

which gives a variance rate of O(n−3/2) when combined with (2).220

Assumption 2. Suppose that Assumption 1 holds, that ϕj is also non-decreasing

in u, and that the randomized parts of the points are uniformly distributed in

the cubes and pairwise independent, conditional on the cubes in which they lie.

Under Assumption 2, the RQMC points are a stratified sample, except for

their first coordinates which can be deterministic. That is, the first coordinate225

of point i can be fixed to wi, for each i. Alternatively, one can generate the two

coordinates of each point in its subcube, and then sort the points by their first

coordinate. From the viewpoint of the algorithm, this is equivalent. The proof of

the next proposition could actually be extended to a situation where the points

are pairwise negatively dependent in the following sense. If we have an indicator230

random variable for each subcube that indicates if the point is below a certain

function of x, and we take two subcubes at random, the expected correlation

between the two selected indicators is not positive. Certain randomized digital

nets, for example, would satisfy this assumption.

12

Proposition 3. Under Assumption 2, we have

E[D2
j] ≤

(
1

4

j∑
`=1

(Λ` + 1)

j∏
i=`+1

Λ2
i

)
n−3/2.

Corollary 4. If Λj ≤ ρ < 1 for all j, then

E[D2
j] ≤

1 + ρ

4(1− ρ2)
n−3/2 =

1

4(1− ρ)
n−3/2

and therefore

Var[Ȳn,j] ≤
1

4(1− ρ)
V 2
2 (gj)n

−3/2.

Note that these bounds are uniform in j.235

For arbitrary ` ≥ 1, a convergence rate of O(n−1/(`+1)) for the worst-case

error is proved in a deterministic setting in [7] for a discrete (potentially infinite)

state space in X ⊆ Z`, and in [8] for a continuous state space X ⊆ R`, under

conditions on the ϕj and using a batch sort. This rate is not given explicitly in

[8], but it can be obtained by applying Proposition 1 of that paper with n = bm,240

d1 = ... = d`−1 = m/(`+1) and d` = 2m/(`+1). The best proven rate is o(n−1)

for the variance, proved by [9] in a setting where a Hilbert sort is used.

5. Examples

Example 1. Our first example has ` = d = 1 and Xj ∼ U(0, 1) at each step.

Let θ ∈ (0, 1/2) be a fixed parameter and let Gθ be the cdf of Y = θU+(1−θ)V ,

where U and V are two independent U(0, 1) random variables. We have

Gθ(y) =

y2

2θ(1− θ)
, if 0 ≤ y ≤ θ,

2y − θ
2(1− θ)

, if θ < y ≤ 1− θ,

1− (1− y)2

2θ(1− θ)
, if 1− θ < y ≤ 1.

We define the Markov chain {Xj , j ≥ 1} in X = [0, 1] via the recurrence

X1 = U1, Xj = ϕ(Xj−1, Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 2,

13

where the Uj ’s are i.i.d. U(0, 1). Then Xj ∼ U(0, 1) for each j ≥ 1, and one can

show that Λj = θ/(1− θ) def
= ρ < 1. Corollaries 2 and 4 give

∆j ≤
1 + ρ

1− ρ
n−1/2 =

n−1/2

1− 2θ
and E[D2

j] ≤
n−3/2

4(1− ρ)
=

1− θ
4(1− 2θ)

n−3/2.

We tried the following cost functions, all defined to have mean zero over [0, 1]:

gj(x) = x− 1/2, gj(x) = x2− 1/3, gj(x) = sin(2πx), gj(x) = ex− e+ 1, gj(x) =245

max(0, x−1/2)−1/8 = (x−1/2)+−1/8, and gj(x) = I[x ≤ 1/3]−1/3. The first

four are continuously differentiable, the fifth is continuous but not differentiable

at 1/2, and the sixth is discontinuous at 1/3. We made some experiments to

estimate the (empirical) convergence rate of E[D2
j] and of Var[Ȳn,j] for these

choices of gj , as a function of n, first for standard Monte Carlo (MC) with n250

independent realizations of the chain, then for selected RQMC point sets defined

over the unit square [0, 1)2. For n, we took all powers of 2 from 29 to 221. In

each case, we performed m = 200 independent RQMC replicates, and took the

average of square values to estimate the mean square discrepancy E[D2
j] and the

RQMC variance Var[Ȳn,j]. We then fitted linear regression models for log2 E[D2
j]255

and for log2 Var[Ȳn,j] as functions of log2 n, to estimate the slope.

For Array-RQMC, the n two-dimensional RQMC points are always sorted by

their first coordinate, and the second coordinate is used to advance the state by

one step. We tried the following types of point sets, which are further described

below (we describe the two-dimensional versions but all these point sets are260

also defined in more than two dimensions): Latin hypercube sampling (LHS);

stratified sampling (SS); stratified sampling with antithetic variates in each

stratum (SSA); a Sobol’ point set with a random linear matrix scrambling and

a digital random shift (Sobol); Sobol with a baker’s transformation of the points

after the shift (Sobol+baker); a Korobov lattice rule in two dimensions with a265

random shift modulo 1 (Korobov); and Korobov with a baker’s transformation of

the points after the shift (Korobov+baker). LHS divides each axis of the square

in n equal intervals to produce n2 square boxes, draw one point randomly in each

box that lies on the diagonal, and permute the boxes by randomly permuting

the rows. SS divides the unit square into n = k2 square boxes and draws one270

14

point randomly in each box. In this case, n must be a square and we take the

closest square to the power of 2 of interest. SSA uses a grid of n/2 square boxes

instead (n/2 must be a square), and in each box it takes two antithetic random

points. Sobol uses the two-dimensional Sobol (or Hammersley) point set: the

first coordinate of point i is i/n and the second coordinate is defined by the275

binary expansion of i in reverse order. Then a random left matrix scramble [21]

is applied, followed by a digital random shift in base 2, to the second coordinate.

Sobol+baker adds a baker’s transformation after the digital shift (see [10, 14]

and other references therein for the details). It has been shown in [10] that

the latter combination gives a convergence rate of O(n−1
√

log n) for the Lp280

discrepancy, for any p ≥ 1, in two dimensions. Korobov uses a two-dimensional

rank-1 lattice with generating vector (1/n, a/n) for some integer a > 1 and n

equal to a power of 2, with the second coordinate randomized by a random shift

modulo 1. Korobov+baker adds a baker’s transformation after the shift. For

the lattice rules, we found that E[D2
1] depends significantly on the choice of a.285

For this reason, for each n, we tried 2 to 4 values of a that performed well with

respect to the P2 criterion, found using Lattice Builder [19], and we selected

the one that gave the smallest mean square discrepancy E[D2
1]. Without doing

this, the plot was more erratic. The selected values of a for n = 29, . . . , 221 are

(149, 275, 857, 1731, 2431, 6915, 12545, 19463, 50673, 96407, 204843, 443165,290

768165).

The upper part of Table 1 gives the estimated regression slopes for log2 E[D2
j]

as well as log2 Var[Ȳn,j] for four choices of gj , as functions of log2 n, all for

θ = 0.3 and j = 5. For the other smooth choices of gj (sin and exp), the slopes

are essentially the same as for the linear and quadratic (smooth) functions. The295

lower part of the table gives − log10 Var[Ȳn,j] for n = 221, for three choices

of gj , and the total CPU time needed for the 200 replications for n = 221.

The performances for all six functions gj were computed simultaneously in each

replication. We tried other values of θ, such as 0.1 and 0.9, and other values

of j from 1 to 100, and the results were almost identical. The variances are300

essentially constant in j.

15

Table 1: Upper panel: Regression slopes for log2 E[D2
j] and log2 Var[Ȳn,j] as functions of

log2 n. Lower panel: Values of − log10 Var[Ȳn,j] and total CPU time in seconds for n = 221.

point sets log2 E[D2
j] log2 Var[Ȳn,j]

Xj − 1
2

X2
j − 1

3
(Xj − 1

2
)+ − 1

8
I[Xj ≤ 1

3
] − 1

3

MC -1.01 -1.02 -1.01 -1.00 -1.02

LHS -1.02 -0.99 -1.00 -1.00 -1.00

SS -1.50 -1.98 -2.00 -2.00 -1.49

SSA -1.50 -2.65 -2.56 -2.50 -1.50

Sobol -1.51 -3.22 -3.14 -2.52 -1.49

Sobol+baker -1.50 -3.41 -3.36 -2.54 -1.50

Korobov -1.87 -2.00 -1.98 -1.98 -1.85

Korobov+baker -1.92 -2.01 -2.02 -2.01 -1.90

point sets − log10 Var[Ȳn,j] for n = 221 CPU time (sec)

X2
j − 1

3
(Xj − 1

2
)+ − 1

8
I[Xj ≤ 1

3
] − 1

3

MC 7.35 7.86 6.98 270

LHS 8.82 8.93 7.61 992

SS 13.73 14.10 10.20 2334

SSA 18.12 17.41 10.38 1576

Sobol 19.86 17.51 10.36 443

Sobol+baker 20.07 16.98 10.04 462

Korobov 13.55 14.03 11.98 359

Korobov+baker 14.59 14.56 12.22 352

16

We see that all methods except LHS improve the rate for both the mean

square L2 discrepancy and the variance. In all cases, this improvement is from

O(n−1) to at least O(n−3/2) for the mean square discrepancy and at least

O(n−2) for the variance of the five continuous functions. For the (discontin-305

uous) indicator function, the variance decreases at roughly the same rate as

E[D2
j] for all point sets. In most cases, the variance converges significantly faster

than the mean square discrepancy. This suggests that there should be another

measure of discrepancy that would be more appropriate for this situation and

that would converge at the same rate as the variance. For the four choices of310

smooth functions gj (linear, quadratic, sin, and exp), the variance decreases at

(essentially) the same rate. The differences can be attributed to random noise.

The rates of the max function differ from those of the smooth functions only for

Sobol, for which the rate deteriorates and is similar to that obtained with SSA.

For E[D2
j], the lattice rules give the fastest convergence rate, significantly faster315

than all others, whereas for the variance for all smooth functions, Sobol gives

the fastest rate, and SSA also performs quite well. Adding a baker’s (or tent)

transformation improves the rate slightly for Sobol, and makes practically no

difference for Korobov. Proving all these convergence rates seems an interesting

challenge that would provide valuable insight in the method.320

We find in the table that for gj(x) = x2 − 1/3 and n = 221, Sobol reduces

the variance by a factor of about 3× 1012 (3 trillions) with respect to MC, SSA

reduces it by a factor of about 6× 1010, and LHS improves it by a small factor

(near 30), without changing the rate.

Example 2. Our second example has a two-dimensional state. It is an Asian

option, with the same parameters as in Section 4.5 of [18] and Example 2 of

[16]. Given observation times t1, t2, . . . , tτ , we have

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Φ is the standard normal cdf, Uj ∼ U(0, 1), and S(t0) = s0 is fixed.

At step j, we have the running average S̄j = 1
j

∑j
i=1 S(ti) and the state is

17

Xj = (S(tj), S̄j). This state evolves as

Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1, Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

The total payoff is Y = gτ (Xτ) = max
[
0, S̄τ −K

]
. The selected parameters325

are S(0) = 100, K = 100, r = ln(1.09), σ = 0.2, and tj = (230 + j)/365, for

j = 1, . . . , τ = 10.

We tried the split sort, batch sort, Hilbert batch sort, and Hilbert sort with

a logistic transformation as in [9]. For the last two sorts, the two-dimensional

states are mapped to [0, 1], so we only need two-dimensional RQMC point sets,330

as in Example 1. But with the split and batch sorts, we need three-dimensional

RQMC point sets. The first two coordinates are used to match the points with

the chains. We used SS, Sobol, and Korobov+baker, defined as in Example 1,

but in three dimensions when needed. For SS, all coordinates are randomized

(we generate a fresh stratified sample) and the points are re-sorted at each335

step, whereas for Sobol and Korobov, only the last coordinate is randomized.

Table 2 reports the regression slopes of log2 Var[Ȳn,j] as a function of log2 n,

estimated from m = 100 replications with n = 2e for e = 9, . . . , 20, as well as

the variance reduction factors (VRF) w.r.t. MC and the CPU times to perform

the 100 replications for n = 220.340

With Sobol and Korobov+baker, the variance decreases roughly as n−2, and

for n = 220 it is about the same for these two point sets and all sorting algorithm,

except for the Hilbert batch sort for which the rate is slightly slower. The best

VRFs are obtained with the batch sort. For SS, computations take more time

and the variance decreases slower than with other point sets. Unlike the other345

point sets, SS is sensitive to the sort method: the variance decreases faster with

the Hilbert and Hilbert batch sorts than with the split or batch sorts. The split

sort is implemented recursively, and for this reason is significantly slower than

the other sort methods. The logistic map used with the Hilbert sort is centered

at zero with a half-width of two standard deviations, as suggested in [9]. We350

found that the results significantly deteriorate when using other continuous,

strictly increasing functions for which the transition from 0 to 1 is either very

18

Table 2: Regression slopes for log2 Var[Ȳn,j] vs log2 n, VRF for RQMC vs MC, and CPU time

in seconds for m = 100, for n = 220, for the Asian option.

Sort RQMC points log2 Var[Ȳn,j] VRF CPU time (sec)

Split sort SS -1.38 2.0 × 102 3093

Sobol -2.04 4.0 × 106 1116

Korobov+baker -2.00 2.2 × 106 903

Batch sort SS -1.38 2.0 × 102 744

(n1 = n2) Sobol -2.03 4.2 × 106 532

Korobov+baker -2.04 4.4 × 106 482

Hilbert batch sort SS -1.54 2.3 × 103 835

Sobol -1.79 1.4 × 105 555

Korobov+baker -1.92 3.4 × 106 528

Hilbert sort SS -1.55 2.4 × 103 840

(with logistic map) Sobol -2.03 2.6 × 106 534

Korobov+baker -2.01 3.3 × 106 567

19

steep or occurs far from the origin.

6. Conclusion

In a stylized one-dimensional numerical example, we found that the con-355

vergence rate for E[D2
j] matches the proved rate of O(n−3/2) (except for lat-

tice rules, for which it does better), and the convergence rate of the variance

matches that of E[D2
j] for a discontinuous cost function gj . But much faster rates

are obtained for the variance (up to about O(n−3.4)) when gj is continuously-

differentiable, and still about O(n−2.5) when gj is continuous but not differen-360

tiable. In a two-dimensional example with a continuous but not differentiable

cost function, we observed a O(n−2) convergence rate for the variance, while

o(n−1) is the best that has been proved so far. The observed rate and also the

variance values at large n were about the same for different sorting methods:

batch sort, split sort, and Hilbert-curve sort. Proving those empirically-observed365

rates is an interesting challenge and is the object of our ongoing research.

Acknowledgements

This work has been supported by a Canada Research Chair, an Inria Inter-

national Chair, and a NSERC Discovery Grant to P. L’Ecuyer.

References370

[1] M. Bader, Space-Filling Curves: An Introduction with Applications in Sci-

entific Computing, Springer, Berlin, 2013.

[2] J.J. Bartholdi III, L.K. Platzman, Heuristics based on space-filling curves

for combinatorial problems in the Euclidean space, Management Science

34 (1988) 291–305.375

[3] K. Buchin, Organizing Point Sets: Space-Filling Curves, Delaunay Tessel-

lations of Random Point Sets, and Flow Complexes, Ph.D. thesis, Freien

20

Universität Berlin, Department of Mathematics and Computer Science,

2008.

[4] V. Demers, P. L’Ecuyer, B. Tuffin, A combination of randomized quasi-380

Monte Carlo with splitting for rare-event simulation, in: Proceedings of the

2005 European Simulation and Modeling Conference, EUROSIS, Ghent,

Belgium, pp. 25–32.

[5] M. Dion, P. L’Ecuyer, American option pricing with randomized quasi-

Monte Carlo simulations, in: B. Johansson, S. Jain, J. Montoya-Torres,385

J. Hugan, E. Yücesan (Eds.), Proceedings of the 2010 Winter Simulation

Conference, pp. 2705–2720.

[6] J. Durbin, Distribution Theory for Tests Based on the Sample Distribu-

tion Function, SIAM CBMS-NSF Regional Conference Series in Applied

Mathematics, SIAM, Philadelphia, PA, 1973.390

[7] R. El Haddad, C. Lécot, P. L’Ecuyer, Quasi-Monte Carlo simulation

of discrete-time Markov chains on multidimensional state spaces, in:

A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-

Monte Carlo Methods 2006, Springer-Verlag, Berlin, 2008, pp. 413–429.

[8] R. El Haddad, C. Lécot, P. L’Ecuyer, N. Nassif, Quasi-Monte Carlo meth-395

ods for Markov chains with continuous multidimensional state space, Math-

ematics and Computers in Simulation 81 (2010) 560–567.

[9] M. Gerber, N. Chopin, Sequential quasi-Monte Carlo, Journal of the Royal

Statistical Society, Series B 77 (2015) 509–579.

[10] T. Goda, On the Lp discrepancy of two-dimensional folded Hammersley400

point sets, Archiv der Mathematik 103 (2014) 389–398.

[11] Z. He, A.B. Owen, Extensible grids: uniform sampling on a space fill-

ing curve, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) (2015).

21

[12] C. Lécot, I. Coulibaly, A quasi-Monte Carlo scheme using nets for a linear405

Boltzmann equation, SIAM Journal on Numerical Analysis 35 (1998) 51–

70.

[13] C. Lécot, B. Tuffin, Quasi-Monte Carlo methods for estimating transient

measures of discrete time Markov chains, in: H. Niederreiter (Ed.), Monte

Carlo and Quasi-Monte Carlo Methods 2002, Springer-Verlag, Berlin, 2004,410

pp. 329–343.

[14] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance, Fi-

nance and Stochastics 13 (2009) 307–349.

[15] P. L’Ecuyer, V. Demers, B. Tuffin, Rare-events, splitting, and quasi-Monte

Carlo, ACM Transactions on Modeling and Computer Simulation 17 (2007)415

Article 9.

[16] P. L’Ecuyer, C. Lécot, A. L’Archevêque-Gaudet, On array-RQMC

for Markov chains: Mapping alternatives and convergence rates, in:

P. L’Ecuyer, A.B. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Meth-

ods 2008, Springer-Verlag, Berlin, 2009, pp. 485–500.420

[17] P. L’Ecuyer, C. Lécot, B. Tuffin, Randomized quasi-Monte Carlo simulation

of Markov chains with an ordered state space, in: H. Niederreiter, D. Ta-

lay (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer-

Verlag, Berlin, 2006, pp. 331–342.

[18] P. L’Ecuyer, C. Lécot, B. Tuffin, A randomized quasi-Monte Carlo simula-425

tion method for Markov chains, Operations Research 56 (2008) 958–975.

[19] P. L’Ecuyer, D. Munger, Lattice builder: A general software tool for con-

structing rank-1 lattice rules, ACM Transactions on Mathematical Soft-

ware (2015). To appear, see http://www.iro.umontreal.ca/~lecuyer/

papers.html.430

22

http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~lecuyer/papers.html

[20] P. L’Ecuyer, C. Sanvido, Coupling from the past with randomized quasi-

Monte Carlo, Mathematics and Computers in Simulation 81 (2010) 476–

489.

[21] J. Matoušek, Geometric Discrepancy: An Illustrated Guide, Springer-

Verlag, Berlin, 1999.435

[22] H. Niederreiter, Quasi-Monte Carlo methods and pseudorandom numbers,

Bulletin of the American Mathematical Society 84 (1978) 957–1041.

[23] L.K. Platzman, J.J. Bartholdi III, Space-filling curves and the planar trav-

eling salesman problem, Journal of the ACM 36 (1989) 719–737.

[24] C. Schretter, H. Niederreiter, A direct inversion method for non-uniform440

quasi-random point sequences, Monte Carlo Methods and Applications 19

(2013) 1–9.

[25] C. Wächter, A. Keller, Efficient simultaneous simulation of Markov chains,

in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-

Monte Carlo Methods 2006, Springer-Verlag, Berlin, 2008, pp. 669–684.445

23

	Introduction
	Array-RQMC
	How to sort the states
	Multivariate sorts
	Mapping the states to the one-dimensional unit interval

	Some theoretical convergence results
	Examples
	Conclusion

