
Randomized Quasi-Monte Carlo Simulation of
Markov Chains with an Ordered State Space

Pierre L’Ecuyer1, Christian Lécot2, and Bruno Tuffin3

1 Département d’informatique et de recherche opérationnelle, Université de
Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), Canada, H3C 3J7,
lecuyer@iro.umontreal.ca

2 Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac
Cedex, France, Christian.Lecot@univ-savoie.fr

3 IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France,
Bruno.Tuffin@irisa.fr

Summary. We study a randomized quasi-Monte Carlo method for estimating the
state distribution at each step of a Markov chain with totally ordered (discrete
or continuous) state space. The number of steps in the chain can be random and
unbounded. The method can be used in particular to get a low-variance unbiased
estimator of the expected total cost up to some random stopping time, when state-
dependent costs are paid at each step. We provide numerical illustrations where the
variance reduction with respect to standard Monte Carlo is substantial.

1 Introduction

A deterministic quasi-Monte Carlo (QMC) method for estimating transient
measures over a fixed number of steps, for discrete-time and discrete-state
Markov chains with a totally ordered state space, was proposed and studied
in [3], based on ideas of [2]. The method simulates n = 2k copies of the chain
in parallel (for the same number of steps) using a (0, 2)-sequence in base
2. At step j of the chain, it reorders the n copies according to their states
and simulates the transitions (next states) for the n copies by employing the
elements nj to nj + n − 1 of the (0, 2)-sequence in place of uniform random
numbers to drive the simulation. It assumes that simulating each transition of
the chain requires a single uniform random variate. Convergence to the correct
value was proved in [3] under a condition on the structure of the transition
probability matrix of the Markov chain.

In this paper, we generalize this method to Markov chains with continuous
state space, with a random and unbounded number τ of steps (this permits
one to cover regenerative simulation, in particular), and for which the number
d of uniform random variates that are required to generate the next state in

2 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

one step of the Markov chain can be larger than 1. The method uses ran-
domized versions of a single highly-uniform (or low-discrepancy) point set of
cardinality n in the d-dimensional unit cube. It provides unbiased mean and
variance estimators. We have theoretical results on the rate of convergence of
the variance of the mean estimator (as n →∞) only for narrow special cases,
but our empirical results with a variety of examples indicate that this variance
goes down much faster with the proposed method than for standard Monte
Carlo (MC) simulation or for randomized QMC (RQMC) methods that use a
single τd-dimensional point to simulate each sample path of the chain (as in
[5, 6, 7], for example).

In the next section, we first define our Markov chain model, then we moti-
vate and state our RQMC sampling algorithm. Section 3 contains convergence
results for special settings. Section 4 illustrates the method via numerical ex-
amples where it improves the simulation efficiency (by reducing the variance)
by large factors compared with standard MC.

2 The Array-RQMC Algorithm

2.1 Markov Chain Model

We consider a Markov chain that evolves over a state space X , according to
the stochastic recurrence:

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1, (1)

where the Uj are i.i.d. random vectors uniformly distributed over the d-
dimensional unit hypercube [0, 1)d.

We want to estimate

µ = E[Y] where Y =
τ∑

j=1

cj(Xj), (2)

each cj : X → R is a cost function, τ is a stopping time with respect to
the filtration generated by {(j, Xj), j ≥ 0}, and we assume implicitly that
X , the ϕj ’s, and the cj ’s satisfy appropriate measure-theoretic requirements
so that all objects of interest in this paper are well-defined (so we hide the
uninteresting technical details). We also assume that the functions ϕj and cj

are easy to evaluate at any given point, for each j.
The random variable Y is easy to generate by standard MC: For j =

1, . . . , τ , generate Uj ∼ U [0, 1)d, compute Xj = ϕj(Xj−1,Uj), and add the
value of cj(Xj) to an accumulator, which at the end will contain the value of
Y . This can be replicated n times independently, and the sample mean and
variance of the n values of Y are unbiased estimators of the exact mean and
variance of Y . From this, one can compute a confidence interval on µ.

RQMC Simulation of Markov Chains 3

Let s = supω dτ , where the supremum is taken over all possible sample
paths ω, and s = ∞ if τ is unbounded. In this setting, the random variable Y
can be written as a function of a sequence of s i.i.d. U(0, 1) random variables,
say Y = f(U1, . . . , Us), for some complicated function f . If τ is unbounded,
we assume that it at least has finite expectation.

One way of estimating µ by RQMC is to select an s-dimensional RQMC
point set of cardinality n, say Vi = (Ui,1, . . . , Ui,s) for i = 1, . . . , n, compute
the average value of f over these n points, say Ȳn, and take it as an estimator
of µ. To estimate the variance and compute a confidence interval on µ this
procedure can be replicated m times, with independent randomizations of the
same QMC point set. Under simple conditions on the randomization (e.g.,
one must have E[f(Vi)] = µ), the sample mean and sample variance of these
m averages are unbiased estimators of the exact mean and variance of Ȳn.
Further details on this classical RQMC approach can be found in [5, 6, 8] and
other references given there.

Owen [8] discusses several ways of handling the case where s is large,
perhaps infinite (he gives examples of situations when this happens). He pro-
poses an RQMC variant called Latin Supercube Sampling (LSS), where the
s coordinates are partitioned into finite subsets of sizes (say) s1, s2, . . ., and
an sj-dimensional QMC point set Pn,j is used for each subset j, but with
the n points randomly permuted, independently across the subsets. Thus,
each chain uses a random point from Pn,j for each subset j of coordinates.
If all sj ’s are equal, all Pn,j ’s can be the same point set. Our method bears
ressemblance with LSS with sj = d for all j, but the points are assigned to
the chains in a systematic manner (by sorting the chains according to their
states, as described in a moment) rather than by a random permutation.

2.2 Array-RQMC for Comparable Markov Chains

We now assume (for the remainder of the paper) that X ⊆ R` ∪ {∞}, and
that a total order has been defined on X , for which ∞ is the largest state.
The state ∞ is an absorbing state used to indicate that we have reached the
stopping time τ . That is, Xj = ∞ for j > τ , and cj(∞) = 0.

The basic idea of the proposed method is to seek a good estimate of the
distribution function Fj of the random variable Xj for each j. For that, we
simulate n copies of the chain in parallel and estimate Fj by the empirical dis-
tribution of n values of Xj thus obtained. In contrast with classical integration
or approximation methods, the states at which Fj is to be “evaluated” need
not be selected in advance but are generated automatically by the RQMC
algorithm according to a distribution that approximates Fj .

The array-RQMC algorithm works as follows. At step 1, we take an RQMC
point set Pn,1 = {u0,1, . . . ,un−1,1} in [0, 1)d, define

Xi,1 = ϕ1(x0,ui,1) for i = 0, . . . , n− 1,

4 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

and estimate the distribution F1 of X1 by the empirical distribution F̂1 of
X0,1, . . . , Xn−1,1. This gives the following approximation, where I denotes
the indicator function:

F1(x) = P [X1 ≤ x]

=
∫

[0,1)d

I(ϕ1(x0,u) ≤ x) du (3)

≈ 1
n

n−1∑
i=0

I(ϕ1(x0,ui,1) ≤ x) (4)

=
1
n

n−1∑
i=0

I(Xi,1 ≤ x) def= F̂1(x),

which amounts to estimating the integral (3) by RQMC in (4).
At step j, we use the empirical distribution F̂j−1 of X0,j−1, . . . , Xn−1,j−1 as

an approximation of the distribution Fj−1 of Xj−1. Let Pn,j = {u0,j , . . . ,un−1,j}
be an RQMC point set in [0, 1)d such that the (d + 1)-dimensional point set
P ′

n,j = {u′i,j = ((i + 0.5)/n,ui,j), 0 ≤ i < n} is “highly uniform” (or has “low
discrepancy”) in [0, 1)d+1, in a sense that we leave open for the moment (a
precise definition of “low discrepancy” in the asymptotic sense, as n → ∞,
will be adopted in the propositions of Section 3). We estimate Fj by the em-
pirical distribution F̂j of the values Xi,j = ϕj(X(i),j−1,ui,j), i = 0, . . . , n− 1.
This can be interpreted as follows (if we assume that F−1

j−1 is well defined):

Fj(x) = P [Xj ≤ x] = E[I(ϕj(Xj−1,Uj) ≤ x)]

=
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dFj−1(y) (5)

≈
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dF̂j−1(y) (6)

=
∫

[0,1)d+1
I(ϕj(F̂−1

j−1(v),u) ≤ x) du dv (7)

≈ 1
n

n−1∑
i=0

I(ϕj(F̂−1
j−1((i + 0.5)/n),ui,j) ≤ x) (8)

=
1
n

n−1∑
i=0

I(ϕj(X(i),j−1,ui,j) ≤ x)

=
1
n

n−1∑
i=0

I(Xi,j ≤ x) def= F̂j(x).

In (6), we have replaced Fj−1 in (5), by its approximation F̂j−1. In (8), we
approximate the integral in (7) by RQMC over [0, 1)d+1 with the point set

RQMC Simulation of Markov Chains 5

P ′
n,j . Observe that this point set gives a perfect stratification of the distribu-

tion F̂j−1, with exactly one observation per stratum (the strata are the jumps
of F̂j−1).

Putting these pieces together, we get the following algorithm (the “for”
loops are written using the C/C++/Java syntax and indentation alone indi-
cates the scope of the loops):

Array-RQMC algorithm:
1 (Initialization). Select a d-dimensional QMC point set P̃n =

(ũ0, . . . , ũn−1) and a randomization of P̃n such that (a) each ran-
domized point is uniform over [0, 1)d and (b) if Pn = (u0, . . . ,un−1)
denotes the randomized version, then P ′

n = {((i+0.5)/n, ui), 0 ≤
i < n} has “low discrepancy”.

2 (Simulate chains). Simulate in parallel n copies of the chain,
numbered 0, . . . , n− 1, as follows:
For (j = 1; X0,j−1 < ∞; j++)

Randomize P̃n afresh into Pn,j = {u0,j , . . . ,un−1,j};
For (i = 0; i < n and Xi,j−1 < ∞; i++)

Xi,j = ϕj(Xi,j−1,ui,j);
Sort (and renumber) the chains for which Xi,j < ∞ by

increasing order of their states;
(The sorted states X0,j , . . . , Xn−1,j provide F̂j).

3 (Output). Return the average Ȳn of the n values of Y as an esti-
mator of µ.

This entire procedure is replicated m times to estimate the variance and
compute a confidence interval on µ.

3 Unbiasedness and Convergence

Proposition 1. (a) The average Ȳn is an unbiased estimator of µ and
(b) the empirical variance of its m copies is an unbiased estimator of var[Ȳn].

Proof. The successive steps of the chain use independent randomizations.
Therefore, for each chain, the vectors that take place of the Uj ’s for the
successive steps j of the chain in the recurrence (1) are independent random
variables uniformly distributed over [0, 1)d. Thus, any given copy of the chain
obeys the correct probabilistic model defined by (1) and (2), so the value of
Y is an unbiased estimator of µ for each chain and also for the average, which
proves (a). For (b), it suffices to observe that the m copies of Ȳn are i.i.d.
unbiased estimators of µ. �

Of course, this proposition implies that the variance of the overall average
converges as O(1/m) when m → ∞. A more interesting question is: What
about the convergence when n →∞?

6 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

The integrand I(ϕj(F̂−1
j−1(v),u) ≤ x) in (7) is 1 in part of the unit cube,

and 0 elsewhere. The shape and complexity of the boundary between these
two regions depends on ϕ1, . . . , ϕj . We assume that these regions are at least
measurable sets. For continuous state spaces X , the Hardy-Krause total varia-
tion of this indicator function is likely to be infinite, in which case the classical
Koksma-Hlawka inequality will not be helpful to bound the integration error
in (8). On the other hand, we have proved bounds on the convergence rate
for the two following (narrow) special cases: (1) when the chain has a finite
number of states (Proposition 2), and (2) when ` = d = 1 and the ϕj ’s satisfy
a number of conditions (Proposition 3). Detailed proofs of these (and other)
propositions will be given in the expanded version of the paper.

Proposition 2. Suppose that the state space X is finite, say X = {1, . . . , L},
that the Markov chain is stochastically increasing (i.e., P [Xj ≥ x | Xj−1 = y]
is non-decreasing in y for each j), and that at each step j, we use inver-
sion from a single uniform to generate the next state Xj from its condi-
tional distribution given Xj−1 (so d = 1). Let Γj =

∑L−1
`=1 |cj(` + 1)− cj(`)|,

P ′
n,j = {((i + 0.5)/n, ui,j), 0 ≤ i < n}, and suppose that the star discrepancy

of P ′
n,j satisfies D∗

n(P ′
n,j) = O(n−1 log n) w.p.1 (this can easily be achieved by

taking a (0, 2)-sequence in some base b). Then,∣∣∣∣∣ 1
n

n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣ ≤ jΓjKLn−1 log n

for some constant K. This implies that the variance of the cost estimator for
step j converges as O((jLn−1 log n)2) = O((jL)2n−2+ε) when n →∞.

Proposition 3. Let ` = d = 1. Define

Dn(F̂j , Fj ;x) :=
1
n

∑
0≤i<n

I(Xi,j ≤ x)− Fj(x)

and
D∗

n(F̂j , Fj) := sup
x∈X

|Dn(F̂j , Fj ;x)|,

where I(A) denotes the indicator function of A. Suppose that n = bk, that P ′
n

is a (0, k, 2)-net in base b, that

∀j ≥ 1 ∀x ∈ X ∀u ∈ [0, 1) V (Ix ◦ ϕj(·, u)) ≤ 1,

and that there exists a sequence mj of integers such that

∀j ≥ 1 ∀x ∈ X ∀y ∈ X V (Ix ◦ ϕj(y, ·)) ≤ mj ,

where V (·) means the total variation and Ix denotes the indicator function of
Ax := {y ∈ X : y ≤ x}. Then,

RQMC Simulation of Markov Chains 7

D∗
n(F̂j , Fj) ≤ Mjb

−bk/2c = O(jn−1/2)

where Mj :=
∑j

h=1(mh + 1). Moreover, if cj has bounded variation,∣∣∣∣∣ 1
n

n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣ ≤ V (cj)D∗
n(F̂j , Fj).

This proposition can be proved by generalizing the arguments of [3]. It only
gives a bound of O(1/n) on the variance, just as for ordinary MC, but here this
bound is also a worst-case deterministic bound on the squared error. Moreover,
the variance seems to converge at a faster rate than O(1/n) (empirically) in
the examples that we tried, as illustrated in the next section.

4 A Numerical Illustration

4.1 An M/M/1 Queue with d = 1

Consider an M/M/1 queue with arrival rate λ = 1, i.e., a single-server queue
with i.i.d. exponential interarrival times with mean 1 and i.i.d. exponential
service times with mean 1/µ < 1. The utilization factor for the server is
ρ = 1/µ. We want to estimate the expected average waiting time of the first t
customers, denoted µt. (This µt could be computed numerically without sim-
ulation; we just use this simple academic example to illustrate our method.)

Let Wj denote the waiting time of customer number j in this system,
where the first customer (who arrives to the empty system) has number 0.
These Wj ’s satisfy the well-known Lindley’s recurrence: W0 = 0 and Wj =
max(0, Wj−1 + Sj−1 − Aj) for j ≥ 1. We estimate µt by the sample average
Y = (W0 + · · · + Wt−1)/t. To compute Y , we need to generate the 2(t − 1)
random variates S0, A1, . . . , St−1, At. This estimator Y (and the corresponding
f in Section 2.1) is unbounded, but it has bounded variance.

We first consider a Markov chain that moves by one step each time one
of these random variates is generated. That is, X0 = W0, X1 = W0 + S0,
X2 = W1, X3 = W1 + S1, and so on. In this case, d = 1 and s = 2(t − 1).
Then, we also consider the case where the chain moves by one step every d/2
customers (where d is even), so Xj = Wjd/2 and s = (t− 1)/d.

We tried both classical RQMC and array-RQMC for this example, with
t = 100. Table 1 gives the estimated variance reduction factors compared with
standard MC, i.e., the empirical variance per observation for the MC estimator
divided by that of the method considered, for some RQMC methods. For the
RQMC methods, the sample variance of the averages Ȳn is multiplied by n to
get the variance per observation, i.e., per simulated copy of the Markov chain.
All values are rounded to the closest integer.

If the required CPU time to simulate the mn copies of the chain with
RQMC is approximately α times that required to simulate mn independent

8 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

Table 1. Empirical variance reduction factors of RQMC with respect to MC, for
the average waiting time of 100 customers, estimated with m = 100.

Korobov, n = 1021 4093 16381 65521 262139
Sobol, n = 1024 4096 16384 65536 262144

Classical-Korobov, ρ = 0.2 3 4 8 10 22
Classical-Sobol, ρ = 0.2 1 1 2 1 15
Array-Korobov, ρ = 0.2 52 125 336 826 2991
Array-Sobol, ρ = 0.2 53 303 748 3247 7964

Classical-Korobov, ρ = 0.5 3 4 7 8 9
Classical-Sobol, ρ = 0.5 1 1 4 5 7
Array-Korobov, ρ = 0.5 39 133 442 810 2464
Array-Sobol, ρ = 0.5 72 259 1340 3642 12460

Classical-Korobov, ρ = 0.8 4 2 8 10 11
Classical-Sobol, ρ = 0.8 2 2 5 10 10
Array-Korobov, ρ = 0.8 80 322 1064 1329 3674
Array-Sobol, ρ = 0.8 208 563 2333 11860 61290

copies, and if the variance reduction factor is γ, then we can say that MC re-
quires γ/α times more CPU time to achieve a given precision for the estimator
of µ. For this example, we have α ≈ 2 for array-RQMC (due to the overhead
of maintaining several copies of the chain in parallel and sorting them) and
α ≈ 1 for classical RQMC.

For array-RQMC, we tried several possibilities for the d-dimensional
RQMC point set Pn. Here we give the results for (a) a (d + 1)-dimensional
Korobov lattice rule with its first coordinate skipped, randomized by a ran-
dom shift modulo 1 followed by a baker’s transformation [1] (denoted Array-
Korobov) and (b) the first n points of a Sobol sequence randomized by a
left (upper triangular) matrix scrambling followed by a random digital shift
[6, 9] (denoted Array-Sobol). For Array-Korobov, the multiplier a of the two-
dimensional Korobov lattice rule was selected so that n is prime, a is a prim-
itive element modulo n (this requirement is actually not needed), and a/n is
close to the golden ratio. With this choice of a, the rule performs quite well in
the two-dimensional spectral test. The points of the Korobov lattice are enu-
merated by order of the (skipped) first coordinate, so P ′

n becomes the original
Korobov lattice point set. For instance, if d = 1, the points of Pn before
the shift are 0, a, 2a, . . . , (n − 1)a in that order. The points of the Sobol net
are enumerated by order of their Gray code, which makes their enumeration
faster. This is effectively equivalent to applying a permutation to their second
coordinate. We repeated the same experiment, but enumerating the points in
their natural order (without using the Gray code) and for d = 1 the resulting
variance reduction was generally smaller! Thus, using the Gray code imple-
ments some form of scrambling that seems beneficial. Further investigation
would be needed to understand exactly why.

RQMC Simulation of Markov Chains 9

For the classical RQMC, we used a randomly shifted 2(t− 1)-dimensional
Korobov lattice rules using parameters taken from Table 1 of [5] (where n
is prime and close to a power of 2). This is denoted by Classical-Korobov in
the table. We also tried 2(t − 1)-dimensional Sobol nets with a left matrix
scrambling and a random digital shift (denoted Classical-Sobol).

All the variance reduction factors were estimated by making 100 × 218

independent simulation runs to estimate the MC variance and m = 100 inde-
pendents replicates for each n, for each RQMC method. The simulations were
performed on a standard laptop computer with 1.7 GHz processor, in Java,
using the SSJ simulation library [4].

The array-RQMC methods clearly outperform both MC and classical
RQMC in this example, even though classical RQMC is already significantly
more efficient than MC (about 10 times more efficient for the Korobov rules
with n ≥ 216). The improvement factor is larger when the queue has more
traffic (i.e., for larger ρ, which is also when the variance is larger) and larger for
the Sobol nets than for the Korobov rules. For classical RQMC, it is slightly
better for the Korobov rules than for the Sobol nets.

4.2 Increasing d

Table 2 gives estimated variance reduction factors of two RQMC methods
compared with standard MC, when d increases, with n ≈ 217. Here, at each
step of the Markov chain, we generate d random variates to compute the
waiting times of d/2 customers. Note that for “Classical-Korobov,” the exact
variance reduction factor does not depend on d; the variation observed in the
table is only statistical noise. It gives an idea of the precision of our variance-
improvement estimators. For Array-Sobol, the variance reduction factors de-
crease with d, but not so fast. The gains are still substantial even for d = 8,
where the RQMC method approximates 9-dimensional integrals at each step
of the Markov chain.

Table 2. Estimated variance reduction factors of d-dimensional classical RQMC
and array-RQMC with respect to MC, for selected values of d and n ≈ 217.

d = 1 d = 2 d = 4 d = 8

Classical-Korobov, ρ = 0.2 34 30 25 24
Array-Sobol, ρ = 0.2 6300 3300 1700 1300

Classical-Korobov, ρ = 0.5 11 12 21 18
Array-Sobol, ρ = 0.5 7000 7000 6600 2900

Classical-Korobov, ρ = 0.8 11 10 12 15
Array-Sobol, ρ = 0.8 24000 8200 13000 10000

10 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

4.3 Random Dimension: a Regenerative System

So far in this example, s was fixed to 2(t − 1). We now modify the example
so that s = ∞. Recall that the M/M/1 queue is a regenerative system that
regenerates whenever a customer arrives to an empty system. Each regenera-
tive cycle contains a random and unbounded number of customers. Suppose
we want to estimate µ = E[Y], where we take the following two possibilities
for Y : (i) the total waiting time of all customers in a regenerative cycle and
(ii) the number of customers in a cycle whose waiting time exceeds c, for some
constant c > 0. Note that changing the uniforms slightly may split or merge
regenerative cycles, making Y highly discontinuous in both cases. Moreover,
in the second case, Y is integer-valued, so it is not as smooth as in the first
case. For our numerical illustration of case (ii), we take c = 1. The exact
value of µ for case (i) is 1 for ρ = 0.5 and 16 for ρ = 0.8. For case (ii), it is
approximately 0.368 for ρ = 0.5 and 3.116 for ρ = 0.8.

Tables 3 and 4 give the estimated variance reduction factors of array-
RQMC compared with standard MC, again with m = 100. The improvement
factors are not as large as in the two previous tables, but they are still signif-
icant and also increase with n.

Table 3. Estimated variance reduction factors of array-RQMC with respect to MC,
for the regenerative example, case (i).

Korobov, n = 1021 4093 16381 65521 262139
Sobol, n = 1024 4096 16384 65536 262144

Array-Korobov, ρ = 0.5 4 17 47 80 174
Array-Sobol, ρ = 0.5 8 13 30 70 174

Array-Korobov, ρ = 0.8 7 9 25 36 115
Array-Sobol, ρ = 0.8 5 5 16 34 87

Table 4. Estimated variance reduction factors of array-RQMC with respect to MC,
for the regenerative example, case (ii).

Korobov, n = 1021 4093 16381 65521 262139
Sobol, n = 1024 4096 16384 65536 262144

Array-Korobov, ρ = 0.5 26 62 134 281 627
Array-Sobol, ρ = 0.5 14 23 77 172 659

Array-Korobov, ρ = 0.8 12 45 109 86 415
Array-Sobol, ρ = 0.8 9 32 74 177 546

RQMC Simulation of Markov Chains 11

4.4 Summary of Other Numerical Experiments

We have performed numerical experiments with various other examples. They
will be reported in the detailed version of the paper. In particular, we tried ex-
amples with multidimensional state spaces and others with integrands of high
variability. Generally speaking, as expected, we observed empirically that the
performance of the array-RQMC method tends to degrade when the integrand
has higher variability, or when the dimension of the state space becomes larger
than 1 and there is no obvious “natural order” for the states. But even in these
cases, there can still be significant gains in efficiency compared with MC and
classical RQMC.

For example, the payoff of an Asian option can be simulated by a Markov
chain with state Xj = (Sj , S̄j) where Sj is the underlying asset price at
observation time j and S̄j is the average of S1, . . . , Sj . The final payoff is a
function of S̄s only, where s is the number of observation times. One possible
way of ordering the states (which is not necessarily the best way) is simply
by their values of Sj . With this order, in a numerical example where the asset
price evolves as a geometric Brownian motion and the number of observation
times varies from 10 to 120, we observed empirical variance reduction factors
(roughly) from 1500 to 40000 for array-RQMC compared with MC. With
classical RQMC, the factors were (roughly) 5 to 10 times smaller.

Our empirical results suggest better convergence rates than those implied
by the (worst-case) bounds that we have managed to prove. Getting better
convergence bounds for the variance is a topic that certainly deserves further
investigation. From the practical viewpoint, an interesting challenge would
be to find good ways of ordering the states for specific classes of problems
where the Markov chain has a multidimensional state space. In the future, we
also intend to study the application of array-RQMC to other settings that fit
a general Markov chain framework. For instance, we think of Markov chain
Monte Carlo methods and stochastic approximation algorithms.

5 Acknowledgments

The work of the first author has been supported by NSERC-Canada grant
No. ODGP0110050, NATEQ-Québec grant No. 02ER3218, and a Canada Re-
search Chair. The work of the third author has been supported by EuroNGI
Network of Excellence and SurePath ACI sécurité project. The paper bene-
fited from the comments of an anonymous reviewer.

References

1. F. J. Hickernell. Obtaining o(n−2+ε) convergence for lattice quadrature rules.
In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2000, pages 274–289, Berlin, 2002. Springer-Verlag.

12 Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin

2. C. Lécot and S. Ogawa. Quasirandom walk methods. In K.-T. Fang, F. J.
Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2000, pages 63–85, Berlin, 2002. Springer-Verlag.

3. C. Lécot and B. Tuffin. Quasi-Monte Carlo methods for estimating transient
measures of discrete time Markov chains. In H. Niederreiter, editor, Monte Carlo
and Quasi-Monte Carlo Methods 2002, pages 329–343, Berlin, 2004. Springer-
Verlag.

4. P. L’Ecuyer. SSJ: A Java Library for Stochastic Simulation, 2004. Software user’s
guide, Available at http://www.iro.umontreal.ca/~lecuyer.

5. P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214–1235, 2000.

6. P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo
methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncer-
tainty: An Examination of Stochastic Theory, Methods, and Applications, pages
419–474. Kluwer Academic Publishers, Boston, 2002.

7. C. Lemieux and P. L’Ecuyer. A comparison of Monte Carlo, lattice rules and
other low-discrepancy point sets. In H. Niederreiter and J. Spanier, editors,
Monte Carlo and Quasi-Monte Carlo Methods 1998, pages 326–340, Berlin, 2000.
Springer-Verlag.

8. A. B. Owen. Latin supercube sampling for very high-dimensional simulations.
ACM Transactions on Modeling and Computer Simulation, 8(1):71–102, 1998.

9. A. B. Owen. Variance with alternative scramblings of digital nets. ACM Trans-
actions on Modeling and Computer Simulation, 13(4):363–378, 2003.

