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Multiple generators are often required in simulation studies, for instance, to facilitate synchro-

nization for variance reduction purposes, and multiple independent streams per generator are

helpful to make independent replications.

A portable set of software tools is described for uniform random variates generation. It

provides for multiple generators running simultaneously, and each generator has its sequence of

numbers partitioned into many long (disjoint) sub streams. Simple procedure calls allow the user

to make any generator “jump” ahead to the beginning of its next sub stream, back to the

beginning of its current substream, or back to the beginning of its first substream. A simple

switch permits a change from regular to antithetic variates or vice versa. Implementation issues

are discussed An efficient and portable code is also provided for computing (as MOD m) for any

positive integer values of a < m, s < m, and m <2 b -1 on a b-bit computer. This code is used to

implement the package.

A Pascal implementation for 32-bit computers is described. The basic underlying generator for

this implementation has been proposed in a previous paper; it combines two multiplicative linear

congruential generators and has a period of p = 23 x 1018
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1. INTRODUCTION

1.1 Basic Generators

A facility for generating sequences of pseudorandom numbers is a fundamen-

tal part of computer simulation systems. Usually, in practice, such a facility

produces a deterministic sequence of values, but externally these values

should appear to be drawn independently from a uniform distribution be-

tween O and 1 [1, 61.
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A commonly employed kind of generator is the multiplicative linear con-

gruential generZ31tOr (MLCG), which goes from integer to integer according to

the recursion

.s, = as, _lMOD m (1)

where the modulus m and the multiplier a < m are positive integers. Each

integer s, takes its values from the set of states S = {I, 2,. ... m – 1},

and the sequence is periodic with period p s m – 1. A simple mapping

may convert SZ to a floating point value between O and 1. If m is prime

and a is a primitive element modulo m, then the MLCG has maximal period

(P = m – 1) [6, IP. ~~1. For practical considerations (ease of implementation),
one usually chooses m small enough to be representable as a regular integer

on the target machine and a such that a2 < m (see [1,8]).

To increase the period and improve the empirical statistical behavior

without increasing m, one could run two or more MLCGS in parallel and

combine their states, producing a sequence whose period is the least common

multiple of the individual periods. Consider a family of 1 maximal period

MLCGS where fim j = 1, . . . . 1, generator j has modulus mJ and multiplier

al:

sJ, 1 = aJsJ, ,. IMOD mj. (2)

For a given initial state so = ( Sl, ~, . . . . S1,o) (called the seed), the period p of
the sequence { si = (sl, ~, . . . . Sz,,), i = O, 1, 2, . . . } is the least common multi-
pleofml– l,..., ml – 1 (see [8, Lemma 2]). L’Ecuyer [8] proposes the

combination:

(Zi = i (–l)J-lSJ, L)MOD(nzl - 1)
j=l

(3)

which yields an approximation of a uniform discrete random variable on

{O, . . . . ml - 2}. It could be transformed into U, e (O, 1)by:

{

Zi / ml
q. =

if Zi>O

(% - 1)/% if Zi=O
(4)

Two generators, easy to code in a high level language, have been proposed

by L’Ecuyer [8]. The first one uses 1 = 2 MLCGS, has period p = 2.3 x 1018,

and is for 32-bit computers; the other one uses 1 = 3 MLCGS, has period

p = 8.1 x 1012, and is for 16-bit computers.

1.2 The Need for Multiple Substreams

Many disjoint random number subsequences are often required in simulation

studies, for instance, (1) to make independent replications or/and (2) to

associate distinct “virtual” generators with different sources of randomness

in the system tct facilitate synchronization for variance reduction [1]. When
both cases apply, one needs many subsequences for each virtual generator, so

that the full sequence will be divided into disjoint substreams, and each
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sub stream subdivided into disjoint subsubstreams. To produce such a “split-

ting,” different seeds (values of {s, = ( .sI,,, . . . . S[, ,)} must be obtained far

enough apart in the sequence to insure that the sub streams do not overlap.

In other words, given any seed s, and positive integer j, there should be a

quick way to compute s,+] (without generating all intermediate values, of

course). In principle, that can be done quite easily for an MLCG, since

s ,.J = (aJsL)MOD m = (a’MOD m)s,MOD ~. (5)

For any given j, ( aJMOD m) can be precomputed.

Most packages offer no facility for jumping ahead directly from s, to Si .j or

to compute distant seeds efficiently (see [3, 5, 13, 14], for instance). Some

provide specific seeds to generate disjoint streams [1] and many simulation
languages offer a limited number of virtual generators (usually no more than

10), all based on the same generator, but using fixed starting seeds set say

100,000 values apart (see [2, 3, 12]). This provides relatively low flexibility.
Suppose, for instance, that you want to perform independent pairs of replica-

tions with common random numbers across the configurations (i. e., between

any two runs of the same pair) in order to compare two different con figura -

tions of a system. To insure proper synchronization, you want every genera-

tor to start from the same seed in both runs of the same pair. However, in

general, these two runs will make a different number of calls to a generator,

and programming “tricks” should be used to skip a proper amount of random

numbers to desynchronize the generators for the next pair without overlap in

the random number streams [1, Sec. 8.2] and [7, Sec. 11.2]. This requires

extra programming effort and could be error prone. Good software tools

should ease the programmer’s task in that respect. A simple procedure call

should permit resetting a generator to a previous seed or jumping ahead to a

new seed for the next run. Of course, the sequence of “new seeds” (one per

run) should be the same for both configurations of the system. Implementing

such tools requires efficient “jumping ahead” facilities, which in turn ask for

efficient procedures to compute as MOD m.

1.3 Overview

In Section 2 of this paper, we propose and compare three general methods for

computing as MOD m for any positive integer values of a < m, s < m, and

m<2b–1 using only integers between – 2 b– 1 and 2 b– 1 (strictly), where b is

a positive integer. Thus, such computation can be done on a b-bit computer

whenever m is representable on that computer. These techniques are inter-
esting and useful for other applications as well, for example, for implement-

ing the spectral test [6].

Section 3 describes a small package with multiple virtual generators

(associated with disjoint substreams) and multiple subsubstreams per genera-

tor. It can be read independently of Section 2. We provide a Pascal implemen-

tation for computers with 32 bits or more. Implementations for computers

having smaller word sizes, or using more than 32 bits, can be done in a

similar way.
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2. COMPUTING ([(3S MOD m)

Consider a b-bit computer on which all integers between – 2 b- 1 and 2 b- 1

(exclusive) are well represented. We want to compute (as MOD m), where a,

s, and m are positive integers smaller than 2 6-1. Without loss of generality,

we assume that a < m and s < m (if not, replace a and s by a MOD m and

s MOD m, respectively). We also assume that b is even, which is the case on

all conventional computers, and let d = (b – 2)/2.

When m is a power of 2, this is quite simple: multiply as without checking

for overflow and discard the higher order bits. But even for this simple case,

writing a portable code in a high-level language not designed for bit opera-

tions is not trivial. For general m, this is still more tricky. Performing the

computations in DOUBLE PRECISION is not a solution, since DOUBLE

PRECISION variables usually have much less than 22( b-1) bits of precision.

On a VAX computer (32 bit), for instance, they carry no more than 55 bits of

accuracy, while the product as can exceed 2 ‘1. A method is described by

Bratley et al. [1] and Payne et al. [11] for the case where m is just a little

smaller than a power of 2. It uses only integers, but works only under certain

conditions on m and a.

2.1 Approximate Factoring

A more efficient method is proposed in [1, Sec. 6.5.2], for the case where

az < m. (6)

It operates as follows. Define q = L m/ aJ and r = m MOD a. Then

(see [1, 8]):

as MOD m = (a(s MOD q) – ~s/qjr)MOD m. (7)

When computing the right-hand side of (7), it is easily seen [1, 8] that all

intermediate values remain in the range from – m to m (inclusive). We call

this method approximate factoring (AF). Notice that the constraint a2 = m

cannot be replaced by the less restrictive constraint a2 <2 b- 1, since 1s / q j r

could overflow if q is too small. When a2 <2 b- 1, one can only show that

~s/q]r < 2b. However, when a2 < 2b-2 (i.e., a < 2d), then ~s/qjr

< ~( aq + r)/ q] r < 2 a2 < 2 b– 1 and overflow never occurs, so that AF could

also be used. In the latter case, all intermediate values in the following

instructions remain strictly between – 2 b– 1 and m:

k:= S DIV q;

s:= a*(s – k*q) – k*r;

WHILE s< O[)Os:=s+m

The number of turns into the WHILE loop is at most 12 b- 1/ m]. For our

applications, we usually have m = 2 b– 2, in which case the body of the

WHILE loop never executes more than twice. Notice, however, that for small

m, this code could be rather inefficient in the worst case. For instance, if
a = 215 – 1 = 32767, m = 2a – 1 = 65533, and s = m – 1 = 65532, then

q = 1, r = a – 1. = 32766, and the statement s := s + m must be executed

32765 times! Fortunately, such bad combinations occur very rarely in

ACM ‘Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.



102 . P L’Ecuyer and S C(W

practice, and empirical results (see Table I below) tell that this code is very

efficient for the average case (random values of a < m and s < m) even for

small values of m.

2.2 Recursive Reduction

When (6) does not hold, one could sometimes decompose a as a = al x az

such that a; < m and a; < m. The AF method is then applied twice to

compute

as MOD m = (al(azs MOD m)) MOD m.

This approach is used by Marse and Roberts [91. Besides the fact that

factoring a is time consuming, the major limitation is that a decomposition

in two factors as above does not always exist.

When a2 > m, the term susceptible to overflow in (7) is ~s / q] r. Equation

(7) can be rewritten as

as MOD m = (a(s MOD q) – (~s/qjr MOD m)) MOD m. (8)

if rz s m or r s 2d, then AF can be used to compute ~s/qJr MOD m.

Otherwise, this term can be computed by using formula (8) recursively, after

\ /q], q := [m/a], and r := m MOD a. Recursiveresetting a := r, s := s

reductions are thus performed until a s 2 d or r = O or ~s / q J = O (we avoid

checking if a s & since computing the square root of m is too time

consuming). Since r decreases at each recursive call (each iteration), conver-

gence occurs after a finite number of iterations. The worst case upper bound

on the number of iterations is (approximately) tifi, which is rather high, but

convergence occurs rather quickly in the average case (random choice of a, s,

and m). For instance, for b = 32, m near 231, and a and s uniformly

distributed over {1, . . . . m – 1}, the average number of iterations is approxi-

mately between 5 and 6, according to our empirical investigations. This

recursive reduction approach is completely general. A Pascal code appears in

Figure 1. Partial sums are kept in variable p. To avoid overflow when adding

the next term to p, the constant m can be added or subtracted without

affecting the result, since all computations are done modulo m.

2.3 Decomposition

A more direct approach, based on decomposition, operates as follows. Rewrite

a as

a = a. + a12d + az22d (9)

where O< a. <2d,0< a, <2d, and a, = Oor 1. Then

as MOD m = (aOS)MOD m

+ ((als)MOD m)2dMOD m

+ ((a2s)MOD m)22dMOD m

= (((( CL22dS)MOD m + (cz,s)MOD m) MOD m)2dMOD m

-t-aOs MOD m) MOD m. (lo)
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FUNCTION MultMod_Reduc (a, s, m: INTEGER): INTEGER:
{Assumes O < a < m and O < s < m Returns (a*s)MOD m.}

CONST
H = 32768; {Should be the value of 2**d}

VAR
q, r, k, p, Sign: INTEGER;

BEGIlN
q:== mDIVa; r:=m–a*q; k:=s Dlvq;
p := a*(s – k*q); Sign = – 1;
WHILE (a > H) AND (r <> O) AND (k < > O) DO

BEGIN
a:=r; s:=k;

q:=m DIVa; r:=m–a*q; k:=s DIVq;
p := P + Sign*a*(s – k*q); Sign = –sign;
IF Sign*p >0 THEN p := p – Sign*m
END;

IF (k < > O) THEN p := p + Sign*k*r;
WHILE p< ODOp:=p+m;
MultMod_Reduc := p
END

Fig. 1. Iterative Implementation of recursive reduction.

In each of the four products modulo m in (10), one of the factors is smaller or

equal to 2‘, so AF can be applied. Figure’2 shows a Pascal FUNCTION

implementing this method. It runs in O(1) time, except for the WHILE loops,

and as said previously, the number of turns into each WHILE loop is at most

f2’-1/m]. For our applications, we usually have m >2’-2, and this means

at most two turns.

2.4 Russian Peasant Method

A third general approach is based on the Russian peasant method [6]: to

multiply integers x and y, initialize a counter to zero, halve x and double y

iteratively until x = O, adding y to the counter every time x is odd. The

final value of the counter holds the product. The variation here is that

doubling is done modulo m. An implementation appears in Figure 3. As soon

as a s 2‘, we stop iterative halving and doubling to apply AF. The number

of turns into the first WHILE loop is never more than d. For the second one,

b– 2 For applications where very fewit is never more than 2 when m > 2 .

different values of m are used, and especially for small values of m, it might

be profitable to precompute sm = v%, and replace the condition (a > H) by

(a > sin), and the second WHILE. . . DO by an IF . . . THEN.

2.5 Empirical Comparisons

We performed an empirical speed comparison of these techniques on a

VAX-1 1/780 computer (on which b = 32), using VAX-11 Pascal version 3.6

[161 under VAX/VMS version 4.6, and on an IBM-PS2/50 and an IBM-PC/XT,

both with b = 16 and using Borland’s Turbo-Pascal version 3.0 [151. We also
included in our comparison an implementation of AF for the case where
a2 < m. For eac]l case, we performed two runs, choosing randomly 100 values
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FUNCTION MultMod_Decompos (a, s, m INTEGER) INTEGER;
{Assumes O < a < m and O < s < m. Returns (a*s)MOD m }

CONST
H = 32768; {Should be the value of 2**d}

VAR
aO, al , q, qh, rh, k, p: INTEGER,

BEGIN
IF a < H THEN

BEGIN aO := a; p := O END
ELSE

BEGIN
al := a DIV H; aO := a – H*al;
qh ,= m DIV H; rh := m – H*qh;
lFal >= HTHEN {a2 = 1}

BEGIN
al .= al – H, k := s DIV qh;
p .= H*(s – k*qh) – k*rh;
WHILE p< ODOp:=p+m
END

ELSE
p := o

j#’ a; ‘~2j8’!i% ‘}

BEGIN
q :=m DIV al; k:=s DIVq,

p:=p–k*(m–al*q); lFp>OTHENp:=p–m;
P:=p+al*(s–k*q); WHILE p< ODOp:=p+m
END;

{P = ((a2*h + al)*s)MOD m)
k := p DIV qh; p := H*(P – k*qh) – k*rh;
WHILE p< ODOp:=p+m
END;

~~al ‘$~\%J’’*s)M0D m}
BEGIN
q := m DIV aO; k := s DIV q;

P:= P–k*(m–aO*q); lFp>OTHENp”=p–m;
p:= P+aO*(s–k*q); WHILE p< ODOp:=p+m
END;

MultMod_Decompos := p
END

Fig. 2. Pascal implementation of decomposition method.

of mintheset {l, . . ..21-l– 1} for the first run and 100 values of m in the
set {25-2 , . . . . z b- 1 – 1} for the second run. For each value of m, 100 values

of a and s were drawn at random from the set {1, . . . . m – 1} (from

{l,..., 1 G] } in the case of AF). For each method, the average CPU time

per function call was computed. To obtain confidence intervals, the whole

experiment was repeated 10 times, using different seeds to generate the
random values. Very low variations were observed across repetitions. Table I

gives the results, in the form of 90-percent confidence intervals. These values

include the times for function calling and parameter passing, which is about
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FUNCTION MultMod_Russian (a, s, m: INTEGER): INTEGER;
{Assumes O < a < m and O < s < m. Returns (a*s)MOD m.}

CON!3T
H ==32768; {Should be the value of 2**d)

VAR
q, r, k, p: INTEGER;

BEGIN
p := –m;

WHILE (a > H) DO
BEGIN
IF IODD (a) THEN

E3EGIN
p:=p+s; lFp>OTHENp:=p–m
END,

a := a’DIV 2:
s:=(s–m)+s; lFs<OTHENs:=s+m
END;

q:=m DIVa; k:=s DIVq;
s := a*(s – k*q) – k*(m – q*a);
WHIL.Es<ODOs:=s+m;
p:=p+s; lFp<OTHENp:=p+m;
MultMod_Russian := p
END

Fig. 3. Implementation of Russian peasant approach.

Table I. Empirical Speed Comparison of Four Methods to Compute as MOD m
(average time per call in nzs)

Recursive Decom- Russian

AF Reduction position Peasant

vAx/780
l<m <231 0.024 + 0.003 0.264 ~ 0.003 0.150 * 0.004 0.265 ~ 0,004
230 ~ m < 23] 0.033 t 0.003 0.279 k 0.007 0.178 & 0.005 0.290 * 0.007

IBM-PS2/50
lsm<215 0.083 t 0.002 0.243 * 0.002 0.175 t 0.001 0.190 t 0.002
214 ~ m <215 0.084 + 0.001 0.245 A 0.001 0.175 i 0.001 0.192 ~ 0.002

IBM-PC/XT
1<??2 <215 0.548 & 0.001 1.89 * 0.008 1.36 + 0.003 1.28 & 0.006
214 ~ m <215 0.556 + 0.001 2.00 + 0.002 1.38 t 0.002 1.38 & 0.002

0.004 ms on the VAX, about 0.025 ms on the PS2/50, and about 0.13 ms on

the PC/XT on the average. The (high) overhead induced by accessing the
“clock” of the current process, generating the values of m, a, and s, looP

control, and statistical collection, was estimated by running the same pro-

grams without the function calls, and removed by subtraction. The computed

90-percent confidence intervals for these values were 0.599 ~ 0.003 ms for

the VAX, 0.42,4 ~ 0.001 ms for the IBM/PS2, and 3.087 + 0,001 ms for the

IBM/PC. Notice that the statistical collection and variate generation were
done differently on the VAX and on the microcomputers, and this is the

reason why it took more time on the VAX than the PS2. The upper bound on

ACM Transactions on Mathematical Software, Vol 17, No. 1, March 1991.



106 . p L’Ecuyer and S Cot6

m is 231 on the VAX and 215 on the microcomputers. Therefore, computations

were “easier” on the latter machines, and the results of Table I cannot be

used to compare the relative speeds of the machines.

Of course, as usual, the results of such empirical tests are highly dependent

on the computer and compiler used. Their aim is just to get a rough idea of

the relative speeds in practice. On the VAX, we see that among the general

methods, the fastest one is decomposition. However, it is the one with the

most complex source code. When az < m, one may use approximate factoring,

which is about six times as fast. On the PS2 and PC/XT, Russian peasant,

which is simpler, is about as good as decomposition. The explanation is that

when b is smaller, the former goes into fewer turns into its first WHILE loop.

The worst case bound on this number is linear in b. Decomposition, on the

other hand, takes an O(1) time when m is near 2 ~- 1 and should dominate on

computers with larger word sizes.

3. A RANDOM NUMBER PACKAGE

We now propose a portable set of utilities for random number generation. We

consider a basic underlying generator of period p. Let so be the basic seed

(initial state) for this generator and s,, s,, . . . be its sequence of successive

states. Let T denote the transition function of the generator, that is, the

operator T: S ~ S such that T( SJ = s,+ ~, and T h its k-fold composition

(T~(s,) = sz+~). Let U, w, and G be three positive integers such that G2”2 W

~ P~ and let v = 2U and w = 2W. we Partltlon the sequence sO) sl> . . . ~ ‘GVW.1
. .

into G disjoint subsequences, starting from states II = so, IZ = s ~ w =

TVw(ll), 13 = S2VW = T ‘w(~z), . . . . ~G = s~~_~~v~ = Tvw(lG-l), respec-

tively. Each of these subsequences corresponds to a “virtual” generator g, for

g= l,.. ., G, and it is further partitioned into V subsubsequences of length

W, starting from states Ig = S(g _ ~)v w, Tw(Ig) = S((g-I)V+I)W, . . ~>T(v-l)~(]g)

= SC(gv. ~)w, respectively. lg is called the initial seed of generator g.

At any moment during program execution, generator g is in some state Cg,

say, in its subsubsequence number k, that is, such that Cg = T(h - 1)’+”( lg),

where O < n < W. We call Cg the current state of generator g. We also define

its last seed Lz = T(k - l)w(Ig) and its next seed Ng = Tkw(Ig) = Tw(Lg). Lg

is the starting state of the current subsubsequence, and Ng the starting state

of the next one.

In the proposed package, so = II has a fixed initial value. Global or static

variables memorize the current values of Cg, Ig, and Lg for each generator

g. An initialization routine computes the initial values of Ig according to the

definition above and initializes Cg and Lg to Ig for g = 1, . . . . G. In a

simulation language or package, this routine would be called automatically

at the beginning of the simulation program execution.
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A procedure lnit_Generator allows the user to reset the state Cg of generator

g either to its initial seed lg, or to its last seed Lg, or to a new seed which

corresponds to its next seed Ng. The value of Lg is updated accordingly. Thus

each generator can produce many disjoint streams (if V and W are large

enough) and each stream is independent of the lengths of the previous

streams. Suppose, for instance, that you want to compare two or more

configurations of a system using simulation with common random numbers

[1], and that you do many replications. For variance reduction purposes, you

will probably use different generators for different sources of randomness in

the system. Before each replication, you will also call lnit_Generator to obtain

a new seed for each generator in use to make sure that for every replication

the same streams are used for all the configurations.

The initial seed .sO= II is normally set automatically, but the user can

choose a different one, if he or she wishes to do so, by using the procedure

Set_lnitial_Seed,, Upon calling this procedure, all Ig are recomputed so that

Ig= 2’vw(lg_l)l for g= 2, ..., G, and each Cg and Lg is reset to Ig.

One can also modify the initial seed of a given generator without affecting

the other ones (Set_Seed) or advance its state by 2 k values for some positive

integer k (Advance_State). Notice, however, that after calling one of these two

procedures, the! initial seeds are no longer spaced VW values apart. Proce-

dure Get_ State makes it possible to read the state Eg of generator g.

Two functions generate uniformly distributed random values: Uniform_O 1

generates values (strictly) between O and 1, while Random generates integers

from the set {1,. . . . N}, where N is a very large integer. These values could

be transformed as desired for generating values following other distributions,

Function Random is provided because it is sometimes preferable to use

directly the integer produced by the generator instead of using its transfor-

mation into a iloating point number (for instance, when generating uniform

random integers over an arbitrary interval; see [1, Sec. 6.7. l]).

Each generator can also produce antithetic values (with respect to the

values normallly produced). The system maintains a set of Boolean flags for

that purpose, one per generator, and the procedure Set_Antithetic permits to

turn them on or off. If x is the value normally returned by Uniform_O 1 (when

its flag is set to FALSE), then 1 – x is the antithetic value, returned when its

flag is set to TF?UE. The same holds for Random, with x and 1 – x replaced by

n and N – 1 -- n, respectively.

A user’s view of the available tools appears below in Pascal notation. It

corresponds to an implementation for 32-bit (or more) computers, based on

the generator proposed in [8], in which G = 32, V = 220, W = 230, and

N = 2147483562. An implementation code is given in the appendix. The

package can also be easily implemented using a different base generator for

which “jumping ahead” facilities are provided.

CONST
Maxg = 32;

TYPE
Gen = l.. Maxg; {A generator number.}
Seed_Type = (lnitial_Seed, Last_Seed, New_Seed);
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PROCEDURE lnit_Generator (g: Gen; Where: Seed-Type):

Reinitializes the state of generator g to its initial seed Ig, or to its last seed Lg,
or a new seed ( = iVg) set 2 W values apart form Lg in the basic sequence.

PROCEDURE Set_lnitiaI_Seed (S1, S2 INTEGER);

Resets the initial seed of generator 1 to the values S 1 and S2, which must
satisfy: 1 < S 1 s 2147483562 and 1 s S2 < 2147483398. The initial seeds of
all other generators are recomputed according y, and all generator’s states are
reset to these initial seeds. This procedure is called automatically at the

beginning of program execution, with (default) parameter values S 1 =

1234567890 and S2 = 123456789.

PROCEDURE Set_Seed (g: Gen; S1, S2: INTEGER);

Resets the initial seed and the state of generator g to the (S1, S2), which must
satisfy 1 s S1 < 2147483562 and 1 < S2 s 2147483398. The states and seeds

of other generators remain unchanged.

PROCEDURE Advance_State (g: Gen; k. INTEGER);

Advances the state of generator g by 2 k values and resets its initial seed to
that value.

PROCEDURE Get_ State (g: Gen; VAR S1 , S2. INTEGER);

Returns in (S 1, S2 ) the state Eg of generator g.

PROCEDURE Set_ Antithetic (g: Gen; B: BOOLEAN),

When B is set to TRUE, generator g starts generating antithetic values, until it
is reset to FALSE. Initially, all generators produce nonantithetic values.

FUNCTION Random (g. Gen), INTEGER;

Returns a random integer following a uniform distribution over
{1, . . . . 2147483562}, using generator number g.

FUNCTION Unlform_Ol (g. Gen), REAL:

Returns a random value following the uniform distribution between O and 1
(strictly), using generator number g.

APPENDIX. A PASCAL CODE FOR 32-BIT (OR MORE) COMPUTERS

In the code below, the user may modify the values of Maxg, v, and w, but we

recommend that v + w + lg(Maxg) s 60, where Ig denotes the log in base 2. If

these values are modified, the constants al .W, a2_W, al _VW, and a2_VW

must be recomputed accordingly. An efficient way to precompute cz2’MOD m

is to start with a and square it J“ times modulo m, using the function

Mu ItMod. The given implementation of Uniform_O 1 simply multiplies a ran-

dom integer by 1/m 1. Alternative (more involved) implementations

suggested and justified in [9, 101.
. . .

Maxg = 32;
CONSTANT

{v= 20, w = 30;)
ml = 21 47483563; m2 = 2147483399;
al = 40014; a2 = 40692,
al_W = 1033780774; { = al **(2* *w) MOD ml
a2_W = 1494757890; { = a2**(2**w)MOD m2
al_VW = 2082007225; { = al **(2* *(v + w)) MOD ml
a2_VW = 784306273; { = a2**(2**(v + w)) MOD m2
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TYPE
Gen= l.. Maxg; {A generator number. }
Seed_Type = (initial-Seed, Last_Seed, New_ Seed);

VAR

lg_l, 19_2, iLg_l, Lg-2, Cg_l, Cg_2: ARRAY [Gem] OF INTEGER;
Antithetic: ARRAY [Gen] OF BOOLEAN;

FUNCTION M!ultMod (a, s, m: INTEGER): INTEGER;
{Same as MultMod_Decompos in figure 2.}
. . .

PROCEDURE lnit_Generator (g: Gen; Where: Seed-Type);
BEGIN
CASE Where OF

lnitial_Seed:
BEGIN
Lg_l [g] := lg_l [g]; Lg_2 [g] .= 19-2 [9]
END;

Last_Seed: ;
New_Seed:

BEGIN
Lg_l [g] := MuItMod (al _W, Lg_l [g], ml);
Lg_2 [g] := MuItMod (a2_W, Lg_2 [g], m2)
END

END;
Cg_l [g] ::= Lg_l [g]; Cg_2 [g] := Lg_2 [g]
END;

PROCEDURE Set_lnitial_Seed (S1, S2: INTEGER);
VAR

g: INTEGER;
BEGIN

lg_l [1] := Sl; lg_2 [1] := S2;
lnit_Generator (1, lnitial_Seed);
FOR g := :2 TO Maxg DO

BEGIN
lg_l [g] := MuItMod (aI_VW, lg_l [g – 11, Ml);
lg_2 [g] := MuItMod (a2_VW, lg_2 [g – 1], m2);
lnit_Generator (g, lnitial_Seed)
END

END;

PROCEDURE, Set_Seed (g: Gen; S1, S2: INTEGER);
BEGIN
Igl [g] := S1 ; lg2 [g] := S2; lnit_Generator (g, lnitial_Seed)
END;

PROCEDURE Advance_State (g: Gen, k: INTEGER);
VAR

BI , B2, 1: INTEGER;
BEGIN

B1 := al; B2 := a2;
FOR I := ‘1 TO k DO

BEGIN
BI := MultMod (Bl, BI, ml);
B2 := MultMod (B2, B2, m2)
END;

{Bl = al**k and B2 = a2**k. }
Set_Seed [g, MuItMod (Bl, Cgl [g], ml), MuItMod (B2, Cg2 [g], m2))
END;
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PROCEDURE Get_State (g: Gen; VAR S1 , S2 INTEGER),
BEGIN
SI := Cgl [g]; S2 := cg2 [g]
END;

PROCEDURE Set_ Antithetic (a: Gen, B“ BOOLEAN);.-
BEGIN
Antithetic [g] ‘= B

END;

FUNCTION Random (g. Gen): INTEGER;
VAR

Z, k, S1 , S2 INTEGER,
BEGIN
S1 “= cg_l [g], S2 .= cg_2 [g]:
k := S1 DIV 53668,
SI “= 40014*(s1 – k*53668) – k*1221 1 ;
IF S1 <0 THEN S1 .= S1 + 2147483563;
k := S2 DIV 52774,
S2 := 40692*(s2 – k*52774) – k*3791 ;
IF S2 <0 THEN S2 .= S2 + 2147483399,
cg_l [g] .= S1 ; cg_2 [g] := S2;

z := S1 – S2;
IF Z < 1 THEN Z = Z + 2147483562;
IF Antithetic [g] THEN Z ,= 2147483563 –
Random := Z
END;

FUNCTION Uniform_Ol (g: Gen): REAL;
BEGIN
Uniform_Ol = Random (g)*4 656613057E.
END;

PROCEDURE Inkialize;
VAR

g INTEGER,
BEGIN

FOR g ,==TO Maxg DO Antithetic [g] := FALSE;
Set_initial_Seed (1 234567890, 123456789)
END,

BEGIN {Main program)
Inrtiahze

.

END

z,

10
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