
Construction of Equidistributed Generators
Based on Linear Recurrences Modulo 2

Pierre L’Ecuyer and François Panneton

Département d’informatique et de recherche opérationnelle
Université de Montréal
C.P. 6128, Succ. Centre-Ville,
Montréal (Québec), H3C 3J7, CANADA

Abstract. Random number generators based on linear recurrences modulo 2 are
widely used and appear in different forms, such as the simple and combined Taus-
worthe generators, the GFSR, and the twisted GFSR generators. Low-discrepancy
point sets for quasi-Monte Carlo integration can also be constructed based on these
linear recurrences. The quality of these generators or point sets is usually mea-
sured by certain equidistribution criteria. Combining two or more recurrences and
adding linear output transformations can be used to improve the equidistribution
properties.

In this paper, we explore the combination of recurrences of different types,
together with different kinds of linear output transformations. We have developed
flexible software tools to make computer searches for good generators with respect
to equidistribution criteria that consider selected low-dimensional projections. We
provide several examples of search results.

1 Introduction: Generators Based on Linear
Recurrences in F2

We consider (pseudo)random number generators based on a matrix linear
recurrence over F2 (the finite field with the two elements 0 and 1), defined
by

xn = Axn−1 , (1a)
yn = Bxn , (1b)

un =
w∑
i=1

yn,i−12−i , (1c)

where xn = (xn,0, . . . , xn,k−1)T ∈ Fk2 is the k-bit state vector at step n,
yn = (yn,0, . . . , yn,w−1)T ∈ Fw2 is the w-bit output vector at step n, k and w
are positive integers, A is a k × k matrix called the transition matrix, B is
a w × k matrix called the output transformation matrix, and un ∈ [0, 1) is
the output at step n of the recurrence. The operations in (1a) and (1b) are
performed in F2, which is equivalent to performing the arithmetic modulo 2.



2 Pierre L’Ecuyer and François Panneton

It is well-know [12,1] that each coordinate of xn follows a linear recurrence
of order k, of the form

xn,i = (α1xn−1,i + · · ·+ αkxn−k,i), (2)

whose characteristic polynomial

P (z) = zk − α1z
k−1 − · · · − αk−1z − αk (3)

is the characteristic polynomial of the matrix A, i.e., P (z) = det(A − zI),
and the coefficients αi are elements of F2. Each coordinate of yn also follows
the same recurrence.

If we assume that αk = 1, then the recurrence (2) has order k and is
purely periodic (i.e., has no transient state). Its period length equals 2k − 1
(the largest possible value) if and only if P (z) is a primitive polynomial over
F2 [12].

It is customary (e.g., [3,5,4]) to assess the quality of a generator such as
(1a)–(1c) by measuring the uniformity of the point set

Ψt = {u0,t = (u0, . . . , ut−1) : x0 ∈ Fk2}, (4)

which contains all vectors of t successive output values produced by the gen-
erator, from all of the 2k possible initial states. This set is examined for all
values of t up to a pre-selected limit. Certain low-dimensional projections
over non-successive coordinates can also be examined [7,9]. Here, we measure
the uniformity by a standard equidistribution criterion detailed in section 3,
and we define a figure of merit in terms of the equidistribution properties of
all the sets and projections that are considered.

We have developed a flexible and powerful software package for finding
generators with a good figure of merit, within various subclasses that satisfy
the recurrence (1a)–(1c). The aim of this paper is to illustrate what this
package can do and give examples of its findings, for both small and large
values of k.

In Section 2, we mention certain types of generators that are special cas-
es of (1a)–(1c), namely the Tausworthe generator, the polynomial LCG, the
twisted GFSR (TGFSR), and combinations of these. Our selection criteria
are explained in Sections 3 and 4. Specific linear output transformations are
presented in Section 5. Section 6 briefly describes the software package that
we have developed. Section 7 gives several examples of generators found with
this package. We give examples of small generators whose point sets Ψt can
be used for quasi-Monte Carlo integration, and of large generators that can
be used for Monte Carlo simulation. Among the latter, we give three exam-
ples of maximally equidistributed combined TGFSR generators. This settles
an open question: It has been proved that no simple TGFSR generator can
be maximally equidistributed, but it was still unknow whether this was pos-
sible for combined TGFSR generators. Finally, we give an example showing



Construction of Equidistributed Generators 3

the ability of our software to find combined generators with components of
different types, with a different linear output transformation applied to each
component. This demonstrates the power and the flexibility of the software
package.

2 Special cases

In this section, we examine three special cases of the linear recurrence (1a)
that can be implemented efficiently. To each of them one can apply any type
of output transformation (1b). Further details about the implementation of
these generators, their analysis, and the choice of their parameters, can be
found in [2,4,11,13,15].

2.1 Tausworthe Generator

Suppose we take A = As0 (the sth power of A0 in F2) for a given positive
integer s, where

A0 =


1

. . .
1

ak ak−1 . . . a1

 , (5)

a1, . . . , ak are in F2 and ak = 1. The blank entries in the matrix are zeros. If
B = I (the identity), this gives a Tausworthe generator [14,2,15], which can
also be rewritten by xn = a1xn−1 + · · ·+akxn−k and un =

∑w
i=1 xns+i−12−i.

The parameters to be selected in this case are k, s, and a1, . . . , ak−1. In
the frequent cases where only one [resp., three] of the these ai is nonzero
in addition to ak, so the characteristic polynomial of A0 is a trinomial [re-
sp., a pentanomial], we call the Tausworthe generator trinomial-based [resp.,
pentanomial-based].

2.2 Polynomial LCG

Here we take the matrix

A =


a1 1
...

. . .
ak−1 1
ak

 . (6)

where a1, . . . , ak are in F2 and ak = 1. The characteristic polynomial of this
matrix is given by (3) with αi = ai. With B = I, this gives the polynomial
LCG described in [6,13]. To implement the multiplication by A in this case,
it suffices to shift xn−1 to the left by one bit, and make a bitwise exclusive-or
with a = (a1, . . . , ak)T if the original leftmost bit of xn−1 was 1.



4 Pierre L’Ecuyer and François Panneton

2.3 Twisted GFSR

Suppose we take A as the pq × pq matrix

A =


Ip S

Ip
Ip

. . .
Ip

 (7)

where p and q are positive integers, Ip is the p × p identity matrix, S is a
p× p matrix, and the matrix Ip on the first line is in the (m− 1)th block of
p × p matrices from the right (i.e., its entries are from (1, (m − 1)p + 1) to
(p,mp)). Usually, for ease of implementation, the matrix S is defined as

S =


a1

1 a2

. . .
...

1 ap

 (8)

where a1, . . . , ap are in F2 and a1 = 1. We shall assume that it is the case
for the remainder of this paper. In this case, k = pq and the characteristic
polynomial of A is P (z) = PS(zq + zm) where PS(z) = zp−apzp−1−· · ·−a1

is the characteristic polynomial of S. The parameters to be selected are p, q,
m, and a = (a1, . . . , ap). With w = p and B made from the first p lines of the
pq × pq identity matrix, this gives the original TGFSR generator introduced
in [10].

2.4 Combined generators

One can combine J distinct recurrences of the form (1a)–(1b) as follows.
For j = 1, . . . , J , let Aj be the kj × kj transition matrix, Bj the w × kj
output transformation matrix, and xj,n the kj-bit state vector at step n, for
generator j. We define the output of the combined generator at step n by

yn = B1x1,n ⊕ · · · ⊕BJxJ,n, (9)

un =
w∑
i=1

yn,i−12−i (10)

where ⊕ denotes the bitwise exclusive-or operation. One can show (see [15])
that the period length ρ of the combined generator is the least common
multiple of the period lengths ρj of its individual components, i.e., ρ =
lcm(ρ1, . . . , ρJ). It is also easily seen that the combined generator (9)–(10) is
equivalent to (1a)–(1c) with k =

∑J
j=1 kj , w = min1≤j≤J wj , A = diag(A1,

. . . , AJ), and B = (B1, . . . , BJ ).



Construction of Equidistributed Generators 5

3 Equidistribution

For a given integer ` ≥ 0, if we partition each axis of the unit hypercube
[0, 1)t into 2` equal parts, this determines a partition of the hypercube into
2`t small cubes of equal volume. The point set Ψt (and the corresponding
RNG) is called (t, `)-equidistributed, or t-distributed with ` bits of accuracy ,
if each of these small cubes contains exactly 2k−`t points from Ψt. This means
that if we consider the ` most significant bits of the t coordinates of u0,t, the
2`t different bit vectors that can be constructed appear exactly the same
number of times in Ψt. For a given dimension t, the largest value of ` for
which Ψt is (t, `)-equidistributed is called the resolution in dimension t and
is denoted by `t. This value has the upper-bound `∗t = min(bk/tc, w).

The resolution gap in t dimensions, defined as

δt = `∗t − `t, (11)

gives the difference between the best possible resolution in t dimensions and
the one that is achieved. If δt = 0 (i.e., Ψt is t-distributed with `∗t bits of ac-
curacy) for 1 ≤ t ≤ k, the RNG is called asymptotically random or maximally
equidistributed (ME) for the word size w (see [2,15]). An ME generator has
the best possible equidistribution for Ψt, for partitions of the unit hypercube
[0, 1)t into cubic boxes of equal size, for all ` ≤ w and t` ≤ k. In particular,
a generator for which A has full rank k and B = I always has δ1 = 0.

To verify the equidistribution of Ψt in general, one can write a system of
linear equations that expresses the `t bits of interest as a linear transformation
of the binary vector x0. One has t-distribution to ` bits of accuracy if and
only if the matrix of this linear transformation has full rank [2,4].

4 Equidistribution of the Projections and a Selection
Criterion

The measure of equidistribution of the previous section can be also applied to
point sets formed by non-successive output values, as follows. For arbitrary
integers 0 ≤ i1 < . . . < it, let I = {i1, i2, . . . , it} and `t(I) be the resolution
of the set

Ψt(I) = {(ui1 , ui2 , . . . , uit) : x0 ∈ Fk2}. (12)

This set is in fact the projection of Ψit+1 over the t-dimensional subspace
determined by the coordinates in I. The largest possible value of `t(I) is
again `∗t , and we define the resolution gap δt(I) = `∗t − `t(I).

Our search for good generators will be based on the following criterion
(13), introduced in [8]. For selected positive integers s1, . . . , sd, define

∆(s1, . . . , sd) = max
(

max
t≤s1

δt, max
t=2,...,d, I∈S(st,t)

δt(I)
)
, (13)



6 Pierre L’Ecuyer and François Panneton

where S(st, I) = {{i1, . . . , it} : 0 = i1 < . . . < it < st}. In this criterion,
the first part measures the uniformity of the successive output values up to
s1 dimensions, whereas the second part looks at all the projections in up
to d dimensions and where the indices of the t-dimensional projections are
in the range from 0 to st − 1. A value of 0 means that the points have the
best possible equidistribution for all the projections that are considered. In
particular, a generator is ME if and only if ∆(k) = 0.

5 Linear Output Transformations

This section gives three examples for the choice of the matrix B for which
a very fast implementation is available. Many others can be defined, e.g., by
using arbitrary combinations of shifts, bitwise AND and XOR operations,
and bit masks. The major role of the output transformation by the matrix
B is to improve the equidistribution, i.e., reduce the value of (13). Further
details about the transformations presented here can be found in [6,11,13].

5.1 MK-style Tempering

Matsumoto and Kurita [11] have proposed a slight variant of the linear output
transformation defined by the operations:

x̃n = xn & mv;
zn = x̃n ⊕ ((x̃n � s1) & b1);
ỹn = zn ⊕ ((zn � s2) & b2);
yn = ỹn & mw

where � s means a bitwise shift by s1 bits to the left, & b means a bitwise
AND with b, s1 and s2 are positive integers, b1 and b2 are arbitrary bit
masks, and mv [resp. mw] is a bit mask that keeps only the first v [resp. w]
bits. In the original version of [11], v = w. The variant given here applies
the tempering to the first v bits of the state xn instead of to the first w
bits only. Matsumoto and Kurita [11] suggest taking s2 near v/2 and s1 near
s2/2. The parameters s1, s2, b1, and b2 are to be chosen in a way that the
equidistribution be as good as possible. In our software, the bit masks bi are
in fact constructed adaptively via a decision tree, in order to reduce the gaps
δt.

5.2 Permutation

This transformation obtains yn simply by applying a fixed permutation π
to the coordinates of xn [6]. The permutation is any one-to-one mapping
π : Zk → Zk and the transformation puts yn,i = xn,π(i) for i = 0, . . . , k,
assuming that w = k. The matrix B that corresponds to this permutation is



Construction of Equidistributed Generators 7

the square matrix obtained by applying the same permutation π to the rows
of the identity matrix I. This matrix is invertible and satisfies BBT = I, so
the recurrence can be written directly in terms of the yn’s:

yn = (BABT )yn−1. (14)

In practice, one would choose the parameters so that the recurrence (14)
can be implemented directly in an efficient way. The case where w < k can
be dealt with easily by applying a bit mask to yn. In our software and in
section 7.4, we use permutations of the form π(i) = νi+ µ mod k.

5.3 A Self-Tempering

A linear transformation called self-tempering was introduced in [6]. In the
case of w-bit computer words, if xn is represented over the words x1

n, . . .,
xKn , where K = dk/we, then the transformation is

yn = x1
n ⊕

((
⊕Ki=1x

i
n

)
� d

)
.

6 The Software Package

We have developed a software package, written in the C language, to analyze
the equidistribution of single and combined generators of the form (1a)–(1c),
and search for good generators of that form in terms of the criterion (13).
The package lets us combine generators of different types (including all those
mentioned in Section 2), and apply different linear ouput transformations
(including all those of Section 5) to each component. The software has a
modular design and it is easy to add new types of generators and output
transformations.

For any given generator, the program computes the gaps δt and δt(I) that
appear in the criterion (13), for values of d and s1, . . . , sd specified by the
user. For combined generators, the user specifies only the individual com-
ponents and the output transformations applied to them. The software can
also analyze in a single run a whole family of generators, specified by giving
the types of the components and output transformations and by putting con-
straints on their parameters. It then provides a list of the best parameters
with respect to the selected criterion ∆(s1, . . . , sd), or a list of those whose
criterion value, or sum of gaps, does not exceed a given constant, or more
generally a list of those whose gaps satisfy a given set of constraints. For large
families, a random search is made for good generators within the family. In
certain cases, the program can also construct the output transformations in-
telligently in an adaptive manner, in order to find the good generators more
rapidly.



8 Pierre L’Ecuyer and François Panneton

7 Good Generators Found With the Software Package

In this section, we give examples of generators that perform well against
the criteria ∆(32, 24, 16, 8), found by our programs. We start with combined
Tausworthe-type generators, first with small ones that could be used for
quasi-Monte Carlo (QMC) integration, then larger ones (i.e., with longer
period). We then give examples of combined TGFSR generators for which
∆(32, 24, 16, 8) = 0. Finally, in the last subsection, we give an example of a
hybrid combined generator.

7.1 Tausworthe-Type Generators for QMC

Tables 1 and 2 give combined Tausworthe generators with 2 or 3 components,
with values of k from 11 to 23. In all cases, the cardinality of Ψt is 2k and the
period length of the main cycle is ρ =

∏J
j=1(2kj − 1), which is close to 2k.

In Table 1, for each component generator j, the characteristic polynomial
of the matrix A0 in (5) is a trinomial of the form Pj(z) = zkj + zqj + 1
where kj > qj > 0. For the generators of Table 2, we have J = 2, and
the characteristic polynomial of A0 is a trinomial for the first component
and a pentanomial of the form Pj(z) = zkj + zqj,1 + zqj,2 + zqj,3 + 1 where
kj > qj,1 > qj,2 > qj,3 > 0 for the second component. We denote by sj the
value of s for the jth component. In both tables, the column marked “gaps”
gives the values of δ̃1, δ̃2, δ̃3, δ̃4, where

δ̃1 = max
t≤s1

δt,

δ̃t = max
I∈S(st,t)

δt(I) for t ≥ 2.

For t ≥ 2, the lower the value of the δ̃t, the better the generator behaves with
respect to the t-dimensional projections. The gap never exceeds 1 for all the
generators in the two tables, and all the generators of Table 2 are ME.

Table 1. Trinomial-based Tausworthe generators

J k kj qj sj gaps ∆(32, 24, 16, 8)

2 11 5 2 3 0,1,1,1 1
6 1 5

2 17 7 1 5 1,1,1,1 1
10 3 7

7 3 2
3 23 5 2 1 1,1,1,1 1

11 2 7



Construction of Equidistributed Generators 9

Table 2. Trinomial-pentanomial-Based Tausworthe generators

J k kj qj,1 qj,2 qj,3 sj gaps ∆(32, 24, 16, 8)

2 11 5 2 3 0,1,1,0 1
6 4 3 1 1

2 17 6 1 1 0,1,1,1 1
11 4 2 1 4

2 19 6 1 4 0,1,1,1 1
13 5 2 1 5

2 23 4 1 2 0,1,1,1 1
19 6 4 1 7

7.2 Larger Tausworthe-Type Generators

Several combined trinomial-based Tausworthe generators have been suggest-
ed in references [16,2,4], based on the criterion ∆(k) only. Some of these gen-
erators are given in Table 3, where we also give the value of ∆(32, 24, 16, 8)
and the gaps for the corresponding projections. We see that some of these
gaps are quite large for the three generators of [16]. This means that for
certain low-dimensional projections, the resolution `t(I) is rather small. For
example, the third generator has δ̃3 = 6 and `∗3 = k/3 = 20, which means that
at least one of its 3-dimensional projections, over coordinates (0, i2, i3) with
0 < i2 < i3 < 16, has 14 bits of resolution instead of the 20 bits given by the
upper bound. The generator of [2] is ME but has a gap of 3 in three dimen-
sions, whereas the two generators taken from [4] are excellent with respect
to all the selected projections: no gap exceeds 1.

To see how one could improve on this, we made new searches for good
generators of the same form with respect to the criterion ∆(32, 24, 16, 8). Part
of the results are in Table 4. We have improved upon the previously proposed
generators for k around 60 and around 88. For k = 113, on the other hand,
we found no improvement upon the (already excellent) generators of [4] given
in Table 3, even when we tried 4-component pentanomial-based generators.

7.3 Combined TGFSR Generators

For a TGFSR generator without tempering, the 2-dimensional resolution
`2 cannot exceed p, which is quite small compared with the upper bound
`∗2 = bpq/2c. With the MK-tempering proposed in [11], one can have `2 = `∗2,
but it has been proved that `t cannot reach `∗t for certain values of t larger
than 2, so it is still impossible for the generator to be ME.

Here we show, by giving concrete examples, that it is possible to construct
ME combined generators where each component is a TGFSR as in Section 2.3
with MK-tempering as in Section 5.1. Examples of such combined generators
are given in Table 5. Each line gives the parameters of one component. For



10 Pierre L’Ecuyer and François Panneton

Table 3. Generators Proposed in [16], [2] and [4].

J k kj qj sj gaps ∆(32, 24, 16, 8)

proposed in [16]:

2 60 29 2 20 1,3,2,3 3
31 13 1

2 60 29 2 17 1,2,4,3 4
31 13 12

2 60 29 2 17 1,2,6,3 6
31 3 21

proposed in [2]:

29 2 4
3 88 28 3 17 0,0,3,2 3

31 13 12

proposed in [4]:

31 6 18
4 113 29 2 2 0,0,0,1 1

28 13 7
25 3 13

31 6 24
4 113 29 2 3 0,0,0,1 1

28 13 11
25 3 12

Table 4. New Combined Tausworthe Generators

J k kj qj sj gaps ∆(32, 24, 16, 8)

2 59 28 9 16 1,1,1,1 1
31 6 18

29 2 7
3 83 23 5 16 0,0,1,1 1

31 6 24

29 2 21
3 88 28 9 16 1,0,1,1 1

31 3 28

the MK-tempering, we use vj = wj = pj . The bit vectors in Table 5 are given
in hexadecimal notation. For the first generator, with J = 2 and k = 718, one
has ∆(32, 24, 16, 8) = 1 and the gaps are 1, 0, 0, 0. The other two, with J = 3,
have ∆(32, 24, 16, 8) = 0, i.e., perfect equidistribution for all the projections
considered!

In our search for good parameters, to construct the best possible bit
vectors bj,1 and bj,2 for the tempering of the individual components, given



Construction of Equidistributed Generators 11

Table 5. 2 and 3-Components TGFSR with MK-tempering

J k aj pj qj mj sj,1 sj,2 bj,1 bj,2

2 718 9b6bf432 31 11 2 6 14 0568a302 6bf50008

9a911d68 29 13 2 7 14 21452808 4e2a0000

3 466 cfae8af3 32 7 6 7 15 26ba6501 3a818006

f94aba8e 31 5 3 7 15 19382200 73b60000

fea4abc8 29 3 2 7 14 02541800 16540000

3 1250 d84be803 32 13 7 7 15 26a68400 432a8000

9b6bf432 31 11 2 7 15 5c941200 194f0006

bdfee2f8 29 17 13 7 14 50280008 2aaa0000

their values of sj,1, sj,2, and w, we used a version of the algorithm proposed
in [11], adapted to combined generators.

7.4 A Hybrid Generator

Table 6. MK-temperings for the hybrid generator

Components sj,1 sj,2 bj,1 bj,2 vj wj

Polynomial 7 15 32660000 330f8000 32 32

Tausworthe 7 14 13892008 4b8e0000 29 29

TGFSR 7 15 3a049102 6cc60000 31 31

To illustrate the flexibility of our software, we now give the results of a
search for a hybrid combined generator with three components of different
types, and where a different kind of tempering is applied to each component.
The first component is specified as a polynomial LCG to which a permutation
of the coordinates and an MK-tempering are applied successively. The second
component is a trinomial-based Tausworthe generator with MK-tempering.
The third component is a TGFSR with MK-tempering. Their orders are
fixed to k1 = 32, k2 = 29, and k3 = 93, respectively, so k = 154. The
program searched for generators of this form with respect to the criterion
∆(32, 24, 16, 8) and found several ones with maximal gap of 1. One of them,
whose gap values δ̃t are 0, 0, 0, 1, is defined as follows. Its first component is
a polynomial LCG with characteristic polynomial P (z) = z32 + z30 + z25 +
z24 +z22 +z15 + z6 +z2 +1, with the permutation π(i) = 21i+ 19. Its second
component is a Tausworthe generator with kj = 29, qj = 2, and sj = 1.
Its third component is a TGFSR with aj = c39bde7a, pj = 31, qj = 3, and
mj = 1. Table 6 gives the MK-temperings applied to these three components.
The bit vectors are in hexadecimal notation in this table.



12 Pierre L’Ecuyer and François Panneton

8 Acknowledgments

This work has been supported by NSERC-Canada grant No. ODGP0110050
and FCAR-Québec Grant No. 00ER3218 to the first author, and by an
NSERC-Canada and FCAR-Québec scholarships to the second author.

References

1. P. L’Ecuyer. Uniform random number generation. Annals of Operations Re-
search, 53:77–120, 1994.

2. P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation, 65(213):203–213, 1996.

3. P. L’Ecuyer. Uniform random number generators. In Proceedings of the 1998
Winter Simulation Conference, pages 97–104. IEEE Press, Dec 1998.

4. P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation, 68(225):261–269, 1999.

5. P. L’Ecuyer and P. Hellekalek. Random number generators: Selection criteria
and testing. In P. Hellekalek and G. Larcher, editors, Random and Quasi-
Random Point Sets, volume 138 of Lecture Notes in Statistics, pages 223–265.
Springer, New York, 1998.

6. P. L’Ecuyer and F. Panneton. A new class of linear feedback shift register
generators. In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, ed-
itors, Proceedings of the 2000 Winter Simulation Conference, pages 690–696,
Pistacaway, NJ, Dec 2000. IEEE Press.

7. C. Lemieux. L’utilisation de règles de réseau en simulation comme technique
de réduction de la variance. PhD thesis, Université de Montréal, May 2000.

8. C. Lemieux. L’utilisation de règles de réseau en simulation comme technique
de réduction de la variance. PhD thesis, Université de Montréal, May 2000.

9. C. Lemieux and P. L’Ecuyer. Polynomial lattice rules. in preparation, 2001.
10. M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Transactions

on Modeling and Computer Simulation, 2(3):179–194, 1992.
11. M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Transactions

on Modeling and Computer Simulation, 4(3):254–266, 1994.
12. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Meth-

ods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia, 1992.

13. F. Panneton. Générateurs de nombres aléatoires utilisant des récurrences
linéaires modulo 2. Master’s thesis, Département d’informatique et de recherche
opérationnelle, Université de Montréal, 2000.

14. R. C. Tausworthe. Random numbers generated by linear recurrence modulo
two. Mathematics of Computation, 19:201–209, 1965.

15. S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass., 1995.

16. S. Tezuka and P. L’Ecuyer. Efficient and portable combined Tausworthe ran-
dom number generators. ACM Transactions on Modeling and Computer Sim-
ulation, 1(2):99–112, 1991.


