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Abstract We examine the question of constructing shifted lattice rules of
rank one with an arbitrary number of points n, an arbitrary shift, and small
weighted star discrepancy. An upper bound on the weighted star discrepancy,
that depends on the lattice parameters and is easily computable, serves as a
figure of merit. It is known that there are lattice rules for which this upper
bound converges as O(n−1+δ) for any δ > 0, uniformly over the shift, and lat-
tice rules that achieve this convergence rate can be found by a component-by-
component (CBC) construction. In this paper, we examine practical aspects
of these bounds and results, such as: What is the shape of the probability
distribution of the figure of merit for a random lattice with a given n? Is the
CBC construction doing much better than just picking the best out of a few
random lattices, or much better than using a randomized CBC construction
that tries only a small number of random values at each step? How does the
figure of merit really behave as a function of n for the best lattice, and on
average for a random lattice, say for n under a million? Do we observe a
convergence rate near O(n−1) in that range of values of n? Finally, is the
figure of merit a tight bound on the true discrepancy, or is there a large gap
between the two?

1 Introduction and Background Results

We are concerned with the approximation of an integral over the d-dimensional
unit cube,
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Id(f) =
∫

[0,1]d
f(u) du

where f : [0, 1)d → R, by a shifted lattice rule of rank one with generating
vector z ∈ Zd and arbitrary shift ∆ ∈ [0, 1)d, i.e., by the average

Qn,d(f) =
1
n

n−1∑
k=0

f

({
kz

n
+∆

})
,

where n is the number of points in the rule [14, 22]. That is, the approximation
is the average of the values of f over the set of quadrature points

Pn = {{kz/n+∆}, 0 ≤ k ≤ n− 1}. (1)

We assume that each coordinate of z is relatively prime to n. Thus, the set of
admissible generating vectors z is (Z′n)d where Z′n denotes the set of integers
in {1, . . . , n − 1} that are relatively prime to n. This set has cardinality
|Z′n| = ϕ(n), where ϕ is Euler’s totient function. When n is prime, we have
ϕ(n) = n − 1. (In this paper, | · | denotes the cardinality if the argument is
a set and the absolute value if it is a real number.)

It is well known that the integration error |Qn,d(f)−Id(f)| can be bounded
in different ways by the product of a discrepancy measure of the point set used
in the rule and the corresponding measure of variation V (f) of the function f
[5, 12, 14]. The discrepancy measure considered in this paper is the weighted
star discrepancy, an L∞-type discrepancy defined below. This measure (with
weights) was also used in [20], for example. The L∞-type discrepancies are of
interest in particular because their corresponding V (f) is finite under weaker
smoothness assumptions than the other types of Lp discrepancies found in
the literature.

For any x = (x1, . . . , xd) ∈ [0, 1)d and an arbitrary point set Pn, we define
the local star discrepancy at x by

disc(x, Pn) :=
|[0,x) ∩ Pn|

n
−

d∏
j=1

xj .

For any set of indices u ⊆ D := {1, . . . , d}, let xu denote the vector in
[0, 1]|u| that contains the components of x whose indices belong to u, and let
(xu,1) ∈ [0, 1]d be the vector whose j-th component is xj if j ∈ u and 1 if
j 6∈ u. The weighted star discrepancy of Pn is defined by

D∗γ(Pn) := max
u⊆D

γu sup
xu∈[0,1]|u|

|disc((xu,1), Pn)| , (2)

where γu > 0 is the weight given to u, for each u ⊆ {1, . . . , d}. The weight
γu should reflect the importance of the component that corresponds to the
subset u of coordinates, in the ANOVA decomposition of f [12, 13, 17]. Then
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a weighted variant of the Koksma-Hlawka inequality [14, 20] gives

|Qn,d(f)− Id(f)| ≤ D∗γ(Pn)× V (f) (3)

if V (f) exists, where

V (f) =
∑
u⊆D

γ−1
u

∫
[0,1]|u|

∣∣∣∣ ∂|u|∂xu
f((xu,1))

∣∣∣∣ dxu

measures the variation of f . Note that this variation, and the worst-case error
bound (3), can be finite only for bounded integrands f .

Later in this paper we shall assume that the weights γu have the following
product form, as was done in [4, 25] and several other places:

γu =
∏
j∈u

γj , (4)

where γj > 0 is the weight associated with coordinate j. We also assume that
γ1 ≥ γ2 ≥ · · · ≥ γd. We say that a family of lattice rules indexed by n and
with point sets Pn has low-discrepancy if D∗γ(Pn) = O(n−1+δ) for any δ > 0.

The weight γj reflects the importance of coordinate j in the discrepancy
measure. We should take it larger [smaller] if we believe that f depends
more [less] on the jth coordinate of u. For example, in situations where we
have a low effective dimension in the truncation sense [2, 12], the first few
random numbers have much more importance than the other ones for the
realization of f(u) and the importance decreases quickly with j. The weights
should then decrease accordingly. In other applications where we have low
effective dimension in the superposition sense [2, 12], all coordinates of u
have similar importance, but the importance of a subset u in the ANOVA
decomposition decreases quickly with the cardinality of u. By taking equal
weights γj = γ < 1, we assume implicitly that this decrease is geometric
in |u|.

Given that no efficient algorithm is available for computing D∗γ(Pn), we
will follow the common practice of using an easily computable upper bound
on D∗γ(Pn) as a figure of merit. This upper bound D̄∗γ(Pn) will be written in
terms of the generating vector z and will be independent of the shift ∆.

Shifted lattice rules (often randomly shifted) for the approximation or
estimation of integrals over the unit cube have been used for a long time
[3, 13, 22]. Shifted lattice rules with low discrepancy have been constructed
in [9, 10, 23, 24, 27], for example, under the assumption that n was prime, but
with a different definition of discrepancy that required stronger smoothness
assumptions on the integrands. Moreover, in [10, 23, 27] the authors consid-
ered the average discrepancy over all shifts, whereas in [24], the shift was opti-
mized to minimize the discrepancy. In our case, the bounds are valid for an ar-
bitrary (worst-case) shift. Under the additional condition that

∑∞
j=1 γj <∞
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(the weights are summable), the O(n−1+δ) bound is also independent of the
dimension d (we have strong tractability).

Rank-1 lattice rules that achieve this convergence rate can be found by a
greedy-type component-by-component (CBC) construction. The CBC con-
struction algorithm has been used by several authors recently, including
[7, 9, 20, 24]. It defines the generating vector z coordinate by coordinate.
At the sth step, for s = 2, . . . , d, it selects the sth coordinate of z as (one
of) the integer(s) in Z′n for which the discrepancy bound D̄∗γ(Pn) is mini-
mized for the corresponding s-dimensional point set Pn. Once a coordinate
is selected, it is never modified again. With this algorithm, one computes the
discrepancy (2) for at most |Z′n|d = ϕ(n)d generating vectors rather than for
all ϕ(n)d possibilities, which would take an excessive amount of time when d
is large.

When n is large, one could also think of sampling only a limited number
of integers from Z′n and then picking the best one, at each step of the CBC
algorithm, instead of trying all ϕ(n) possibilities. This randomized CBC con-
struction was already proposed in [26], where the authors also suggested to
check if the retained rule had a figure of merit at least as small as the (known)
average over all ϕd(n) possibilities. This method is much simpler and can be
faster than standard CBC when n is large. If it also provides a z whose figure
of merit is practically as good with high probability, then one might prefer
it for its simplicity. Our empirical investigations indicate that this is indeed
the case. They also indicate that we can do almost as well with a very naive
method that just generates, say, r generating vectors z randomly and uni-
formly in (Z′n)d, and picking the best one. To get proper insight on those
issues, we approximate (empirically) the distribution function of the figure of
merit D̄∗γ(Pn) for a random z, and for a z constructed from the randomized
CBC construction, for given choices of r, n, d, and the weights.

We also examine the behavior of the figure of merit as a function of n, for
the best lattice, and on average for a random lattice, for “reasonable” values
of n (under a million). We see that unless d is very small or the weights
γu converge very quickly as a function of |u| (which is almost equivalent),
the observed rate of decrease in that range of values of n is much slower
than n−1. This type of reality check for the behavior of the figure of merit is
important from the practical viewpoint. Similar illustrations of the behavior
as a function of n have been given earlier in [18, 19] for a bound on the
classical (unweighted) star discrepancy for other types of low-discrepancy
point sets, namely those produced by the Halton, Sobol’, and Niederreiter-
Xing sequences.

Another important reality check, given the slow decrease of the bound in
the practical range of values of n, is to see how close is the bound from the true
discrepancy. We provide a partial answer by computing the true discrepancy
for the cases where we can (for d = 2 for all n, and for d = 3 with small n)
and comparing it with the bound. The gap turns out to be significant, and
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seems to increase with the dimension. Our conclusion discusses the practical
meaning of this fact.

2 Bounds on the Weighted Star Discrepancy

Proposition 1 below provides a conveniently computable bound on the dis-
crepancy (2) for any given z. This proposition puts together some known
results to provide a bound for a discrepancy with general weights and arbi-
trary shift of the lattice.

Proposition 1. For any n > 1, any z ∈ (Z′n)d, arbitrary weights γu, and
point set Pn defined in (1), we have

D∗γ(Pn) ≤ D̄∗γ(Pn) :=
∑
u⊆D

γu

(
1− (1− 1/n)|u|

)
+

1
2
e2n,d(z), (5)

where the sum on the right does not depend on z,

e2n,d(z) =
∑
u⊆D

γu

 1
n

n−1∑
k=0

∏
j∈u

1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

− 1

 ,

and
∑′ denotes the sum over the nonzero integers h.

For the case of product weights of the form (4), we can also write

∑
u⊆D

γu

(
1− (1− 1/n)|u|

)
=

d∏
j=1

βj −
d∏
j=1

(βj − γj/n) = O(n−1) (6)

and

e2n,d(z) =
1
n

n−1∑
k=0

d∏
j=1

βj + γj
∑′

−n/2<h≤n/2

e2πihkz/n

|h|

− d∏
j=1

βj , (7)

where βj = 1 + γj.

Proof. The inequality (5) is obtained by applying Lemma 6 of [4] to bound
the maximum in (2) for each u, and then bounding the maximum over u
by the sum over u. Then it suffices to note that e2n,d(z) is the same as∑

u⊆D γuR1(h,1, n, u), where R1 is defined in Lemma 6 of [4]. We recog-
nize that bounding the max by the sum is likely to give a loose bound, but
this is the standard approach used by other authors [4, 7, 21]. The second
part follows by identical arguments as in [7].

For the remainder of the paper, we assume that the weights have the
product form (4). Observe that the term (6) decays linearly with n for any
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choice of weights. It does not depend on z, so it is just a constant part in
the figure of merit D̄∗γ(Pn). In fact, the bound in (5) depends essentially on
the quantity e2n,d(z). We will now focus on this quantity. We compute it as
explained in [21, page 657], via asymptotic expansions from [8] and by storing
the products during the construction.

The average of this quantity over all admissible generating vectors is

Mn,d,γ =
1

ϕd(n)

∑
z∈(Z′n)d

e2n,d(z).

The corresponding average value of D̄∗γ(Pn) is

Γn,d,γ =
d∏
j=1

βj −
d∏
j=1

(βj − γj/n) +
Mn,d,γ

2
.

If n is prime, we have the following explicit formula [7]:

Mn,d,γ =
1
n

d∏
j=1

(βj + γjSn) +
n− 1
n

d∏
j=1

(
βj − γj

Sn
n− 1

)
−

d∏
j=1

βj , (8)

where Sn =
∑′
−n/2<h≤n/2 1/|h|. For the general case where n can be com-

posite, we do not have an explicit formula for Mn,d,γ , but an upper bound is
given in [21]. In any case, regardless of n (unless it is very small), Mn,d,γ is
well approximated by its dominant term

Mn,d,γ ≈ Tn,d,γ :=
1
n

d∏
j=1

(βj + γjSn) = O(n−1+δ),

with an approximation error of O((log log(n + 1))/n). In numerical experi-
ments with small values of n, in which the average was computed explicitly,
it has been observed that Tn,d,γ was actually always larger than Mn,d,γ . For
the case where n is prime, it is easy to prove that Tn,d,γ is always larger [7].

It is also known (see Lemma 3 in [4]) that Tn,d,γ = O(n−1+δ) for any δ > 0
when d is fixed and n → ∞, and uniformly over d when the weights γj are
summable. Then a simple argument that the best is at least as good as the
average leads to the following result (see also [4, Theorem 7]):

Proposition 2. For any n there is a generating vector z such that the
weighted star discrepancy of the corresponding shifted lattice rule satisfies

D∗γ(Pn) = O(n−1+δ)

for any δ > 0, where the implied constant depends on δ and the weights, but
does not depend on n and on the shift. If the weights are summable, then the
implied constant can also be taken independent of the dimension d.
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3 The CBC Construction and Random Search Methods

The CBC algorithm constructs the generating vector z = (z1, z2, . . . , zd) as
follows. We suppose that n ≥ 2, and that d and the weights are fixed.

CBC construction algorithm:
Let z1 := 1;
For s = 2, 3, . . . , d, find zs ∈ Z′n that minimizes e2n,s(z1, z2, . . . , zs),

defined in (7), while z1, . . . , zs−1 remain unchanged.

The following result, proved in [21, Theorem 2], combined with Propo-
sition 1, implies that the algorithm produces a generating vector z whose
corresponding weighted star discrepancy (2) has the same order of magni-
tude as the bound provided by Proposition 2.

Proposition 3. This CBC algorithm returns a vector z for which

e2n,d(z) ≤ 1
n

d∏
j=1

(βj + αγj lnn) = O(n−1+δ),

where α > 0 is an absolute constant.

This bound implies that for a fixed d, we have e2n,d(z) = O(n−1+δ). And
if the weights are summable, then this holds uniformly in d. The costs for
the CBC construction algorithm using the fast implementation of [15, 16], is
O(nd log n) computing time and O(n) space for storage (see also [21] for fur-
ther details). A more straightforward implementation requires O(dn2) time.
The fast CBC construction is actually based on the fast Fourier transform,
allowing to reduce the typical O(n2) operations required by a matrix-vector
multiplication to O(n log n). However, the O(n log n) term has a larger hid-
den constant, which depends on the respective implementations. We did not
use the fast Fourier transform in our implementation; it would have taken
much more time to implement it than what we were ready to spend, and our
goal was not really to compare speeds.

The following randomized CBC construction algorithm is simpler to imple-
ment and can reduce the computing cost by examining only a small number
of integers zs ∈ Z′n (chosen at random) at each step.

Randomized CBC construction algorithm (R-CBC):
Let z1 := 1;
For s = 2, 3, . . . , d,

choose r integers zs at random in Z′n, and select the one that min-
imizes e2n,s(z1, z2, . . . , zs), while z1, . . . , zs−1 remain unchanged.

A similar algorithm was proposed in [26], with the additional feature that
for any given s, new integers zs are examined until e2n,s(z1, . . . , zs) is less
than the average Mn,d,γ . An even simpler (and more naive) algorithm is a
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uniform random search in (Z′n)d, as follows (we can also stop only when
e2n,d(z) ≤Mn,d,γ):

Uniform random search algorithm:
Choose r vectors z at random in (Z′n)d, and select the one that min-

imizes e2n,d(z).

In the next section, we compare empirically the performance of these three
algorithms, in terms of the figures of merit of the returned vectors z. We know
a priori that the CBC construction should provide better figures of merit, but
is the difference really significant?

4 Empirical Assessments

Our aim in this section is to explore the behavior of the discrepancy bound
(or figure of merit) D̄∗γ(Pn) defined in (5), empirically, from various angles,
for n not exceeding one million. We first examine its distribution function
when z is drawn uniformly from (Z′n)d (so the figure of merit is a random
variable). This distribution function F is defined by F (x) = P[D̄∗γ(Pn) ≤ x].
We find that typically, this distribution is positively skewed, and the median
is smaller than the mean Γn,d,γ , so the probability qn,d,γ of a value smaller
than the mean is more than 1/2 (often more than 0.75). This implies that a
vector z whose figure of merit is smaller than the mean (and thus satisfies
the bound in Proposition 2) is easy to find by uniform random search. By
applying this algorithm with r trials, the probability of finding such a vector
is 1 − (1 − qn,d,γ)r. With qn,d,γ = 0.75, this probability is approximately
1− 9.5× 10−7 for r = 10, and 1− 6.2× 10−61 ≈ 1 for r = 100, for example.
That is, finding a z smaller than the mean is very easy, even with the most
naive method.

To approximate the distribution function F and the density f of D̄∗γ(Pn)
for a random z, we generated a sample of r = 105 generating vectors z and
computed the empirical distribution function F̂ of the r realizations. We also
computed a kernel estimator f̂ of the corresponding density, using a Gaussian
kernel, with the bandwidth selected as suggested in [6, pages 308–309]. Note
that these density estimates inflate the tails (compare with the empirical
distribution). This tail inflation can be reduced by reducing the bandwidth,
but then the curve becomes less smooth. Thus, the empirical distribution
seems to give a better idea of the distribution. The computations and plots
were made with SSJ [11]. We did this with various choices of n, d, and the
weights, and the shape of the empirical distribution (with proper scaling) was
very much the same in all cases.

Figure 1 (upper panel) gives an illustration with n = 32749 (a prime
number), d = 10, and weights γj = 1/j2 for all j. Here the figure of merit
obtained via the CBC construction was 0.14996, while the best one among
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Fig. 1 Estimated distribution function F̂ (increasing curve) and density f̂ (other curve)

of the figure of merit D̄∗
γ(Pn) defined in (5). Above: n = 32749, d = 10, and γj = 1/j2.

Below: n = 1048573, d = 5, and γj = 1/4. The solid and dashed vertical lines indicate the
mean and the median, respectively.

the 105 random z was 0.15048, the median was 0.15247 (indicated by the
leftmost vertical line), the empirical mean was 0.15367, and theoretical mean
Γn,d,γ is 0.15386 (the rightmost vertical line). Here the probability qn,d,γ is
slightly more than 0.75.

The lower panel of the same figure provides another illustration with n =
1048573, d = 5, and weights γj = 1/4 for all j. Here, we know a priori that
the weighted discrepancy cannot exceed 1/4. The CBC construction gave a
figure of merit of 0.01646, the best random vector had 0.01649, the median
was 0.01668, and both the empirical and theoretical means were 0.01683. The
probability qn,d,γ is again very close to 0.75.

Table 1 summarizes the figures of merit obtained for other values of n, d,
and the weights. The CBC algorithm usually returned a value slightly smaller
than the best values from the two randomized methods. However, in absolute
terms, the values returned by all three algorithms are typically very close to
each other. The difference between the corresponding error bounds can be
deemed negligible. Moreover, those best values are not much smaller than
the median and the mean. We also observe that unless the weights decrease
very quickly with j or are all small, the discrepancy bounds become larger
than the trivial bound of γmax = maxj γj already in 5 dimensions, even for
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Table 1 Values of the figure of merit obtained by the CBC algorithm (CBC), the ran-

domized CBC construction with r = 5 (R-CBC), and uniform random search with r = 105

(Best-R), for various choices of weights, d, and n. The last three columns also provide the

median and the mean of the empirical distribution (Median and Mean), and the exact

mean Γn,d,γ , for comparison.

γj d n CBC R-CBC Best-R Median Mean Γn,d,γ

1/j2 5 8009 0.0719 0.0729 0.0723 0.0759 0.0787 0.0792
32749 0.0292 0.0294 0.0293 0.0306 0.0317 0.0318

131071 0.0114 0.0115 0.0115 0.0119 0.0123 0.0123
1048573 0.0026 0.0026 0.0026 0.0027 0.0028 0.0028

" 10 8009 0.3125 0.3135 0.3137 0.3192 0.3223 0.3229

32749 0.1499 0.1500 0.1504 0.1524 0.1536 0.1538

131071 0.0689 0.0691 0.0691 0.0698 0.0702 0.0703
1048573 0.0198 0.0198 0.0199 0.0200 0.0201 0.0201

" 20 8009 0.7315 0.7347 0.7337 0.7400 0.7432 0.7439
32749 0.3934 0.3943 0.3943 0.3967 0.3980 0.3981

131071 0.2021 0.2025 0.2025 0.2033 0.2039 0.2039

1048573 0.0686 0.0686 0.0687 0.0688 0.0689 0.0689

1/j 3 8009 0.0733 0.0762 0.0735 0.0802 0.0874 0.0881

32749 0.0266 0.0270 0.0266 0.0290 0.0317 0.0319

131071 0.0093 0.0095 0.0093 0.0101 0.0111 0.0112
1048573 0.0018 0.0018 0.0018 0.0020 0.0022 0.0022

" 5 32749 1.1037 1.1078 1.1044 1.1179 1.1249 1.1252
131071 0.4728 0.4759 0.4732 0.4782 0.4811 0.4811

1048573 0.1206 0.1211 0.1207 0.1217 0.1222 0.1222

1 3 8009 0.4036 0.4206 0.4033 0.4349 0.4659 0.4682

32749 0.1480 0.1498 0.1476 0.1590 0.1712 0.1718
131071 0.0526 0.0536 0.0522 0.0562 0.0608 0.0610

1048573 0.0096 0.0107 0.0103 0.0111 0.0120 0.0120

1/4 3 8009 0.0081 0.0083 0.0081 0.0090 0.0100 0.0102
32749 0.0029 0.0029 0.0029 0.0032 0.0036 0.0036

131071 0.0010 0.0010 0.0010 0.0011 0.0012 0.0012

" 5 32749 0.1568 0.1583 0.1572 0.1601 0.1617 0.1618
131071 0.0660 0.0663 0.0662 0.0671 0.0678 0.0678

1048573 0.0165 0.0166 0.0165 0.0167 0.0168 0.0168

n = 1048573 ≈ 220. For γj = 1, d = 10 and n = 131071, the best bound is
approximately 4.15× 108. Any discrepancy bound (or figure of merit) larger
than γmax is in fact totally useless, because the discrepancy itself is never
larger than supj γj ≤ 1.

We made some experiments to estimate the distribution function of the
(random) figure of merit returned by the randomized CBC algorithm. The
minimal value was usually slightly larger than that returned by the CBC
algorithm, but on rare occasions the R-CBC algorithm did a bit better. The
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latter can happen in situations where the CBC path is not optimal and
the randomized method finds a better one by chance. As an illustration, for
n = 32749, d = 10 and weights γj = 1/j2 (as in the upper panel of Figure 1
and in row 6 of the table), the CBC construction gave a figure of merit of
0.1499629, and the randomized CBC algorithm gave figures of merit between
0.1500882 and 0.1504918 (from 1000 independent runs of the algorithm),
with a median of 0.1502565 and a mean of 0.1502607. Figure 2 shows the
estimated distribution function and density of the value returned by the R-
CBC algorithm, from the 1000 runs. The density is slightly asymmetric and
is concentrated in a narrow interval.

0.1501 0.1504

1

0.5

0

6000

3000

x

F̂ (x) f̂(x)

0.1502565

0.1502607

Fig. 2 Empirical distribution F̂ and density estimate f̂ of D̄∗
γ(Pn) for the point set Pn

returned by the R-CBC algorithm with r = 5, when n = 32749, d = 10, and γj = 1/j2

(based on 1000 replicates). The vertical lines indicate the median (dashed) and the mean.

Figure 3 shows the best figure of merit obtained by the CBC construction,
as a function of n, in a log-log scale, for various choices of the weights and
dimension. These plots provide good insight on how the best bound behaves
as a function of n in general. We see that unless the dimension is very small
(e.g., 2 or 3, as in the upper panel) or the weights converge extremely fast (as
in the bottom panel), the observed convergence rate for n up to one million
is much slower than O(1/n). That is, we know that the slope of all the curves
in the figure converges to −1, asymptotically, when n → ∞, but for the
observed values of n, the curves have a concave shape and the slope is often
much less than −1. This behavior is typical and was observed in our plots
for several other parameters as well.

In the case of the fast-decaying weights γj = 1/2j (bottom panel), in-
creasing the dimension has eventually almost no visible effect: the upper
curve appears a bit thicker because it contains the curves for d = 10, 20, and
40, which almost overlap. The reason is simple: the weights decrease so fast
that the high-dimensional coordinates have a negligible contribution to the
discrepancy. This effect also appears to a lesser extent for γj = 1/j2 (middle
panel).
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Fig. 3 The best bound D̄∗
γ(Pn) obtained with the CBC construction as a function of n,

in a log-log scale, in d dimensions, when γj = 1 for all j (upper panel), γj = 1/j2 (middle

panel), and γj = 1/2j (lower panel). In the upper panel, we also have the true weighted
star discrepancy D∗

γ(Pn) (the thick lines) for the cases where we were able to compute it

(for d = 2 and for d = 3 with small n). Selected slopes are shown for reference. All these

functions have a slope of −1 asymptotically when n→∞.

In the upper panel, we also show the true value of the discrepancy D∗γ(Pn)
for the same point sets Pn, for γj = 1, for the cases where we have been
able to compute it, namely for d = 2 and for d = 3 with small n. For this,
we implemented the algorithm given in [1] (the required work increases as
O(nd)). One can see that the upper bound D̄∗γ(Pn) (the figure of merit) is
much larger than the true discrepancy D∗γ(Pn), and the gap seems to increase
rapidly with the dimension d. As an illustration, when d = 2 and n = 32749,
the true discrepancy is 0.00014 and the bound is 0.00382. For d = 3 and
n = 8009, the true discrepancy is 0.0017, whereas the bound is 0.4036, which
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is about 240 times larger! This gap is orders of magnitude larger than the
gain of the CBC algorithm over the two randomized methods (see Table 1),
even with small r.

Conclusion

We have provided a reality check on the practical meaning of known up-
per bounds on the weighted star discrepancy, the convergence rate of these
bounds for the best rank-1 lattices, the distribution of the value of the bound
for a random rank-1 lattice, and the behavior of the CBC construction algo-
rithm as well as randomized algorithms based on these bounds. We saw that
the best achievable value of the upper bound is typically not much smaller
than the average value over all admissible generating vectors, and that a value
close to the minimum can easily be found by a simple randomized algorithm
and even by naive random search. Our experiments confirm the popular be-
lief that these discrepancy bounds are not always tight and that they may
converge rather slowly. Even though the best achievable value of the bound
decreases as O(n−1+δ) for any δ > 0 asymptotically, its rate of decrease is
typically slower than this asymptotic rate for reasonable values of n. For n
less than a million (say), the bound turns out to be practically useless unless
the dimension d is very small or the weights converge very quickly. One im-
plication might be that other types of discrepancies, which can be computed
exactly and converge faster than the bounds considered here [5, 12], provide
more appropriate figures of merit from the practical viewpoint.
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