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Abstract

A popular approach for modeling dependence in a finite-dimensional random vector X with given

univariate marginals is via a normal copula that fits the rank or linear correlations for the bivariate

marginals of X. In this approach, known as the NORTA method, the normal distribution function

is applied to each coordinate of a vector Z of correlated standard normals to produce a vector U

of correlated uniform random variables over (0, 1); then X is obtained by applying the inverse of

the target marginal distribution function for each coordinate of U. The fitting requires finding the

appropriate correlation ρ between any two given coordinates of Z that would yield the target rank

or linear correlation r between the corresponding coordinates of X. This root-finding problem is

easy to solve when the marginals are continuous, but not when they are discrete. In this paper, we

provide a detailed analysis of this root-finding problem for the case of discrete marginals. We prove

key properties of r and of its derivative as a function of ρ. It turns out that the derivative is easier

to evaluate than the function itself. Based on that, we propose and compare alternative methods

for finding or approximating the appropriate ρ. The case of discrete distributions with unbounded

support is covered as well. In our numerical experiments, a derivative-supported method is faster

and more accurate than a state-of-the-art, non-derivative-based method. We also characterize the

asymptotic convergence rate of the function r (as a function of ρ) to the continuous-marginals

limiting function, when the discrete marginals converge to continuous distributions.
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1 Introduction

This paper develops methods that support the estimation (fitting) of discrete multivariate distri-

butions. A powerful scheme for modeling multivariate distributions in general is based on the

concept of copula; it permits one to specify separately the marginal distributions and the stochas-

tic dependence. To put our work in the proper perspective, we start by recalling basic facts from

copula theory. For a concise introduction to copulas, see Embrechts et al. (2002) or Joe (1997); for

a more complete treatment, see Nelsen (1999).

A function C : [0, 1]d → [0, 1] is called a copula if it is the distribution function of a random

vector in Rd with U(0, 1) marginals (uniform over the interval (0,1)). Consider a random vector

X = (X1, . . . , Xd) with joint distribution F and write Fj for the marginal distribution of Xj . A

copula associated with F (equivalently, X) is a copula C that satisfies

F (x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ Rd. (1)

Given an arbitrary F , a copula C satisfying (1) always exists. If each Xj is a continuous random

variable, then C is unique, and this uniqueness means that we have separated the marginals from

the dependence structure, which is captured by C. (Otherwise, there may be more than one C

satisfying (1), so the dependence cannot be uniquely characterized.) We will shortly specify a class

of distributions F via (1) by specifying the dependence via a d-variate copula C that is selected after

the marginals have been selected. For given marginals, the choice of copula can have a dramatic

impact; see Embrechts et al. (2003, Sec. 7.1) for an example.

In this paper, we nevertheless restrict our attention to normal copulas; these are the copulas

defined by taking F as a multivariate normal distribution in (1). This family of copulas has been

suggested by several authors, dating back to Mardia (1970). Attractive features of normal copulas

are that they facilitate estimation (as will be explained) and simulation. They are sufficient and

very convenient for a wide range of applications where fitting only the marginals and the correlations

is a reasonable compromise. In more than two or three dimensions, estimating the entire copula in

a complicated real-life situation is often an insurmountable challenge.

Other models of discrete multivariate distributions can be found, e.g., in Joe (1997, sec. 7.2).

A limitation of several of these models is that the same parameters affect the marginal distribu-

tions and the dependence. For example, in Model (7.27) of Joe (1997) the Xi’s are conditionally

independent Poisson with mean Ai, where the Ai, i = 1, . . . , d, obey some multivariate continuous

distribution; but the upper limit Corr(Xi, Xj) = 1 is only possible in the limit where Xi and Xj

have identical marginals and Var(Xi)/E(Xi)→∞; a further limitation is that if one wanted nega-

tive binomial marginals for the Xi, then one would need the Ai to obey a multivariate distribution
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with gamma marginals, which is not convenient to use (Joe, 1997, p. 236).

Returning to the normal copula, if we write NR for the normal distribution with mean the

zero vector and d× d correlation matrix R, and CR for the associated copula defined via (1) with

F = NR, we have the representation

Z = (Z1, . . . Zd) ∼ NR

X = (X1, . . . , Xd) =
(
F−1

1 [Φ(Z1)], . . . , F−1
d ([Φ(Zd)])

)
,

(2)

where Φ is the standard normal distribution function (with mean 0 and variance 1) and F−1
i , defined

by F−1
i (u) = inf{x : Fi(x) ≥ u} for 0 ≤ u ≤ 1, is the quantile function of the marginal distribution

Fi. It is easily seen that CR is a copula associated with X in (2). This CR is a normal copula.

Model (2) is also known under the name NORTA (Cario and Nelson, 1996, 1997; Chen, 2001), an

acronym for NORmal To Anything, since normal variates are transformed to variates with general

nonuniform marginals.

The main issue here is how to find a matrix R such that the vector X has the desired rank or

linear correlation matrix, either exactly or approximately. The natural way of doing this is element-

wise, so we start by discussing the bivariate case (d = 2). Later, we will discuss the extension to

d > 2.

Suppose that d = 2 and that the marginals F1 and F2 have been specified. Selecting R in (2)

reduces to selecting the scalar correlation ρ = Corr(Z1, Z2). The rank correlation between X1 and

X2 is

rX(ρ) = rX(ρ;F1, F2) = Corr(F1(X1), F2(X2)) = Corr
(
F1 ◦ F−1

1 ◦ Φ(Z1), F2 ◦ F−1
2 ◦ Φ(Z2)

)
where ρ = Corr(Z1, Z2) and “◦” denotes function composition. We will explain shortly that rX
may depend on the marginals only if at least one of them is not continuous. One approach to

specifying ρ is to require that rX(ρ;F1, F2) equals a given target value r̃, which may be the sample

rank correlation computed from data, (observations of X), or determined otherwise. This leads to

the NORTA rank-correlation matching problem of solving

rX(ρ;F1, F2) = r̃. (3)

The dependence of rX on the marginals disappears when F1 and F2 are both continuous: Fl ◦F−1
l ,

l = 1, 2 are the identity map, and thus

rX(ρ;F1, F2) = Corr(Φ(Z1),Φ(Z2)) = (6/π) arcsin(ρ/2),

where the second equality is a well-known property of the bivariate normal distribution (references

are given in the proof of Theorem 1 in Section 2.1). Thus, solving (3) is trivial if all marginals are

continuous, and the solution is 2 sin(πr̃/6); consequently, the solution poses a problem only when

at least one of the marginals is not continuous.

3



Another possibility would be to work analogously with the linear correlation (also called

product-moment correlation):

ρX(ρ;F1, F2) = Corr(X1, X2) = Corr(F−1
1 ◦ Φ(Z1), F−1

2 ◦ Φ(Z2)),

which leads to the NORTA linear-correlation matching equality:

ρX(ρ;F1, F2) = ρ̃, (4)

where ρ̃ is the sample linear correlation computed from data. Embrechts et al. (2002) give a detailed

account of measures of dependence and strong arguments that rank correlation is a more appropriate

measure than linear correlation. We review their Example 5, which illuminates this issue. Consider

the marginals X1 ∼ Lognormal(0, 1) and X2 ∼ Lognormal(0, σ2) for σ > 0. Under several measures

of dependence discussed there, extreme positive and negative dependence occur when X2 is an

increasing (decreasing) function of X1, i.e., in the stochastic representations (X1, X2) = (eZ , eσZ)

and (X1, X2) = (eZ , e−σZ), respectively, where Z ∼ Normal(0, 1). Then the rank correlation of

the pair (X1, X2) equals 1 and −1, respectively. On the other hand, we have: Corr(eZ , eσZ) =

(eσ − 1)/
√

(e− 1)(eσ2 − 1) and Corr(eZ , e−σZ) = (e−σ − 1)/
√

(e− 1)(eσ2 − 1); these continuous

functions of σ are far from 1 and −1 over most of their domain, and they converge to zero as

σ → ∞. Here, linear correlation fails to capture well the dependence, and the failure is dramatic

in the limit. Hörmann et al. (2004, Section 12.5) give additional examples of this phenomenon and

strongly recommend matching the rank correlations instead of the linear correlations.

When d > 2, (2) is specified by constructing R elementwise. That is, for each pair (i, j),

one has a target value r̃i,j (or ρ̃i,j) and one sets the (i, j)-th element of R to the solution of (3)

with r̃ = r̃i,j (or the solution of (4) with ρ̃ = ρ̃i,j). Thus, one needs to solve d(d − 1)/2 such

independent equations. In case the resulting matrix R is not positive semidefinite, various authors

suggest replacing it by another matrix that is positive semidefinite and minimizes some measure

of distance from R (Mardia, 1970; Cario and Nelson, 1997; Lurie and Goldberg, 1998; Ghosh and

Henderson, 2003). According to Ghosh and Henderson (2003), this appears to work well, in the

sense that the minimized distance was very small in their tests.

Another related setting is the VARTA class of multivariate stationary time series (Biller and

Nelson, 2003), {Xt = (X1,t, . . . , Xk,t), t = 1, 2, . . .}, where one specifies the marginals Fl for l =

1, . . . , k and dependence via the normal copula, i.e., via correlations between Xi,t and Xj,t−h for

h = 0, 1, . . . , p and i, j ∈ {1, 2, . . . , k}; the univariate case k = 1 is known as ARTA (Cario and

Nelson, 1996). That is, the i-th component time series is obtained by the transformation Xi,t =

F−1
i (Φ(Zi,t)), where {Zt} = (Z1,t, . . . , Zk,t) is a k-variate vector autoregressive process of order p

and whose noise vectors are Gaussian; see Biller and Nelson (2003, Section 3.1.1). Here, the number

of equations that must be solved is pk2 + k(k − 1)/2. (The complications and remedies mentioned
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earlier have analogs in the time-series setting). Because the number of equations to be solved can

be considerable, efficient methods for solving equations of the form (3) and (4) are of interest.

We now review past work on NORTA correlation matching. This literature has emphasized

linear-correlation matching (Cario and Nelson, 1998; Chen, 2001; Biller and Nelson, 2003), despite

the existing arguments in favor of rank correlation, and in principle applies to both continuous and

discrete marginals, unless otherwise said. Cario and Nelson (1998) employ root bracketing combined

with approximating ρX(ρ;F1, F2) (a function of ρ) via two-dimensional numerical integration (Gauss

and Kronrod quadrature rules). With discrete marginals, the integrand has a discontinuity at every

support point, so these general-purpose quadrature rules are not well-suited. Chen (2001) proposed

a simulation-based approach. Biller and Nelson (2003) showed that the restriction of the marginals

to certain Johnson families simplifies the solution. For the case of discrete marginals, we were

unable to find a published or unpublished example of NORTA rank- or linear-correlation matching.

The main contributions of this paper are a detailed study of the NORTA correlation matching

problems (3) and (4) and the development of efficient methods for solving these problems when

the marginal distributions are discrete. We do not address the case where some marginals are

discrete and others are continuous. Allowing the support to be infinite, we express rX(ρ;F1, F2)

as an infinite series, where each term involves a bivariate normal integral to the northeast of a

bivariate support point. We obtain the derivative of rX with respect to ρ as a series of terms

that only involve the exponential function. For finite support, it turns out that the derivative

is considerably faster to evaluate than rX , even if one uses state-of-the-art methods to compute

the bivariate normal integrals. We then develop solution methods that exploit the derivative. In

particular, we propose a simple Newton-type method, which in numerical experiments is faster and

more accurate than a state-of-the-art, non-derivative-based method. For unbounded marginals, we

propose a method that does not require evaluating rX and that substitutes an approximation of

the derivative (obtained by truncating the series); and we provide bounds on the resulting error.

Another contribution is an asymptotic upper bound and convergence result on the L∞ distance

(i.e., the supremum over ρ ∈ [−1, 1] of the absolute difference) between the rank-correlation function

rX(ρ;F1, F2) for given discrete marginals F1 and F2 and the explicitly known analog for continuous

marginals, in terms of the maximum probability masses of F1 and F2, as these masses go to zero.

The bound is relevant to the correlation-matching problem in the following sense. Suppose one uses

the continuous-marginals solution, 2 sin(πr̃/6)), as an approximation. If the bound were smaller

than the desired accuracy, then our algorithms would no longer be needed. In our examples, the

bound was larger than the desired accuracy, so the discrete-marginals correlation-matching problem

had to be dealt with directly.

Our results and methods for the rank-correlation problem extend immediately to the linear-

correlation problem, under mild uniform convergence conditions. For reasons given earlier, we em-
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phasize the rank-correlation problem and discuss only briefly the extension to the linear-correlation

problem.

The remainder is organized as follows. Section 2.1 summarizes relevant background. In Section

2.1, we prove key properties of the rank and linear correlations as a function of ρ, we obtain

expressions for their derivatives, and we discuss implications. Section 2.2 proposes an approximation

to the derivative, with error bounds, for the infinite-support case. The convergence result to the

continuous case is proved in Section 2.3. Section 3 specifies the benchmark and the new methods

for bivariate NORTA correlation matching, for either finite or infinite support. In Section 4 we give

numerical examples.

2 Mathematical properties

2.1 Background

Theorem 1 below summarizes useful known results that hold for arbitrary marginals. Let

φρ(x, y) =
1

2π
√

1− ρ2
exp

{
−(x2 − 2ρxy + y2)/[2(1− ρ2)]

}
, (5)

the bivariate standard normal density function with correlation ρ.

Theorem 1 Assume F1 and F2 are arbitrary c.d.f.’s and define rX(ρ) = Corr(F1(X1), F2(X2))

and ρX(ρ) = Corr(X1, X2) with (X1, X2) defined as in (2) with ρ = Corr(Z1, Z2).

1 The functions rX and ρX are nondecreasing on [−1, 1]. We have rX(0) = 0 and ρX(0) = 0.

2 Assume there exists δ > 0 such that E[|X1X2|1+δ] < ∞ for all ρ ∈ [−1, 1]. Then rX and ρX

are continuous on [−1, 1].

3 If the marginals Fl are continuous, then

Corr(F1(X1), F2(X2)) = 12gC(ρ)− 3 =
6
π

arcsin(ρ/2) =: rC(ρ), (6)

where

gC(ρ) =
∫ ∞
−∞

∫ ∞
−∞

Φ(x1)Φ(x2)φρ(x1, x2)dx1dx2.

Proof. For the linear correlation ρX , parts 1 and 2 are Theorems 1 and 2 of Cario and Nelson

(1997), respectively. These unpublished results are straightforward extensions to the case of dif-

ferent marginals of analogous results published as Theorems 1 and 2 in Cario and Nelson (1996)

for the case of identical marginals. To prove the analogous results for rX , it suffices to replace the

nondecreasing functions F−1
l ◦ Φ in the proofs of Theorems 1 and 2 of Cario and Nelson (1997),

respectively, by the nondecreasing functions Fl ◦ F−1
l ◦Φ for l = 1, 2. According to Kurowicka and
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Cooke (2001), part 3 was obtained by Karl Pearson in 1907. A more recent reference is Kruskal

(1958). 2

Parts 1 and 2 provide the basis for solving (3) and (4) via root-bracketing; see method NI1 in

Section 3. In Section 2.3 we provide a theoretical result that establishes rC(ρ) as a natural approx-

imation of rX(ρ;F1, F2). The derivative-based solution methods of Section 3 can work without this

approximation, but the approximation usually helps increase their speed.

This section develops the basis for the proposed solution methods. We assume that marginals

are discrete and satisfy weak conditions and we develop explicit formulæ for the derivatives of the

functions rX and ρX .

For l = 1, 2, we assume that the positive support can be (and is) enumerated in increasing order

as 0 ≤ xl,0 < xl,1 < xl,2 < ... and that the negative support is enumerated as 0 > xl,−1 > xl,−2 > ....

Here is an example of a positive support that is not enumerable as above: there is a support point

x0 > 0 such that there are infinitely many positive support points to the left of x0 and there are

support points to the right of x0. The enumeration is straightforward for most discrete distributions

usually encountered in applications, e.g., discrete uniform, binomial, geometric, Poisson, negative

binomial, and certainly for many more, e.g., any finite mixture of any of these. Also note that a

negative support is enumerable as above if it is obtained by reflection about zero of a conforming

(enumerable as above) positive support. From this practical standpoint, the assumption does not

appear restrictive.

Denote the probability mass of xl,j as pl,j . For any integer k, the cumulative probability mass is

fl,k =
∑k

j=−∞ pl,j . For l = 1, 2, limk→∞ pl,k = limk→∞ pl,−k = 0. Write zl,k = Φ−1(fl,k), and note

that limk→∞ zl,k = − limk→∞ zl,−k =∞. Results are stated below for the case where each marginal

has infinite support. The finite-support case is an (artificial) special case; to see this, note that if

the probability mass above zero is concentrated on a finite number of points, then an increasing

sequence of artificial points xl,j with probability pl,j = 0 can be added as needed, and similarly for

the probability mass below zero.

Derivative of the rank correlation. The rank correlation between X1 and X2 is

rX(ρ) = Corr(F1(X1), F2(X2)) =
g(ρ)− µ1µ2

σ1σ2
, (7)

where:

g(ρ) = E [F1(X1)F2(X2)]

=
∫ ∞
−∞

∫ ∞
−∞

F1{F−1
1 [Φ(x1)]}F2{F−1

2 [Φ(x2)]}φρ(x1, x2)dx1dx2, (8)

where µk and σk are the known mean and standard deviation of Fk(Xk), respectively. Note that

rX involves only shifting and scaling of g by known constants. We rewrite the double integral in
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(8) as

g(ρ) =
∞∑

i=−∞

∞∑
j=−∞

f1,if2,j

(∫ z1,i

z1,i−1

∫ z2,j

z2,j−1

φρ(x1, x2)dx1dx2

)
(9)

=
∞∑

i=−∞

∞∑
j=−∞

f1,if2,j

[
Φ̄ρ(z1,i−1, z2,j−1)− Φ̄ρ(z1,i−1, z2,j)− Φ̄ρ(z1,i, z2,j−1) + Φ̄ρ(z1,i, z2,j)

]
=

∞∑
i=−∞

∞∑
j=−∞

(f1,i+1 − f1,i)(f2,j+1 − f2,j)Φ̄ρ(z1,i, z2,j)

=
∞∑

i=−∞
p1,i+1

∞∑
j=−∞

p2,j+1Φ̄ρ(z1,i, z2,j) (10)

which involves the bivariate normal integral Φ̄ρ(x, y) =
∫∞
x

∫∞
y φρ(z1, z2)dz1dz2. In the derivation

above, (9) follows directly from the definition (2); the second step rewrites each double integral

over a square as the signed summation of four terms involving four related integrals at the square’s

corners; the third step is a simple rearrangement of the summation. Observe that in (10), the weight

p1,i+1 p2,j+1 multiplies the value of Φ̄ρ at (z1,i, z2,j), not at (z1,i+1, z2,j+1). If x1,i+1 and x2,j+1 are

the smallest values with positive probabilities for X1 and X2, respectively, then z1,i = z2,j = −∞,

so Φ̄ρ(z1,i, z2,j) = 1 and the corresponding term in (10) is p1,i+1 p2,j+1. As a special case, suppose

X1 is degenerate to a single value, say p1,i+1 = 1. Then, (10) yields

g(ρ) =
∞∑

j=−∞
p2,j+1Φ̄ρ(−∞, z2,j) =

∞∑
j=−∞

p2,j+1Φ̄(Φ−1(f2,j)) =
∞∑

j=−∞
p2,j+1(1− f2,j) = E[F̄2(X2)]

(a constant), where F̄2(x) := P [X2 ≥ x]. If both X1 and X2 are degenerate, this gives g(ρ) ≡ 1.

Proposition 1 The function g(ρ) is infinitely differentiable on the interval (−1, 1), with first

derivative

g′(ρ) =
∞∑

i=−∞
p1,i+1

∞∑
j=−∞

p2,j+1φρ(z1,i, z2,j). (11)

Proof. We start with the first derivative. We will exploit the property of the bivariate standard

normal density that for −1 < ρ < 1,

d

dρ
φρ(x, y) =

∂2

∂x∂y
φρ(x, y) for any x, y (12)

(Kendall and Stuart, 1977, p. 393, exercise 15.4). We have

d

dρ
Φ̄ρ(x, y) =

∫ ∞
x

∫ ∞
y

d

dρ
φρ(z1, z2)dz2dz1

=
∫ ∞
x

d

dz1

[∫ ∞
y

∂

∂z2
φρ(z1, z2)dz2

]
dz1

=
∫ ∞
x

d

dz1
[−φρ(z1, y)] dz1

= φρ(x, y). (13)
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In steps one and two, the interchange of differentiation and integration is valid because of the

existence and boundedness of the derivatives over the integration domain; in step two, we used

(12); steps three and four use the fundamental theorem of calculus.

Equation (13) shows that the derivative of each term in the series (10) is the corresponding

term in the series (11). It remains to show the validity of interchanging the order of differentiation

and summation. A sufficient condition for this is that for each ρ0 ∈ (−1, 1), there is a neighborhood

of ρ0, Nε(ρ0) = (ρ0 − ε, ρ0 + ε) ⊂ (−1, 1), such that the series on the right side of (11) converges

uniformly for ρ ∈ Nε(ρ0) (Rudin, 1976, Theorem 7.17). This uniform convergence holds in particular

if there is an increasing sequence of finite sets Sk ⊂ Z2, k ≥ 0, such that

lim
k→∞

sup
ρ∈Nε(ρ0)

∑
(i,j)∈Z2\Sk

p1,j+1 p2,j+1φρ(z1,i, z2,j) = 0. (14)

(Since all the terms in (11) are non-negative, this condition is actually a special case of the well-

known Cauchy criterion for uniform convergence (Rudin, 1976, Theorem 7.8).) The latter condition

is easily verified if we take Sk as the bounded rectangle {(i, j) : max(|i|, |j|) ≤ k}:

sup
ρ∈Nε(ρ0)

∑
(i,j):max(|i|,|j|)>k

p1,i+1 p2,j+1φρ(z1,i, z2,j)

≤ 1
2π
√

1− ρ2
∗

 ∑
i:|i|>k

p1,i+1 +
∑
j:|j|>k

p2,j+1

→ 0 as k →∞, (15)

where ρ∗ = max(|ρ − ε|, |ρ + ε|). To study the higher-order derivatives, we note that φρ(x, y) =

(1− ρ2)−1/2φ(x)φ[(y− ρx)(1− ρ2)−1/2] and we change from coordinates (x, y) to polar coordinates

(r, θ), i.e., set x = r cos θ, y = r sin θ, where r ≥ 0 and θ ∈ [0, 2π]. Let δ > 0 and write φ(d)
ρ for the

d-th derivative of φρ with respect to ρ for |ρ| ≤ 1− δ. Differentiation gives

|φ(1)
ρ (r, θ)| =

∣∣∣∣∣φ(r cos θ)φ

(
ra(θ, ρ)√

1− ρ2

)
(1− ρ2)[2r2a(θ, ρ)− 1] cos θ + r2a2(θ, ρ)

2(1− ρ2)5/2

∣∣∣∣∣
≤ K1r

2 exp
(
−r2b(θ, ρ)/2

)
for all r, θ, and |ρ| ≤ 1− δ, (16)

where a(θ, ρ) = sin θ − ρ cos θ, b(θ, ρ) = (1− 2ρ sin θ cos θ)/(1− ρ2), and K1 is a positive constant.

First, observe that for any α > 0 and positive integer d, rd exp(−αr2) is a bounded function of r

for r ≥ 0. Second, for any θ, simple calculus shows that infρ∈[−1,1] b(θ, ρ) ≥ 1/2. This shows that

sup
|ρ|≤1−δ,r≥0,θ∈[0,2π]

|φ(d)
ρ (r, θ)| <∞ (17)

for d = 1. Thus, the analog of (15) holds when we substitute |φ(1)
ρ | for φρ; this proves that g has

a second derivative on (−1, 1) and that this derivative is an infinite series analogous to (11) (in

each term, one replaces φρ by φ
(1)
ρ ). The existence of higher-order derivatives of g follows along
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similar lines, which we only sketch: φ
(d)
ρ obeys a generalized expression as in (16), where the φ

terms remain intact (the multiplying fraction becomes more complicated); a bound as in the right

of (16) applies with the exponential term intact, a power no larger than r2d outside the exponential,

and a different constant K1. Thus, (17) holds for any integer d > 1, and the remaining argument

is as before. 2

Proposition 1, combined with the strict positivity of φρ(z1,i, z2,i) when z1,i and z2,i are finite,

and part 2 of Theorem 1, yield:

Corollary 1 If both F1 and F2 are non-degenerate distributions, then the function rX is strictly in-

creasing on [−1, 1], and has therefore an inverse, i.e., there exists a mapping r−1
X : [rX(−1), rX(1)]→

[−1, 1] such that rX ◦ r−1
X is the identity map.

Corollary 1 guarantees the existence and uniqueness of a solution to equation (3), under the

condition that r̃ ∈ [rX(−1), rX(1)].

Derivative of the linear correlation. Analogous properties can be derived for the linear cor-

relation between X1 and X2, defined as

ρX(ρ) = Corr(X1, X2) =
gL(ρ)− λ1λ2

τ1τ2
,

where

gL(ρ) = E [X1X2] =
∫ ∞
−∞

∫ ∞
−∞

F−1
1 [Φ(x1)]F−1

2 [Φ(x2)]φρ(x1, x2)dx1dx2, (18)

and λi and τ2
i <∞ are the known mean and variance of Fi, respectively. Following the reasoning

that led to (10), we obtain the analogous series representation

gL(ρ) =
∞∑

i=−∞
(x1,i+1 − x1,i)

∞∑
j=−∞

(x2,j+1 − x2,j)Φ̄ρ(z1,i, z2,j). (19)

Cario and Nelson (1998, eq. (5)) have stated an expression for the function gL that is analogous

to (9) (mass points appear instead of cumulative probabilities); they heuristically truncate both

summations to a finite number of terms without providing an estimate of the truncation error.

To obtain an analogue of Proposition 1, we must justify the interchange of derivative with

summation when we differentiate (19) with respect to ρ. A sufficient uniform convergence condition

in this case is

Condition 1 For each ρ0 ∈ (−1, 1), there is a neighborhood Nε(ρ0) = (ρ0 − ε, ρ0 + ε) ⊂ (−1, 1)

such that

lim
k→∞

sup
ρ∈Nε(ρ0)

∑
(i,j):max(|i|,|j|)>k

(x1,i+1 − x1,i)(x2,j+1 − x2,j)φρ(z1,i, z2,j) = 0. (20)
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Proposition 2 If Condition 1 holds, then the function gL(ρ) is differentiable on (−1, 1) with first

derivative

g′L(ρ) =
∞∑

i=−∞
(x1,i+1 − x1,i)

∞∑
j=−∞

(x2,j+1 − x2,j)φρ(z1,i, z2,j). (21)

Moreover, if Condition 1 holds with φρ(z1,i, z2,j) replaced by its nth derivative with respect to ρ for

n = 1, . . . , d, then gL(ρ) is d times continuously differentiable over (−1, 1).

Proof. The proof parallels that of Proposition 1 and we omit the details. 2

Condition 1 is clearly verified if both F1 and F2 have finite support. A bounded support

(i.e., if all the probability mass of the joint distribution is contained in a bounded rectangle)

is also a (weaker) sufficient condition. For discrete distributions with unbounded support, the

condition will hold if the tail probabilities 1 − Fl(x) converge to zero at a fast enough rate when

|x| → ∞. If the support is the set of non-negative integers (this is the case for most popular

discrete distributions with infinite support), it is natural to take xl,i = i for all i. We then have

(x1,i+1−x1,i)(x2,j+1−x2,j) = 1 so all we need is that |zl,i| = |Φ−1(Fl(xl,i))| increases quickly enough

with i, for l = 1, 2.

Suppose for example that the support is the set of positive integers (so xl,i = i) and that the tail

of Fl decreases at an exponential rate: 1− Fl(x) ≤ exp[−γxα] for l = 1, 2 when x is large enough,

for some positive constants α and γ. Several common distributions such as the geometric, negative

binomial, Poisson, etc., satisfy this condition. Using the fact that Φ−1(y) ∼
√
−2 ln(1− y) when

y → 1, we have that for large i,

zl,i = Φ−1(Fl(i)) ≥ Φ−1 (1− exp[−γiα]) ≥ (1− δ)
√

2γiα

for some small constant δ > 0. Putting this in (5) yields (for i and j large enough)

φρ(z1,i, z2,j) ≤ φρ((1− δ)
√

2γiα, (1− δ)
√

2γjα)

≤ 1

2π
√

1− ρ2
exp

[
− 2(1− δ)2γ(iα + jα − 2ρ(ij)α/2)

2(1− ρ2)

]
.

But observe that iα + jα − 2ρ(ij)α/2 = (iα/2 − ρjα/2)2 + (1− ρ2)jα = (jα/2 − ρiα/2)2 + (1− ρ2)iα.

Using this, we can easily show that for j large enough,
∞∑
i=0

sup
ρ∈Nε(ρ0)

φρ(z1,i, z2,j) ≤ K0 exp[−K1j
α]

for some positive constants K0 and K1 that may depend on ρ0 but not on j. Summing this over

j > k, for k large enough, we obtain that∑
(i,j):j>k

sup
ρ∈Nε(ρ0)

φρ(z1,i, z2,j) ≤ K0

∑
j>k

exp[−K1j
α] → 0 when k →∞.

The same property obviously holds if we permute i and j, which means that the sum over {(i, j) :

i > k} also vanishes when k →∞. This implies (20).
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Corollary 2 If both F1 and F2 are non-degenerate distributions and Condition 1 holds, then ρX

is strictly increasing on [−1, 1], so it has an inverse ρ−1
X : [ρX(−1), ρX(1)] → [−1, 1], and (4)

possesses a unique solution in [−1, 1] if ρ̃ ∈ [ρX(−1), ρX(1)].

We conclude this section by studying the limit when |ρ| → 1. The behavior of g′(ρ) as ρ → 1

depends on whether

there exist i and j such that 0 < f1,i = f2,j < 1; (22)

the behavior as ρ→ −1 depends on whether

there exist i and j such that 0 < f1,i = 1− f2,j < 1. (23)

In words, (22) says that F1 and F2 are non-degenerate discrete distributions whose c.d.f. values

meet at least once at a value that is strictly between 0 and 1. The interpretation of (23) is analogous.

Proposition 3 (a) (22) implies limρ→1 g
′(ρ) =∞. (23) implies limρ→−1 g

′(ρ) =∞.

(b) Assume F1 and F2 have finite support. If (22) fails, then limρ→1 g
′(ρ) = 0. If (23) fails, then

limρ→−1 g
′(ρ) = 0.

(c) Analogs of (a) and (b), obtained by replacing g′ by g′L, hold.

Proof. We use well-known properties of φρ as |ρ| → 1. If y = x, then limρ→1 φρ(x, y) = ∞.

Analogously, if y = −x, then limρ→−1 φρ(x, y) = ∞. For all (x, y) that lie outside the lines y = x

and y = −x, we have limρ→±1 φρ(x, y) = 0. Condition (22) implies that there exist i and j with

finite z1,i = z2,j and with p1,i+1 p2,j+1 > 0. Then g′(ρ) ≥ p1,i+1 p2,j+1 φρ(z1,i, z2,j)→∞ as ρ→ 1.

Similarly, (23) implies that there exist i and j with finite z1,i = −z2,j and with p1,i+1 p2,j+1 > 0,

which gives g′(ρ) → ∞ as ρ → −1. This completes the proof of part (a). For part (b), there are

only finitely many terms, so the failure of (22) implies that all finite pairs (z1,i, z2,j) lie outside the

line y = x; as ρ→ 1, each of the finitely many terms in (11) converges to zero, yielding g′(ρ)→ 0.

The result as ρ→ −1 follows analogously. The above arguments remain intact if we replace g′ by

g′L; this proves part (c). 2

2.2 Approximating g′ when the support is unbounded

For the case where one or both marginals have unbounded support, we propose approximate com-

putation of the derivative g′ via truncation of (11), provide a bound on the truncation error, and

outline the computation. This supports the approximate method detailed in Section 3.2. We dis-

cuss the case where both marginals have unbounded support; straightforward modifications apply

otherwise.
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We rewrite (11) as

g′(ρ) =
1√

1− ρ2

∞∑
i=−∞

p1,i+1φ(z1,i)Si, (24)

where

Si =
∞∑

j=−∞
p2,j+1φ

(
z2,j − ρz1,i√

1− ρ2

)
. (25)

Our bound of the upper tail of Si is based on the observation that φ
(

(z2,j − ρz1,i)/
√

1− ρ2
)

is

decreasing as j increases beyond j∗(i), where j∗(i) = min{j : z2,j ≥ ρz1,i}. This yields
∞∑

j=k+1

p2,j+1φ

(
z2,j − ρz1,i√

1− ρ2

)
≤ (1− f2,k)φ

(
z2,k − ρz1,i√

1− ρ2

)
for any k ≥ j∗(i). (26)

The lower tail is bounded similarly:
k−1∑
j=−∞

p2,j+1φ

(
z2,j − ρz1,i√

1− ρ2

)
≤ f2,k−1φ

(
z2,k − ρz1,i√

1− ρ2

)
for any k ≤ j∗(i), (27)

because φ
(

(z2,j − ρz1,i)/
√

1− ρ2
)

is decreasing as j decreases beyond j∗(i). A similar approach

allows bounding the tails of the summation in (24). Observe that Si ≤ φ(0) for all i and φ(z1,i) is

decreasing as i increases beyond i∗, where i∗ = min{i : z1,i ≥ 0}. This yields
∞∑

i=k+1

p1,i+1φ(z1,i)Si ≤ φ(0)φ(z1,k)(1− f1,k) for any k ≥ i∗. (28)

Similarly,
k−1∑
i=−∞

p1,i+1φ(z1,i)Si ≤ φ(0)φ(z1,k)f1,k−1 for any k ≤ i∗. (29)

Select small real numbers ε1 > 0 and ε2 > 0. We truncate the summation in (24), keeping terms

between the indices

i− := i−(ε1) := max{k : k ≤ i∗, φ(0)φ(z1,k)f1,k−1 ≤ ε1
√

1− ρ2},

i+ := i+(ε1) := min{k : k ≥ i∗, φ(0)φ(z1,k)(1− f1,k) ≤ ε1
√

1− ρ2}. (30)

For i in this finite range, we truncate the summation in (25), keeping terms between the indices

j−(i) = max{k : k ≤ j∗(i), p1,i+1φ(z1,i)f2,k−1φ((z2,k − ρz1,i)/
√

1− ρ2) ≤ ε2},

j+(i) = min{k : k ≥ j∗(i), p1,i+1φ(z1,i)(1− f2,k)φ((z2,k − ρz1,i)/
√

1− ρ2) ≤ ε2}. (31)

(Note the truncation indices depend on ρ; our notation does not emphasize this). Define the

finite-term approximation of g′,

g̃′(ρ) =
1√

1− ρ2

i+∑
i=i−

p1,i+1φ(z1,i)
j+(i)∑
j=j−(i)

p2,j+1φ

(
z2,j − ρz1,i√

1− ρ2

)
. (32)

The bounds stated in (26), (27), (28) and (29) easily imply the following result.
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Proposition 4 We have

g̃′(ρ) ≤ g′(ρ) ≤ g̃′(ρ) + ε(ρ) (33)

where ε(ρ) = 2ε1 + 2(i+(ε1)− i−(ε1) + 1)ε2.

Remark 1 We outline an implementation for computing g̃′(ρ) and ε(ρ). In a first outer until

block, i increases from i∗ until i+ is found; for each fixed i in this range, j first increases from j∗(i)

until j+(i) is found (an until block nested inside the outer block); then, similarly, j decreases

from j∗(i) until j−(i) is found. A second outer until block is analogous to the first outer block: i

decreases from i∗ until i− is found. The work of this algorithm is O
(∑i+

i=i−(j+(i)− j−(i))
)

. This

work and the size of the error bound ε(ρ) are unknown a priori in terms of ε1 and ε2; they are both

determined during the process of approximating g′(ρ).

2.3 Uniform convergence to the continuous-marginals rank correlation

This section establishes a convergence result relating the rank-correlation function under discrete

marginals to the rank-correlation function for continuous marginals, i.e., rC in (6), in a limit

we will make precise. Let (X1,n, X2,n), n = 1, 2, . . . be a sequence of pairs of discrete random

variables; write pl,j,n for the probability mass corresponding to the j-th mass point of the l-th

marginal (l = 1, 2) in the n-th pair, and denote by F1,n and F2,n the associated c.d.f.’s in the n-th

pair. Write rn(ρ) = Corr(F1,n(X1,n), F2,n(X2,n)), where (X1,n, X2,n) has marginals F1,n and F2,n

and bivariate dependence as in (2) with ρ = Corr(Z1, Z2). To capture the idea that discreteness

vanishes in the limit, let ml,n = maxj pl,j,n and assume

lim
n→∞

ml,n = 0 for l = 1, 2. (34)

We now state an asymptotic upper bound on the L∞-distance between rn and rC that vanishes in

the limit as n→∞.

Proposition 5 If (34) holds, then

lim sup
n→∞

sup
ρ∈[−1,1]

|rn(ρ)− rC(ρ)|
m1,n +m2,n

≤ 42, (35)

and thus supρ∈[−1,1] |rn(ρ)− rC(ρ)| converges to 0 as n→∞.

Proof. For l = 1, 2, define the composite functions hl,n = Fl,n ◦ F−1
l,n . Each Fl,n(Xl,n) has

distribution equal to that of hi,n(U), where U is uniformly distributed on (0,1). The key behind the

proof is that |hl,n(u)−u| ≤ ml,n for all 0 ≤ u ≤ 1. Write µl,n = E[Fl,n(Xl,n)], σ2
l,n = Var[Fl,n(Xl,n)],

and gn(ρ) = Cov[F1,n(X1,n), F2,n(X2,n)]. We will use repeatedly below the inequality |x1y1−x2y2| ≤
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|y1 − y2|+ |x1 − x2| for any 0 ≤ x1, x2, y1, y2 ≤ 1. Using (6) and this inequality, we have

|rn(ρ)− rC(ρ)| =
∣∣∣∣gn(ρ)− µ1,nµ2,n

σ1,nσ2,n
− gC(ρ)− 1/4

1/12

∣∣∣∣
=

∣∣∣∣[gn(ρ)− µ1,nµ2,n]
(

1
σ1,nσ2,n

− 12
)

+ 12 [gn(ρ)− µ1,nµ2,n − gC(ρ) + 1/4]
∣∣∣∣

≤ (|gn(ρ)|+ µ1,nµ2,n)
∣∣∣∣12σ1,nσ2,n − 1

σ1,nσ2,n

∣∣∣∣+ 12 (|gn(ρ)− gC(ρ)|+ |µ1,nµ2,n − 1/4|) .

(36)

We now find asymptotic upper bounds for each of the terms in (36). We have

|µl,n − 1/2| =
∣∣∣∣∫ 1

0
(hl,n(u)− u)du

∣∣∣∣ ≤ ∫ 1

0
|hl,n(u)− u|du ≤ ml,n,

so limn→∞ µl,n = 1/2 for l = 1, 2 and lim supn→∞ |µ1,nµ2,n − 1/4|/(m1,n + m2,n) ≤ 1/2. Writing

σ2
l,n =

∫ 1
0

[
(hl,n(u)− u) + (u− 1

2) + (1
2 − µl,n)

]2
du and integrating the expanded square, it is easy

to see that ∣∣∣∣σ2
l,n −

1
12

∣∣∣∣ ≤ m2
l,n +m2

l,n + 4ml,n

∫ 1

0

∣∣∣∣u− 1
2

∣∣∣∣ du+ 2m2
l,n = ml,n + 4m2

l,n, (37)

proving that limn→∞ σ
2
l,n = 1/12 for l = 1, 2. The Cauchy-Schwartz inequality yields supρ |gn(ρ)| ≤

σ1,nσ2,n, so lim supn→∞ supρ |gn(ρ)| ≤ 1/12. Furthermore,

lim sup
n→∞

∣∣∣√σ2
1,nσ

2
2,n − 1

12

∣∣∣
m1,n +m2,n

≤ lim sup
n→∞

6
∣∣∣σ2

1,nσ
2
2,n −

(
1
12

)2∣∣∣
m1,n +m2,n

≤ 1
2

;

in the above, the first inequality follows from a Taylor expansion of
√
x about 1/12 with remainder

term involving the first derivative, and the second inequality follows from (37). Finally,

sup
ρ
|gn(ρ)− gC(ρ)|

= sup
ρ

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

[h1,n(Φ(x1))h2,n(Φ(x2))− Φ(x1)Φ(x2)]φρ(x1, x2)dx1dx2

∣∣∣∣
≤ sup

ρ

∫ ∞
−∞

∫ ∞
−∞

(
sup

(x1,x2)∈R2

|h1,n(Φ(x1))h2,n(Φ(x2))− Φ(x1)Φ(x2)|

)
φρ(x1, x2)dx1dx2

≤ sup
ρ

∫ ∞
−∞

∫ ∞
−∞

(m1,n +m2,n)φρ(x1, x2)dx1dx2

= m1,n +m2,n. (38)

The result (35) follows from the asymptotic bounds established for each of the terms in (36). 2

For n large, (35) and (6) imply the approximate bound supρ∈[−1,1] |rn(ρ)− (6/π) arcsin(ρ/2)| ≤
42(m1,n+m2,n). In our examples in Section 4, this bound was too large to ensure that rX(2 sin(πr̃/6))

is sufficiently close (for our purposes) to r̃ = rC(2 sin(πr̃/6)). Had the bound been small enough,

15



that would have made our nearly-exact solution methods less intereresting, because the bound by

itself would have ensured that 2 sin(πr̃/6) is a sufficiently accurate answer. Of course, better bounds

than ours may still act in the same way, i.e., as guarantors of the accuracy of 2 sin(πr̃/6) as an

approximation to the exact solution. Regardless of the bound’s effectiveness in our examples, the

proof adds to our intuition; it suggests, for example, that the approximation’s effectiveness hinges

on both marginals (as opposed to only one) being nearly continuous.

3 Solution methods

We detail methods for solving each of the two versions of the correlation-matching problem. Our

discussion focuses on the rank-correlation variant for reasons given earlier. Assume that we are

given a target r̃ ∈ (rX(−1), rX(1)) and want to compute the value r−1
X (r̃), i.e., the unique solution

of (3). A zero of a function f is a value ρ such that f(ρ) = 0. To conform with standard

algorithms for solving a single equation, which typically seek a zero of an appropriate function,

define f(ρ) = g(ρ)− µ1µ2 − r̃σ1σ2 and note that f has derivatives identical to those of g and that

f(ρ) < (>) 0 if and only if rX(ρ) < (>) r̃. Thus, finding the solution of (3) is equivalent to finding

the unique zero of f .

Section 3.1 treats the case where both marginals have finite support. Infinite supports are ad-

dressed in Section 3.2, which offers an approximate solution method and a bound on its error. Java

implementations of the four methods we examine are available at http://www.iro.umontreal.

ca/~lecuyer/myftp/nortadisc/java/.

3.1 Discrete marginals with finite support

If ni is the number of support points of marginal i, then (10) and (11) imply that the computational

work for each evaluation of g (equivalently, f) or of its derivative f ′ = g′ is proportional to n = n1n2,

the number of terms in the double sums. The proportionality constants may differ substantially

between g and g′.

In what follows, we first explain how we compute g and g′, then we define three algorithms to

find a root of f . The first algorithm uses only evaluations of g and not its derivative, the second

integrates f ′ until the integral reaches zero, and the third is a variant of the Newton-Raphson

iterative method to find a root of f .

Evaluation of g and g′. For the evaluation of g, we employ (10) instead of (9), because the

literature emphasizes the computation of the bivariate normal integral in the former expression.

We considered several methods for evaluating Φ̄ρ(x, y), a function of ρ, x, and y, for which no

analytic expression is available. Algorithm 462 in Donnelly (1973) implements the method devel-

oped in Owen (1956), which expresses Φ̄ρ in terms of the functions Φ and T (h, a), where the latter
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is the area (integral) of an uncorrelated bivariate standard normal distribution (zero means, unit

variances) over the subset of the (x, y)-plane contained between y = ax and y = 0 and to the

right of x = h. The function T (h, a) is expressed (and computed efficiently) as a series. A sec-

ond class of methods exploits property (13) and computes Φ̄ρ(x, y) by numerical integration with

respect to the correlation. More precisely, Φ̄ρ(x, y) is computed as Φ̄s(x, y) + Q, where: s = 0 or

sign(ρ) (when |ρ| is under and above a certain threshold, respectively); Φ̄0(x, y) = Φ(−x)Φ(−y);

Φ̄1(x, y) = Φ(−max(x, y)); Φ̄−1(x, y) = max(0,Φ(−x)− Φ(y)); and Q =
∫ ρ
s φt(x, y)dt is computed

by numerical integration. This approach is detailed in Drezner and Wesolowsky (1989) and Genz

(2004), which focus on moderate accuracy (6-7 decimals) and high accuracy (15 decimals), re-

spectively. For 15-decimal precision, we compared Algorithm 462 to the method of Genz (2004).

For ρ = −0.92,−0.54,−0.16, 0.22, 0.60, 0.98, we sampled one million pairs (x, y) uniformly in the

square [−3, 3]2; the observed ratios of CPU times (Algo. 462 to Genz) were about 0.4, 0.6, 1.1,

1.1, 0.6, and 0.7, respectively. In 7-decimal precision, and for the same set of ρ values, the CPU

time ratios of Algorithm 462 to the method of Drezner and Wesolowsky (1989) were about 0.7, 1.3,

1.3, 1.3, 1.3, 0.7. Comparing the 7- to 15-decimal accuracy versions of Algorithm 462, we observed

a ratio of CPU total times (sums over 6 evaluations for the values of ρ above) of about 0.67. For

all subsequent work, we chose to evaluate f via Algorithm 462 of Donnelly (1973) with 15 decimal

digits of accuracy.

Computing the derivative g′(ρ) is easier, because there is an analytic expression for φρ(x, y).

We just use it and sum up the terms. In a preliminary test, we estimated the ratio of work (CPU

time) needed to compute g(ρ) over the work needed to compute the derivative g′(ρ) at about 12.

This was based on all calls made to these functions when solving the problem r̃ = 0.90 in the

nearly-continuous negative binomial case shown at the bottom panel of Table 1, Section 4. We feel

that this number is fairly representative because the points zi,k = Φ−1(fi,k), k = 1, 2, . . ., provide a

good coverage of the normal density for each i.

Method NI1: Root bracketing without derivatives. This first method assumes no knowl-

edge of derivatives of f and serves as the benchmark against which we compare the speed and

accuracy of other methods. We know that the zero of f is contained in [−1, 0] if r̃ < 0, and is

[0, 1] if r̃ > 0; this follows from parts 1 and 2 of Theorem 1 and the Intermediate Value Theorem.

Root-bracketing methods maintain a bracket; this is an interval with endpoints b and c such that

f(b) and f(c) are of opposite sign, so the interval must contain the root. One such method is bi-

section, which is iterative and halves the bracket length at each iteration. Root accuracy is usually

controlled by a tolerance ε > 0: if b is the better root estimate among the bracket endpoints, (i.e.,

|f(b)| < |f(c)|), then it is returned as the root on the first iteration such that either f(b) = 0

(in the floating-point representation) or |b − c| ≤ ε. By the definition of bracket, this guarantees
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that b is within ε of the root. According to Press et al. (1992), Procedure zero in Brent (1971)

(called Brent’s method for short), is “the method of choice for general one-dimensional root finding

where a function’s values only (and not its derivative) are available.” This method combines root

bracketing, bisection, and inverse quadratic interpolation, which uses three prior root estimates to

fit an inverse quadratic function (ρ as a quadratic function of f(ρ)) whose value at f(ρ) = 0 is

taken as the next estimate of the root. This is what we have used in our experiments.

Method NI2: Finding a root of f by numerically integrating its derivative. This method

is summarized as follows.

1. Start at some initial value ρ0 and evaluate f(ρ0), as described in the previous subsection.

2. Select an integration grid S = {ρ0, ρ1, ρ2, . . .}, which is a sequence of increasing (decreasing)

values depending on whether f(ρ0) < (>) 0, and such that: if r̃ > 0 and f(ρ0) < (>) 0, then 1

(0) is an accumulation point of S; if r̃ < 0 and f(ρ0) < (>) 0, then 0 (−1) is an accumulation

point of S.

3. Compute estimates f̂(ρk) of f(ρk) for k = 1, 2, . . . by numerically integrating its derivative

g′. Stop at the smallest k, say K, such that f̂(ρk) > (<) 0, respectively. By construction, the

interval [ρK−1, ρK ] contains a zero of f̂ .

4. Compute the approximation ρ̄ of the zero via polynomial interpolation of f̂ over [ρK−`, ρK ],

where ` is a small positive integer. For example, for linear interpolation, take ` = 1 and

output the unique ρ̄ satisfying (ρ̄− ρK−1)/(ρK − ρK−1) = −f̂(ρK−1)/
[
f̂(ρK)− f̂(ρK−1)

]
.

We now discuss the selection of integration rule, the choice of sequence S, and the method’s

accuracy. We discuss the case r̃ > 0 and f̂(ρ0) < 0; the other three cases are similar.

Two effective classes of integration rules over a finite interval [a, b] are the Gaussian and Newton-

Cotes quadrature rules (Stoer and Bulirsch, 1980). These rules evaluate the integrand at a finite

set of points in [a, b] and compute a weighted sum of these evaluations. In theory, the Gaussian

rules (Stoer and Bulirsch, 1980, sec. 3.6) give better accuracy than the Newton-Cotes rules for

a given number n of evaluation points: they integrate exactly all polynomials of degree less than

2n. However, if we change a or b slightly, for fixed n, then all the evaluation points must change.

In our context, since the integration interval changes at each step of the root-finding process, the

Gaussian rule on [0, ρk] cannot reuse any of the evaluation points of the rule on the previous interval

[0, ρk−1]. With Newton-Cotes rules (Stoer and Bulirsch, 1980, sec. 3.1), the integral over [a, b] is

approximated as a sum of approximations of the integral over the pieces of a partition of [a, b] (see

below), and it possible to select the integration grid in our procedure in a way that the evaluation

points for [0, ρk−1] are reused for [0, ρk]. Thus, from an efficiency standpoint, Newton-Cotes rules

are more suitable in our root-finding context.
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A well-known special case of a Newton-Cotes rule is Simpson’s rule (Stoer and Bulirsch, 1980,

pp. 119-120). For this rule, we select a finite sequence S consisting of ρk = ρ0 + 2kh for k =

0, 1, 2, . . . ,m, where h > 0 is a step size and m is such that 1−2h < ρm < 1. In our implementation,

we first select ρm close to 1 (ρm = 1− δ for some small δ > 0) and then select h and m (a positive

integer) such that |1− δ− ρ0| = 2hm. The Simpson estimate of the definite integral
∫ ρ0+2kh
ρ0

g′(t)dt

is computed recursively by setting I0 = 0 and

Ik = Ik−1 +
h

3
(
g′(ρ0 + 2kh− 2h) + 4g′(ρ0 + 2kh− h) + g′(ρ0 + 2kh)

)
.

This gives the estimate f̂(ρk) = f(ρ0) + Ik, whose error will be discussed later.

If the stopping condition in step 3 is not met after m steps for the m selected at the outset

(that is, f̂(ρm) has the same sign as f̂(ρ0)), then we continue integrating over a new grid defined to

the right of the last point of the previous grid, recursively, if necessary, until a stopping condition

as in step 3 is met. That is, the mention in step 2 of an infinite sequence S only serves to allow an

input r̃ that is arbitrarily close to rX(1) or rX(−1).

We consider two variants of algorithm NI2, defined according to how ρ0 is selected: Variant

NI2A sets ρ0 = 2 sin(πr̃/6), which is a natural estimate of the root because it becomes exact in

the limit where discreteness disappears (see Proposition 5 and part 3 of Theorem 1). Variant NI2B

sets ρ0 = 0. The motivation for NI2A is to try to minimize the length of the integration interval

[ρ0, ρK ], and thus the number Ng′ of evaluations of the function g′. On the other hand, it requires

one (costly) evaluation of f(ρ0) in Step 1. Variant NI2B eliminates the cost of this evaluation,

because we know f(0) = −r̃σ1σ2, but Ng′ is typically larger because we must integrate over a

longer interval. If the root does not exceed the value ρm selected at the outset, then NI2 requires

Ng′ = 1 + 2d|r−1
X (r̃) − ρ0|/2he evaluations of the function g′, where h is the value selected at the

outset. Which variant will be faster depends on: (i) the ratio of work needed to compute g relative

to g′; (ii) the distance |r−1
X (r̃) − ρ0|; and (iii) the desired accuracy; lower accuracy allows larger h

and thus smaller Ng′ .

Method NI3: Hybrid of Newton-Raphson and bisection. Our third algorithm is a modified

version of the Newton-Raphson method. This method would produce a sequence of root estimates

ρk+1 = ρk−f(ρk)/f ′(ρk) for k = 0, 1, 2, . . ., where −f(ρk)/f ′(ρk) is a correction term such that the

new root estimate is the zero of the linear function with value f(ρk) and slope f ′(ρk) at abscissa

ρk. We need to protect against the possibility that at two subsequent iterations k and k + 1,

the correction terms cancel each other and neither ρk nor ρk+1 is a root; that is, f(ρk)/f ′(ρk) +

f(ρk+1)/f ′(ρk+1) = 0, f(ρk) 6= 0, and f(ρk+1) 6= 0; in this case, the recursion enters an infinite

cycle without ever finding the root (ρk+2j = ρk for all positive j); this is illustrated in Press et al.

(1992, Figure 9.4.3). We protect as proposed in Press et al. (1992, routine rtsafe, pp. 366–367);

this algorithm maintains a root estimate and a bracket formed by the last two root estimates; if the
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Newton step starting from the current root estimate would fall outside the current bracket or if the

current bracket length is more than half the previous bracket length, then the next root estimate

is the bracket’s midpoint; otherwise, the next root estimate is found by the Newton step. Root

accuracy is controlled by a tolerance ε as in NI1. This method has good convergence properties

near the root (Press et al., 1992, pages 364-365), so it is particularly attractive when high accuracy

is sought. The initial bracket is [−1, 0] if r̃ < 0, and [0, 1] if r̃ > 0. Our initial root estimate is

ρ0 = 2 sin(πr̃/6); this value is likely to be closer to the root than other uninformative values, e.g.,

the midpoint of the initial bracket. It is easy to show that the bracket is at least halved over any

two successive iterations (Press et al. (1992) do not state this); thus, the number of iterations never

exceeds 2dlog2(1/ε)e, and it is potentially smaller, depending on the Newton steps’ effectiveness.

Controlling the accuracy. Efficient algorithms are known for computing the bivariate normal

integral Φ̄ρ to negligible error (this was discussed earlier); this allows efficiently computing g to

negligible error. In view of this, the methods we discussed fall into two classes that should be

contrasted: classical root finding (NI1, NI3) versus approximate root finding via integration and

interpolation (NI2). In general, none of these methods can provide a guarantee on rank-correlation

error (a known multiple of |f(ρ̄)|, where ρ̄ is the estimated root) unless a global bound on the

slope of f is known. Classical root-finding methods, however, do deliver a value to within a

specified distance from the true root. For the approximate root-finding methods, we do not have

integration-error bounds and consequently we offer no guarantee either on root error or on rank-

correlation error, regardless of how much work one does. (Note, however, that global bounds

on higher-order derivatives of g can be obtained by straightforward derivations and arguments

paralleling (16); this would yield such integration-error bounds.) Thus, the approximate root finding

approach—as developed here—can be attractive only in special settings, namely: (1) solution speed

is more important than a root-accuracy guarantee; or (2) classical root finding is too complicated

to implement, e.g., because a good code for computing Φρ is unavailable.

Worst-case work comparison as required accuracy increases. We focus on the rank-

correlation error at the estimated root, |rX(ρ̄) − r̃|, and assume a requirement that it should

not exceed ε > 0. We explain that if one views the error in evaluating g as negligible, then one

should expect NI2 to require more work than NI3 or the bisection method in the limit as ε→ 0. In

standard polynomial interpolation, function values are known exactly at the interpolation points;

in this case, a bound on the error (at any point inside the interpolation interval) is given in Stoer

and Bulirsch (1980, Theorem 2.1.4.1). If the integration error was zero at all interpolation points,

this result would imply that the error is of order O(h`+1) when an order-` interpolating polynomial

is used (the error may of course be zero, but that would seem to be a fortunate coincidence). Thus,

we can expect the error to decrease at the rate m−k for some positive integer k that depends on the
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particular Newton-Cotes rule and `. The worst-case number of evaluations of g′ for NI2 is pm+ 1,

where p is a positive integer that depends on the Newton-Cotes rule; for Simpson’s rule, we have

p = 2. To keep the error at most ε, this number must grow as O(ε−1/k). To allow comparison

to NI3 and bisection, we consider a user of these methods that selects a tolerance ε/M , where

M := supρ∈I |g′(ρ)| < ∞, where I is the initial bracket; this ensures that the error is at most ε.

The bisection method requires dlog2(M/ε)e evaluations of g. NI3 requires 2dlog2(M/ε)e iterations

in the worst case. In conclusion, if high accuracy is required, then NI3 (or bisection) are preferred

to NI2, because they are likely to require less work.

Linear correlations. For the linear correlation matching problem, all three methods extend

immediately. The initial bracketing intervals are identical; we simply replace the functions g and

g′ by their counterparts gL and g′L stated in Section 2.1. To get a nonzero starting point for NI2

or NI3, we can invert (6), despite the fact that this has no theoretical basis and that it may be a

poor choice relative to crude estimates such as the midpoint of the initial bracket, as suggested by

the discussion following (4).

3.2 Discrete marginals with infinite (or large) support

If one of the marginals has infinite support, then all quantities involved in the definition of f(ρ),

namely, µl and σl for l = 1, 2, and g(ρ), involve infinite series; in general, exact computations

appear to be impossible—we are not aware of exact formulae, even if the marginals belong to the

well-known classes. Approximating g(ρ) (for arbitrary ρ) is the main difficulty, because if one were

to truncate the series (10) to a finite number of terms, it would be difficult to bound the error.

Approximating the constants µl and σl is easier, as we will explain. In view of this, method NI2B

stands out, because it is the only one among those in Section 3.1 that does not require evaluating

g(ρ). Thus, we adapt method NI2B as follows: (i) in the integration (step 3 of method NI2),

we replace g′ by its approximation g̃′ established in Section 2.2; and (ii) we replace µl and σl by

approximations defined below (the µl are involved indirectly via σl).

It is straightforward to approximate µl and σl by truncating the associated series; error bounds

are easily obtained and stated in the proof of Proposition 6 below. Select small real numbers ηl > 0.

For l = 1, 2, define k+
l = min{k :

∑∞
j=k+1 pl,j ≤ ηl} and k−l = max{k :

∑k−1
j=−∞ pi,j ≤ ηl}. Define

µ̃l =
∑k+

l

j=k−l
pi,jfi,j and σ̃2

l =
∑k+

l

j=k−l
pi,jf

2
i,j − µ̃2

l as approximations of µl and σ2
l , respectively.

We now define the adaptation of NI2B. We assume that ρ0 = 0 and that we use the sequence

S with the Newton-Cotes integration rule. The estimates of f(ρk) are f̃(0) = −r̃σ̃1σ̃2 (since

rX(0) = 0) and f̃(ρk) = f̃(0) + I(ρk; g̃′) for k = 1, 2, ..., where I(ρk; g̃′) is the estimate of
∫ ρk
0 g′(t)dt

via a Newton-Cotes formula applied to g̃′ in (32).

To bound the error in rank correlation at the estimated root, |rX(ρ̄)− r̃|, define: I(ρk; ε) is the

21



Newton-Cotes estimate of
∫ ρk
0 ε(t)dt, where ε(ρ) is defined following (33); I(ρk; g′) is the Newton-

Cotes estimate of
∫ ρk
0 g′(t)dt, which will not be explicitly computed, but is involved in the bound;

and write ∆k = |f̃(ρk) − f(ρk)| for all k. Write K for the index in step 3 of NI2; note that

MK := supρ∈[ρK−1,ρK)] |g̃′(ρ)| ≤ sup|ρ|≤1−δ |g′(ρ)| <∞. The next result bounds the error, and finite

support is a special case. The Remarks below discuss how one may reduce this bound.

Proposition 6 (a) Assume all integral estimates are based on Simpson’s rule with h = (1 −
δ)/(2m), ρ0 = 0, and |ρm| = 1− δ for some δ > 0. Then

∆k ≤ ζ(η1, η2) + |I(ρk; ε)|+O(m−4) for any ρk ∈ S, (39)

where

ζ(η1, η2) = |r̃|
(
σ̄1

2η2[1 + 2(µ̃2 + η2)]
σ̃2 + σ2

+ σ̃2
2η1[1 + 2(µ̃1 + η1)]

σ̃1 + σ1

)
,

σl :=
√
σ̃2
l − 2ηl[1 + 2(µ̃l + ηl)] and σ̄l :=

√
σ̃2
l + 2ηl[1 + 2(µ̃l + ηl)] for l = 1, 2.

(b) For any ρ̄ ∈ [ρK−1, ρK ], we have

|rX(ρ̄)−r̃| ≤ |f̃(ρK−1)− f̃(ρK)|+ max(∆K−1,∆K)
σ1σ2

≤ MK/m+ ζ(η1, η2) + |I(ρK ; ε)|
σ1σ2

+O(m−4).

(40)

Proof. We have

|f̃(ρk)− f(ρk)| =
∣∣∣∣f̃(0) + I(ρk; g̃′)−

(
f(0) +

∫ ρk

0
g′(s)ds

)
− I(ρk; g′) + I(ρk; g′)

∣∣∣∣
≤ |f̃(0)− f(0)|+ |I(ρk; g̃′)− I(ρk; g′)|+

∣∣∣∣I(ρk; g′)−
∫ ρk

0
g′(s)ds

∣∣∣∣
= |r̃||σ̃1σ̃2 − σ1σ2|+ |I(ρk; ε)|+O(m−4)

≤ |r̃| (σ1|σ2 − σ̃2|+ σ̃2|σ1 − σ̃1|) + |I(ρk; ε)|+O(m−4); (41)

step 2 is the triangle inequality; in step 3, we observe that I(ρk; g′) − I(ρk; g̃′) = I(ρk; ε) and

that
∣∣I(ρk; g′)−

∫ ρk
0 g′(s)ds

∣∣ ≤ h4|ρkg(5)(ξ)|/180 for some ξ with |ξ| ≤ ρk, where g(5) is the fourth

derivative of g′ (Stoer and Bulirsch, 1980, p. 122), and finally note that |g(5)(ξ)| < ∞, since g(5)

is continuous on the closed interval [−1 + δ, 1 − δ]; step 4 is another application of the triangle

inequality. It remains to bound σ1 and |σ̃l − σl| for l = 1, 2. We have |µ̃l − µl| ≤ 2ηl and

|σ̃2
l − σ2

l | ≤ 2ηl[1 + 2(µ̃l + ηl)] (proofs are easy and omitted), and thus

σl ≤ σl ≤ σ̄l. (42)

Thus

|σ̃l − σl| =
|σ̃2
l − σ2

l |
σ̃l + σl

≤ 2ηl[1 + 2(µ̃l + ηl)]
σ̃l + σl

. (43)
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Combining (41), (42), and (43), we obtain (39). To prove (40), we note that |rX(ρ̄) − r̃| =

|f(ρ̄)|/(σ1σ2) and

|f(ρ̄)| ≤ max(|f(ρK−1)|, |f(ρK)|)

≤ max(|f̃(ρK−1)|+ ∆K−1, |f̃(ρK)|+ ∆K)

≤ |f̃(ρK−1)|+ |f̃(ρK)|+ max(∆K−1,∆K),

= |f̃(ρK−1)− f̃(ρK)|+ max(∆K−1,∆K). (44)

Step 1 uses the monotonicity of f ; step 2 uses the definition of ∆k; the equality in step 4 holds

because f̃(ρK−1) and f̃(ρK) bracket zero, by construction. This proves the first inequality in (40).

To get the second inequality in (40), we use the bound in (39), note that |I(ρk; ε)| are nondecreasing

in k, and note that |f̃(ρK−1)− f̃(ρK)| = h
3 |g̃
′[ρK − 2h] + 4g̃′[ρK − h] + g̃′[ρK ]| ≤ 2hMK ≤MK/m.

2

Remark 2 In the special case of finite support, (41) states that ∆k = O(m−4) for all k. We obtain

the rudimentary bound |rX(ρ̄)− r̃| ≤MK/(mσ1σ2) +O(m−4), which goes to zero as m→∞.

Remark 3 In the infinite support case, the first inequality in (40) combined with (39) yields the

value (|f̃(ρK−1) − f̃(ρK)| + ζ(η1, η2) + |I(ρK ; ε)|)/(σ1σ2) as a computable approximate (heuristic)

bound on the absolute error in the output correlation, because we dropped the O(m−4) integration-

error term. Contrary to the finite-support case, it is not enough to let m → ∞ to guarantee that

the rank correlation error goes to zero. One must additionally keep small the two new error terms,

which may be done as follows. Controlling ζ(η1, η2) is straightforward by decreasing the ηi, i = 1, 2.

Controlling |I(ρk; ε)| is somewhat complicated; recall the expression for the function ε(ρ) following

(33) and note that 2(i+(ε1)− i−(ε1) + 1)ε2 may increase as ε1 decreases. In general, we may expect

to reduce ε(ρ) (for any ρ) by appropriately decreasing ε1 and/or ε2 (at the expense of increased

work). Also note that fixed ε1 and decreasing ε2 result in decreasing ε(ρ).

4 Numerical examples

We tried our solution methods on two sets of examples, in which the marginal distributions have

finite and infinite support, respectively. In our first set of examples, the two marginals are identical

binomial distributions, denoted Bin(n, p), with success probability p = 1/2 and varying number of

trials n.

Our second set of examples is inspired from modeling the joint distribution of arrival counts

to a call center over successive time periods in a day and is based on the case study in Avramidis

et al. (2004). We are focusing on bivariate rank-correlation matching for (X1, X2), where X1 and

X2 are the counts on the time periods (8:00am, 8:30am) and (8:30am, 9:00am), respectively. The
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negative binomial distribution provides a good fit to each marginal. Denote by NegBin(s, p) the

negative binomial distribution with mean sp and variance sp(1 + p). The parameters (s, p) of the

two marginals estimated from the call center data set in that paper are s1 = 15.68, s2 = 60.21,

p1 = 0.3861, p2 = 0.6211. The sample rank correlation between X1 and X2 is 0.43. For the

correlation matching, we work with bounded (and finite) supports: we upper-bound the support of

each marginal at the quantile of order 1− 10−6, i.e, x∗l = F−1
l (1− 10−6), and reset the probability

mass of x∗l accordingly, for l = 1, 2. This may significantly impact the correlation relative to the

unbounded marginals, but we did not attempt to bound this error. We create additional test

problems as follows. In our experiments, we vary s to study the effect of “discreteness strength”

on the NORTA correlation matching problem. We also vary the target correlation r̃.

In applications we have in mind, r̃ will be estimated from data; this means high accuracy

(either in the root or in the rank correlation) is unlikely to be necessary. With this in mind, we

employed NI1 and NI3 with tolerance 10−2 and 10−4. Preliminary computations showed that in

one of our examples the root is very close to 1; to avoid cumbersome implementations of NI2 that

must refine the integration rule to the right of 1− 2h (for the h of interest here), we set ρm = 1− δ
with δ = 10−4. To select the integration-grid spacing 2h, let d denote the worst-case integration

distance, so d = |1−δ−ρ0| if r̃ > 0 and f̂(ρ0) < 0 or if r̃ < 0 and f̂(ρ0) > 0; and d = |ρ0| otherwise.

For NI2A, we set 2h to be as close as possible to 10−2, i.e., h = d/(2m), where m = max(1, [100d])

and [x] is the integer closest to x; this aims to make the accuracy (very roughly) comparable to

that of NI1. For a sufficiently small m, NI2B will be faster than NI2A because it does not require

the evaluation of f(ρ0), so with this in mind, we used NI2B with m = 5 (so h = (1− δ)/10 ≈ 0.2).

This aims towards fast execution achieved at the risk of loss of accuracy. We employ quadratic

interpolation in step 4 unless m = 2, in which case linear interpolation applies.

Tables 1, 2, 3, and 4 summarize the results for methods NI1, NI2A, NI2B and NI3, respectively.

Each of the six panels corresponds to a different pair of marginals; in each case, we give the defining

parameters, the extreme correlations rX(−1) and rX(1) for these marginals, and the number of

bivariate support points n = n1n2, where ni is the number of support points of marginal i. Each

row corresponds to a problem instance created by additionally specifying the target r̃. For each

problem instance, we report system-independent (method-dependent) measures of work: for NI1,

the number N1 of iterations of the root-bracketing algorithm and thus evaluations of g; for NI2, the

number Ng′ of evaluations of g′; for NI3, the number N3 of iterations, and thus evaluations of each

of g and g′. Additionally, we report: the computed root ρ̄; the CPU time measured in seconds;

the correlation rX(ρ̄); and the (absolute) relative error (error, for short) in induced correlation,

|rX(ρ̄)− r̃|/r̃, shown as a percentage. When the target correlation is small, the reader may prefer

to focus on absolute errors. All experiments were done on a 2.4 GHz AMD 64 bit-processor running

Linux.
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In all cases, NI1 and NI3 with ε = 10−4 have good accuracy and require only a modest number

of iterations. As the tolerance decreases from ε = 10−2 to ε = 10−4, the number of iterations of

NI3 grows by a factor much smaller than the worst-case number 2 log2(100) ≈ 13. This suggests

that high accuracy would require a small additional computing cost. For all methods, the largest

errors occur in the binomial example with n1 = 3, which we examine in more detail later. Except

for this example with r̃ = 0.98, NI3 always requires less work than NI1, about 30% on average and

usually between 20% and 45%. Moreover, with two exceptions in the same example, NI3 is more

accurate than NI1. The high-tolerance NI1 (ε = 10−2) usually has relative error about 4%-5% when

r̃ = 0.05, but the absolute error is perhaps more relevant, and this error is small (a simple rough

remedy against large relative errors would be to set ε in proportion to r̃). NI2A is generally fast; it

is also accurate, with one exception. This method benefits when the distance |r−1
X (r̃)− 2 sin(πr̃/6)|

is small; in the minimal-discreteness cases (when n1 = n2 = 1000 for the binomial and for the

largest values of r1 and r2 for the negative binomial case), this distance is very small, and NI2A is

as accurate as NI1 or NI3 and usually faster. The largest observed value of this distance was about

0.09 (binomial marginals, n1 = 3, r̃ = −0.5). NI2B does not benefit from such a small integration

distance, unless the root is close to zero; it frequently exhibits large errors that tend to increase as

the discreteness increases and as the root (or r̃) moves farther from zero; the large errors are not

surprising, since a very sparse integration grid was used.

We discuss the binomial problem with n1 = n2 = 3 and r̃ = 0.98. The root is r−1
X (0.98) ≈

0.999041 and its approximation is 2 sin(0.98π/6) ≈ 0.981808. Figure 1 shows rX(ρ) for 0.98 ≤ ρ ≤
1. NI3 behaves as pure bisection, because the attempted Newton steps fall outside the bracket at all

iterations. NI1 requires fewer iterations than NI3. The low-order polynomial approximations of g

supporting NI2 are poor in this area, so NI2 suffers from relatively large integration error. (Condi-

tion (22) is easily seen to hold in all binomial examples, and Proposition 3 gives limρ→1 g
′(ρ) =∞.)

We examined NI2 with m varying widely over powers of 2. The inaccuracy of NI2B persists until

m quite large enough to make the method slow: at m = 128, we obtain ρK = 1 − δ = 0.9999,

f̂(ρK) has relative error about 2.2%, and the final error (the measure in the rightmost column in

the tables) is about 1.7%; comparing these two errors suggests that the large final error is due to

integration error; it is not due to interpolation error. NI2A fares much better; for example, at

m = 16, the final error is 0.06%. In view of the singularity at ρ = 1, it is not surprising that setting

δ too small is detrimental: for NI2A, changing to δ = 10−12 and maintaining the value m = 2 that

applies in Table 2, the final error increases to 4.2%.

In summary, if a good code is available for computing the bivariate normal distribution (and

thus f), then we recommend NI3; both NI2 variants provide no accuracy guarantee and therefore

they should be viewed as cheap, fast alternatives to NI3. If such good code is not available, then

NI2B is an easier solution, because it requires only f ′ and not f .
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Table 1: Results for method NI1.
ε r̃ ρ̄ CPU (s) N1 rX(ρ̄) Rel. error (%)

Binomial 10−2 -0.50 -0.6076 0.084×10−3 5 -0.4999 0.049
n1 = n2 = 3 0.05 0.0603 0.063×10−3 5 0.0499 0.115
p1 = p2 = 0.5 0.20 0.2387 0.063×10−3 5 0.1991 0.475
n = 16 0.90 0.9760 0.102×10−3 6 0.8999 0.009
rX(−1) = −0.9241 0.98 0.9999 0.050×10−3 3 0.9935 1.382
rX(1) = 1 10−4 -0.50 -0.6079 0.103×10−3 6 -0.5000 < 0.001

0.05 0.0604 0.082×10−3 5 0.0500 < 0.001
0.20 0.2399 0.084×10−3 5 0.2000 < 0.001
0.90 0.9760 0.118×10−3 6 0.9000 < 0.001
0.98 0.9990 0.130×10−3 7 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5194 0.093 4 -0.4991 0.175
n1 = n2 = 100 0.05 0.0551 0.069 3 0.0524 4.703
p1 = p2 = 0.5 0.20 0.2099 0.092 4 0.1999 0.036
n = 10201 0.90 0.9107 0.085 4 0.8996 0.043
rX(−1) = −0.9971 0.98 0.9861 0.061 3 0.9811 0.114
rX(1) = 1 10−4 -0.50 -0.5203 0.119 5 -0.5000 < 0.001

0.05 0.0526 0.094 4 0.0500 < 0.001
0.20 0.2099 0.117 5 0.2000 < 0.001
0.90 0.9111 0.113 5 0.9000 < 0.001
0.98 0.9851 0.098 5 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5171 5.503 4 -0.4992 0.159
n1 = n2 = 1000 0.05 0.0500 4.410 3 0.0477 4.511
p1 = p2 = 0.5 0.20 0.2091 5.858 4 0.1999 0.031
n = 1002001 0.90 0.9082 4.703 4 0.8999 0.014
rX(−1) = −0.9997 0.98 0.9803 3.153 3 0.9780 0.207
rX(1) = 1 10−4 -0.50 -0.5179 6.995 5 -0.5000 < 0.001

0.05 0.0524 6.193 4 0.0500 < 0.001
0.20 0.2091 7.509 5 0.2000 < 0.001
0.90 0.9083 5.848 5 0.9000 < 0.001
0.98 0.9821 4.289 4 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5330 6.57×10−3 4 -0.4960 0.209
r1 = 1.568 0.05 0.0518 4.33×10−3 3 0.0478 4.412
p1 = 0.3861 0.43 0.4614 5.49×10−3 4 0.4299 0.030
r2 = 6.021 0.90 0.9323 4.46×10−3 3 0.8986 0.151
p2 = 0.6211 0.96 0.9895 5.88×10−3 4 0.9593 0.076
n = 768 10−4 -0.50 -0.5341 8.31×10−3 5 -0.5000 < 0.001
rX(−1) = −0.9738 0.05 0.0542 5.78×10−3 4 0.0500 < 0.001
rX(1) = 0.9652 0.43 0.4616 7.14×10−3 5 0.4300 < 0.001

0.90 0.9336 5.97×10−3 4 0.9000 < 0.001
0.96 0.9903 9.59×10−3 6 0.9600 < 0.001

Negative Binomial 10−2 -0.50 -0.5177 0.053 4 -0.4993 0.148
r1 = 15.68 0.05 0.0501 0.041 3 0.0478 4.481
p1 = 0.3861 0.43 0.4467 0.056 4 0.4298 0.042
r2 = 60.21 0.90 0.9090 0.053 4 0.8999 0.017
p2 = 0.6211 0.98 0.9811 0.037 3 0.9778 0.229
n = 6560 10−4 -0.50 -0.5184 0.070 5 -0.5000 < 0.001
rX(−1) = −0.9971 0.05 0.0524 0.052 4 0.0500 < 0.001
rX(1) = 0.9989 0.43 0.4469 0.066 5 0.4300 < 0.001

0.90 0.9092 0.067 5 0.9000 < 0.001
0.98 0.9832 0.054 4 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5169 1.301 4 -0.4992 0.159
r1 = 156.7 0.05 0.0500 0.871 3 0.0478 4.491
p1 = 0.3861 0.43 0.4464 1.273 4 0.4298 0.042
r2 = 602.1 0.90 0.9080 1.255 4 0.8999 0.013
p2 = 0.6211 0.98 0.9802 0.877 3 0.9780 0.199
n = 189912 10−4 -0.50 -0.5177 1.639 5 -0.5000 < 0.001
rX(−1) = −0.9997 0.05 0.0524 1.236 4 0.0500 < 0.001
rX(1) = 0.9999 0.43 0.4465 1.616 5 0.4300 < 0.001

0.90 0.9081 1.611 5 0.9000 < 0.001
0.98 0.9819 1.190 4 0.9800 < 0.001
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Table 2: Results for method NI2A with δ = 10−4 and 2h set as close as possible to 10−2.
r̃ ρ̄ CPU (s) Ng′ rX(ρ̄) Rel. error (%)

Binomial -0.50 -0.6079 0.062×10−3 21 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0604 0.032×10−3 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2399 0.045×10−3 9 0.2000 < 0.001
n = 16 0.90 0.9760 0.067×10−3 17 0.8999 0.011
rX(−1) = −0.9241 0.98 0.9962 0.031×10−3 5 0.9602 2.024
rX(1) = 1

Binomial -0.50 -0.5203 0.032 5 -0.5000 < 0.001
n1 = n2 = 100 0.05 0.0526 0.032 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2099 0.032 5 0.2000 < 0.001
n = 10201 0.90 0.9111 0.032 5 0.9000 < 0.001
rX(−1) = −0.9971 0.98 0.9851 0.028 5 0.9810 0.099
rX(1) = 1

Binomial -0.50 -0.5179 2.17 5 -0.5000 < 0.001
n1 = n2 = 1000 0.05 0.0524 2.48 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2091 2.40 5 0.2000 < 0.001
n = 1002001 0.90 0.9083 2.01 5 0.9000 < 0.001
rX(−1) = −0.9997 0.98 0.9821 1.89 5 0.9800 < 0.001
rX(1) = 1

Negative Binomial -0.50 -0.5341 2.27×10−3 5 -0.5000 < 0.001
r1 = 1.568 0.05 0.0542 2.09×10−3 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4616 1.95×10−3 5 0.4300 < 0.001
r2 = 6.021 0.90 0.9336 2.29×10−3 7 0.9000 < 0.001
p2 = 0.6211 0.96 0.9903 2.33×10−3 7 0.9600 < 0.001
n = 768
rX(−1) = −0.9738
rX(1) = 0.9652
Negative Binomial -0.50 -0.5184 0.019 5 -0.5000 < 0.001
r1 = 15.68 0.05 0.0524 0.019 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4469 0.018 5 0.4300 < 0.001
r2 = 60.21 0.90 0.9092 0.019 5 0.9000 < 0.001
p2 = 0.6211 0.98 0.9832 0.018 5 0.9800 < 0.001
n = 6560
rX(−1) = −0.9971
rX(1) = 0.9989
Negative Binomial -0.50 -0.5177 0.50 5 -0.5000 < 0.001
r1 = 156.7 0.05 0.0524 0.46 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4465 0.47 5 0.4300 < 0.001
r2 = 602.1 0.90 0.9081 0.47 5 0.9000 < 0.001
p2 = 0.6211 0.98 0.9819 0.45 5 0.9800 < 0.001
n = 189912
rX(−1) = −0.9997
rX(1) = 0.9999
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Table 3: Results for method NI2B with m = 5, δ = 10−4 (so h = 0.09999).
r̃ ρ̄ CPU (s) Ng′ rX(ρ̄) Rel. error (%)

Binomial -0.50 -0.6078 0.024×10−3 9 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0601 0.010×10−3 3 0.0497 0.514
p1 = p2 = 0.5 0.20 0.2389 0.015×10−3 5 0.1999 0.026
n = 16 0.90 0.8485 0.029×10−3 11 0.7409 17.676
rX(−1) = −0.9241 0.98 0.8642 0.029×10−3 11 0.7565 22.805
rX(1) = 1

Binomial -0.50 -0.5202 9.65×10−3 7 -0.4999 0.029
n1 = n2 = 100 0.05 0.0525 4.20×10−3 3 0.0499 0.172
p1 = p2 = 0.5 0.20 0.2099 6.95×10−3 5 0.2000 < 0.001
n = 10201 0.90 0.8718 15.60×10−3 11 0.8582 4.641
rX(−1) = −0.9971 0.98 0.9142 15.80×10−3 11 0.9034 7.821
rX(1) = 1

Binomial -0.50 -0.5178 1.023 7 -0.4998 0.030
n1 = n2 = 1000 0.05 0.0523 0.44 3 0.0499 0.157
p1 = p2 = 0.5 0.20 0.2091 0.73 5 0.2000 < 0.001
n = 1002001 0.90 0.8982 1.64 11 0.8892 1.202
rX(−1) = −0.9997 0.98 0.9625 1.62 11 0.9586 2.187
rX(1) = 1

Negative Binomial -0.50 -0.5340 0.76×10−3 7 -0.4998 0.031
r1 = 1.568 0.05 0.0541 0.34×10−3 3 0.0499 0.157
p1 = 0.3861 0.43 0.4614 0.75×10−3 7 0.4299 0.028
r2 = 6.021 0.90 0.9567 1.19×10−3 11 0.9246 2.736
p2 = 0.6211 0.96 1.00 1.13×10−3 11 0.9652 0.545
n = 768
rX(−1) = −0.9738
rX(1) = 0.9652
Negative Binomial -0.50 -0.5183 6.38×10−3 7 -0.4999 0.029
r1 = 15.68 0.05 0.0523 2.72×10−3 3 0.0499 0.160
p1 = 0.3861 0.43 0.4468 6.44×10−3 7 0.4299 0.019
r2 = 60.21 0.90 0.8995 9.77×10−3 11 0.8896 1.150
p2 = 0.6211 0.98 0.9644 9.74×10−3 11 0.9595 2.091
n = 6560
rX(−1) = −0.9971
rX(1) = 0.9989
Negative Binomial -0.50 -0.5176 0.18 7 -0.4998 0.030
r1 = 156.7 0.05 0.0523 0.078 3 0.0499 0.155
p1 = 0.3861 0.43 0.4465 0.18 7 0.4296 0.020
r2 = 602.1 0.90 0.9077 0.29 11 0.8996 0.041
p2 = 0.6211 0.98 0.9816 0.28 11 0.9797 0.035
n = 189912
rX(−1) = −0.9997
rX(1) = 0.9999
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Table 4: Results for method NI3.
ε r̃ ρ̄ CPU (s) N1 rX(ρ̄) Rel. error (%)

Binomial 10−2 -0.50 -0.6079 0.038×10−3 2 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0604 0.020×10−3 1 0.0500 0.004
p1 = p2 = 0.5 0.20 0.2399 0.040×10−3 2 0.2000 < 0.001
n = 16 0.90 0.9767 0.060×10−3 3 0.9013 0.142
rX(−1) = −0.9241 0.98 0.9922 0.137×10−3 7 0.9429 3.783
rX(1) = 1 10−4 -0.50 -0.6079 0.064×10−3 3 -0.5000 < 0.001

0.05 0.0604 0.053×10−3 2 0.0500 < 0.001
0.20 0.2399 0.054×10−3 2 0.2000 < 0.001
0.90 0.9760 0.106×10−3 5 0.9000 < 0.001
0.98 0.9990 0.222×10−3 12 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5203 0.028 1 -0.5000 < 0.001
n1 = n2 = 100 0.05 0.0526 0.029 1 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2099 0.028 1 0.2000 < 0.001
n = 10201 0.90 0.9111 0.025 1 0.9000 < 0.001
rX(−1) = −0.9971 0.98 0.9851 0.022 1 0.9800 < 0.001
rX(1) = 1 10−4 -0.50 -0.5203 0.054 2 -0.5000 < 0.001

0.05 0.0526 0.056 2 0.0500 < 0.001
0.20 0.2099 0.053 2 0.2000 < 0.001
0.90 0.9111 0.047 2 0.9000 < 0.001
0.98 0.9851 0.044 2 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5179 1.642 1 -0.5000 < 0.001
n1 = n2 = 1000 0.05 0.0524 1.924 1 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2091 1.831 1 0.2000 < 0.001
n = 1002001 0.90 0.9083 1.387 1 0.9000 < 0.001
rX(−1) = −0.9997 0.98 0.9821 1.214 1 0.9800 < 0.001
rX(1) = 1 10−4 -0.50 -0.5179 3.360 2 -0.5000 < 0.001

0.05 0.0524 1.918 1 0.0500 < 0.001
0.20 0.2091 1.771 1 0.2000 < 0.001
0.90 0.9083 2.796 2 0.9000 < 0.001
0.98 0.9821 2.550 2 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5341 3.79×10−3 2 -0.5000 < 0.001
r1 = 1.568 0.05 0.0542 1.78×10−3 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4616 3.15×10−3 2 0.4300 < 0.001
r2 = 6.021 0.90 0.9336 3.45×10−3 2 0.9000 < 0.001
p2 = 0.6211 0.96 0.9902 3.46×10−3 2 0.9616 < 0.001
n = 768 10−4 -0.50 -0.5341 3.77×10−3 2 -0.5000 < 0.001
rX(−1) = −0.9738 0.05 0.0542 3.42×10−3 2 0.0500 < 0.001
rX(1) = 0.9652 0.43 0.4616 3.16×10−3 2 0.4300 < 0.001

0.90 0.9336 5.13×10−3 3 0.9000 < 0.001
0.96 0.9903 5.10×10−3 3 0.9600 < 0.001

Negative Binomial 10−2 -0.50 -0.5184 0.017 1 -0.5000 < 0.001
r1 = 15.68 0.05 0.0524 0.016 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4469 0.016 1 0.4300 < 0.001
r2 = 60.21 0.90 0.9092 0.016 1 0.9000 < 0.001
p2 = 0.6211 0.98 0.9832 0.015 1 0.9800 < 0.001
n = 6560 10−4 -0.50 -0.5184 0.031 2 -0.5000 < 0.001
rX(−1) = −0.9971 0.05 0.0524 0.016 1 0.0500 < 0.001
rX(1) = 0.9989 0.43 0.4469 0.031 2 0.4300 < 0.001

0.90 0.9092 0.031 2 0.9000 < 0.001
0.98 0.9832 0.028 2 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5177 0.393 1 -0.5000 < 0.001
r1 = 156.7 0.05 0.0524 0.370 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4465 0.378 1 0.4300 < 0.001
r2 = 602.1 0.90 0.9081 0.383 1 0.9000 < 0.001
p2 = 0.6211 0.98 0.9819 0.332 1 0.9800 < 0.001
n = 189912 10−4 -0.50 -0.5177 0.394 1 -0.5000 < 0.001
rX(−1) = −0.9997 0.05 0.0524 0.369 1 0.0500 < 0.001
rX(1) = 0.9999 0.43 0.4465 0.366 1 0.4300 < 0.001

0.90 0.9081 0.740 2 0.9000 < 0.001
0.98 0.9819 0.689 2 0.9800 < 0.001
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Figure 1: The function rX(ρ) on [0.98, 1] in the example with binomial marginals with n1 = 3;
compared to the function rC(ρ) given by (6).

5 Conclusion

We studied the NORTA correlation-matching problem for the case where the marginals are discrete.

We proved some key properties of both the rank and linear correlations and their derivatives as func-

tions of the correlation parameter ρ of the normal copula. We obtained a formula for the derivative

f ′ of the function f whose root is sought. The derivative involves only the exponential function and

can be evaluated significantly faster than f . We developed and analyzed algorithms that exploit

the derivative. We emphasized rank-correlation matching, but our methods apply immediately to

linear-correlation matching. For unbounded univariate marginals and rank-correlation matching,

we adapted one of our methods that only requires evaluating f ′ (and not f) by substituting a

finite-term approximation of f ′, and we provided bounds on the resulting error.

Our numerical experience and findings can be summarized as follows. We initially expected

that the ratio of work per evaluation of f compared to work per evaluation of f ′ would be large,

making NI2 competitive. To our surprise, there exist algorithms that compute the bivariate normal

integral (and thus f) to negligible error at small computing cost. In our implementation, this

ratio was about 12, a value smaller than we expected. (Other users may observe a different value,

depending on the method for computing bivariate normal integrals and the implementation quality.)

Moreover, NI2 lacks a solution-error guarantee, so it should be viewed as a cheap and approximate

alternative to exact methods. Implementing the derivative f ′ is very simple, requiring just a few

lines of simple code. In summary, if a good code is available for computing the bivariate normal

integral, then our recommendation is the Newton-type method NI3. Otherwise, NI2B is an easy

(approximate) solution, because it requires only f ′ and not f ; but some care is needed to keep the
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integration errors small enough.

We also contributed a convergence result on the L∞ distance (i.e., the supremum over ρ ∈ [−1, 1]

of the absolute difference) between the rank-correlation function rX(ρ;F1, F2) for given discrete

marginals F1 and F2 and the explicitly known analog for continuous marginals, (6/π) arcsin(ρ/2),

in terms of the maximum probability masses of F1 and F2, as these masses go to zero. In particular,

this result justifies the value 2 sin(πr̃/6) as an approximation to the solution to (3) and points to

it as a starting point for exact solution methods.

Interesting future work is to analyze further the properties of normal-copula dependence for

discrete marginals with unbounded support. Problems and approaches of interest are: (1) study

the correlation error that results from truncating to finite support for a single given ρ; (2) if

this error can be made small uniformly across ρ by an appropriate truncation, then finite-support

correlation-matching methods could be proved to be effective; (3) propose and analyze alternatives

to our approximate correlation-matching method, perhaps via steps (1) and (2); and (4) evaluate

correlation-matching methods experimentally.
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