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Abstract

We give a quick overview of some key issues in (quanti-
tative) call center management: building realistic models,
developing efficient tools to simulate these models, finding
quick approximation formulas for the performance mea-
sures of interest, and developing algorithms and software
to optimize the staffing and scheduling of agents. This is
discussed in the context of a multiskill center, in which dif-
ferent types of calls are handled by different agent groups
(with different skill sets).

1. Introduction

Practically every large organization has a contact center,
through which the customers or users can contact the orga-
nization and vice-versa, by telephone, FAX, email, Internet
chat, and so on. When all contacts are made by telephone,
we talk of a call center. The economic importance of call
centers is greater than many would think: In North America,
they employ around three percent of the workforce; this is
more than in agriculture! The salaries of agents account for
about 70% of the costs in typical call centers. Discussions
of call center issues and models, and extensive reference
lists, can be found in [7, 23, 38, 45, 48, 50], for example.

Based on forecasts of future call volumes, both in the
short run and long run, call center managers must decide on
the size and organization of their centers, plan the workforce
(e.g., when to hire and train agents), decide on how many
agents of each type to have in the center at each time to pro-
vide the required quality of service at minimal cost, con-
struct working schedules for the available agents, select call
routing strategies when there are different types of calls and
agents, make outsourcing (subcontracting) decisions, and so
on. All this decision-making gives plenty of opportunities
for optimization.

The next section of this paper describes the main com-
ponents (from a performance viewpoint) of a call center

that handles multiple types of calls,. It points out some
important modeling and optimization problems arising in
this system and its variants. In Section 3, we discuss the
development of realistic stochastic models for this system.
The possibility of obtaining useful queueing formulas and
approximations is briefly covered in Section 4. Tractable
queueing models oversimplify reality and are not very reli-
able for many performance measures of interest in real-life
call centers. In Section 5, we discuss simulation tools for
realistic models of contact centers. Their efficiency is very
important, because for realistic models, optimization must
be done via simulation and this typically requires thousands
of simulation runs. In Section 6, we mention important opti-
mization problems encountered in this context, and discuss
in more detail the staffing and scheduling of agents.

2. A Call Center with Multiple Call Types

2.1. Call types and agent skills

In a typical call center, the arriving calls are classified in
different types, according to the required technical skill to
answer the call, the language, importance of the call, etc.
Agents are also classified in skill groups according to the
subset of call types they can handle and (perhaps) their ef-
ficiency for handling these calls. Calls arrive at random ac-
cording to some stochastic process. When a call arrives,
it may be assigned immediately to an agent that can han-
dle it (if there is one available) or it may be put in a queue
(usually one queue per call type). When an agent becomes
available, the agent may be assigned a call from one of the
queues, or may remain idle (e.g., waiting for more impor-
tant calls). All these assignments are made according to
some routing policy that often incorporates priority rules
for the calls and agents. Figure 1 illustrates this setting. We
assume that there are K call types and I skill groups. In
the figure, Si represents skill group i, λk is the mean arrival
rate for call type k, and µk,i is the mean service rate for call
type k by an agent of group i. The load of call types k is
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Figure 1. A multiskill call center

the total amount of agents’ time required for their service;
for example, if all are served by skill group i, their load is
λk/µk,i. Note that the arrival process is usually not a sta-
tionary Poisson process and the service times are usually
not exponential.

Calls waiting in queue may abandon after a random pa-
tience time (this is represented by the horizontal arrows in
the figure). Those who abandon may call again later, al-
though those retrials are rarely modeled in practice, usually
because of lack of sufficient data. Callers who received ser-
vice may also call again for a number of reasons; these are
called returns.

In the (degenerate) special case where each agent has a
single skill, we have K single queues in parallel. If each
agent has all skills, then we have a single skill set and a
single queue. The system is obviously easier to analyze in
these extreme cases. With all agents having all skills, the
system is also more efficient (smaller waiting times, fewer
abandonments) if we assume that the service time distrib-
ution for a given call type does not depend on the agent’s
skill set. However, this assumption turns out to be wrong
in practice: agents are usually faster when they handle a
smaller set of call types (even if their training gives them
more skills). Agents with more skills are also more expen-
sive; their salaries depend on their skill sets. Thus, for large-
volume call types, it makes sense to dedicate a number of
single-skill agents (specialists) to handle most of the load.
A small number of agents with two or more skills can cover
the fluctuations in the proportion of calls of each type in the
arriving load. Wallace and Whitt [52] argue that for well-
balanced systems, one or two skills per agent can often give
a performance almost as good as all skills for all agents,

even if we assume that the agents’ speed does not depend
on the skill set.

2.2. Performance measures

The main performance measures in call centers have to
do with the quality of service and the operating costs. Here
we only consider the cost of agents (their salaries). Most
of the other costs are long-term investment costs and fixed
costs (equipment, building rent, . . . ). In some cases, there
are also communication costs (phone bills), outsourcing
costs, penalty costs for bad service, and so on.

The quality of service in general is related to customer
satisfaction. For example: Was the customer’s concern or
question resolved completely and quickly? Was the cus-
tomer’s experience pleasant? Here, we restrict ourselves to
measures that depend on the waiting times of calls before
they are answered.

The most frequently used measure in practice is the ser-
vice level (SL), defined as the fraction of calls that wait less
than an acceptable waiting time τ (typically 20 to 30 sec-
onds). The SL can be measured and controlled separately
by time period (hour, day, etc.) and by call type, or in an ag-
gregated way. For example, one may ask that at least 80%
of all calls must be answered within 20 seconds and that at
least 90% of all calls of type i0 (for a specific i0) must be
answered within 5 seconds. An important motivation for
studying this measure is that for many types of call centers
that provide services, in several countries, there are govern-
ment regulations on the minimal acceptable SL and the call
centers may have to pay very large fines when this SL is not
met.

The SL is definitely not a perfect measure. In fact, to
maximize the SL, an optimal policy would never serve any
call that has already waited more than τ . But such an ex-
treme policy is definitely unacceptable in most cases. A po-
tential improvement would be to look at the expected excess
waiting time over the threshold τ , defined as [37]:

E[max(0, W − τ)] = E[W − τ | W > τ ] · P[W > τ ]

where W is the waiting time of a randomly chosen cus-
tomer.

Another important measure is the abandonment ratio,
defined as the fraction of calls that abandon; this could also
be per call type, per period, and aggregated.

Managers also often look at the occupation ratio of
agents, per agent type and per period. In theory, they would
like to have their agents occupied as much as possible under
the quality of service constraints. But important human fac-
tors must also be taken into account. Overstressed agents
tend to perform more poorly in terms of both quality and
speed. Generally, it is a bad idea to have occupation ratios
above 90–92% for a sustained period of time. Another issue
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is fairness between agents and agent groups: their occupa-
tion ratios should not differ too much.

In a center that brings revenue (e.g., via sales), other per-
formance measures of interest could be the average revenue
per agent per hour or the fraction of calls that lead to a sale.

2.3. Optimization and control

Management decisions are made at different time scales
in contact centers. Long-term strategic decisions include
choosing the size and layout of the center, the contact types
to be handled, the skill groups, the types of work sched-
ules, outsourcing decisions and contracts (if any), and so
on. This requires long-term forecasts of call volumes. Hir-
ing agents, and training new and old agents to increase their
skills, is medium-term tactical planning. High turn-around
of employees is frequent in call centers, so training is a
(costly) continuous process. The short-term planning in-
cludes staffing decisions (how many agents of each type to
have in the center at each time of the day), scheduling (how
many agents should we have for each possible work sched-
ule for the day or week and for each skill group), and ros-
tering (assigning a working schedule to each physical agent,
for each week). These decisions are made a few days to a
few weeks in advance. Short-term operational decisions are
made during the day. Hour-by-hour decisions include can-
celing training or meetings to have more agents available if
the volume of calls is higher than expected, assigning agents
to other tasks when the traffic is lower than expected, etc.
Minute-by-minute decisions include the routing rules that
assign that control in real time the agent-to-call and call-to-
agent assignments. These rules act as controlling devices
for the SLs, across call types and globally. They can be
used for giving priorities to certain call types.

In a truly optimal routing policy, the decisions would
generally depend on the entire state of the system. Such op-
timal dynamic policies are usually too complicated to com-
pute and would be too hard to implement, although they can
be computed or approximated in simple cases [10,25,39]. A
class of commonly-used static routing rules operate as fol-
lows: Each call type has an ordered list of agent types; if all
agents in the list are busy when a call of that type arrives, the
call joins a queue (usually one queue per call type). Like-
wise, each agent type has an ordered list of queues (call
types) to look for when it becomes available. This specifies
some form of priorities [15, 22, 52]. One must be careful
with such rules, because they could lead to imbalanced and
sometimes unstable systems even if there is enough skill
supply to cover the load [23]. If a call type has low prior-
ity in the ordered lists, it may happen that the agents that
can serve it spend too much time on other call types and the
fraction of their time left for the given call type does not suf-
fice to handle the load. One may even construct examples

where adding a skill to an agent reduces the overall perfor-
mance of the system (because with the new skill, the agent
may spend too much time on the wrong call type). To avoid
these problems, we may prefer rules that look at the queue
lengths or at the waiting time of the first call in queue for
each queue, and use this information to select the queues.

In a staffing problem, the day is divided into periods
(e.g, half hours) and the objective is to determine how many
agents of each type to have in the center in each period, to
meet the performance constraints (e.g., on the SL), at mini-
mal cost. It is important to underline that the SL in one pe-
riod can depend on the number of agents in other periods,
either before or after. Suppose we can compute an optimal
staffing solution. A major difficulty is that it is generally not
possible to match exactly the optimal staffing by scheduling
a set of agents whose working shifts are admissible (i.e., sat-
isfy the constraints determined by Union agreements). The
scheduling problem consists in determining a set of agents,
each with its skill set and its (admissible) working schedule
for the week (or working shift for the day), so that the per-
formance constraints are met, at minimal cost. Of course,
flexibility in the schedules may have a significant impact on
the optimal cost. A two-step approach to this problem is to
first compute an optimal staffing for each period and then
to cover this staffing by a set of working shifts, at minimal
cost. But this approach is generally suboptimal and the gap
could be significant, e.g., if the skill sets of the agents se-
lected in successive periods in the first step do not match.
An optimal scheduling solution may also be impossible to
implement, because in practice we do not have an infinite
supply of each agent type. In a scheduling and rostering
problem, for a given set of agents and a given set of ad-
missible schedules, we must assign at most one schedule to
each agent to meet the performance constraints at minimal
cost.

2.4. Economies of scale and recourses to
deal with uncertainty

Standard queueing formulas tell us that sharing resources
provides economies of scale. For example, suppose two call
centers handle the same types of calls and center j needs nj

agents to provide the required SL, for j = 1, 2. Then if we
merge the two centers in a single one (and use good rout-
ing policies), the required number of agents cannot exceed
n1 + n2, and is usually smaller. Larger call centers are gen-
erally more economical for this reason. Sharing the agents
by merging the centers or by having agents with multiple
skills can be seen as a recourse to deal with the uncertainty;
it helps when there are more (or longer) calls than expected
of a given type and less of another type in a given period of
time.

For the situations where the total volume of calls in a
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given time period can be much larger or much smaller than
expected (i.e., has high variance), other types of recourses
are needed. Flexibility to change the staffing levels on short
notice can be very valuable if the daily call volume has high
variability and is difficult to predict accurately, as is often
the case [6]. For example, agents could be paid a certain
amount to remain on standby at home, ready to be called
for work at any time on a given day, and agents at work
could be given the choice to go home when the traffic is
too low. Another potential option is to sign an arrangement
with an external provider to outsource the overflow on days
of high volume. However, a major drawback of this type of
option is the high cost of training these extra agents and the
higher uncertainty in the quality of call handling by those
agents whose services are required only a small fraction of
the time.

Part of the agents’ time in a call center is usually de-
voted to meetings and training sessions, which are normally
scheduled every day. Meetings and training can be used as
buffers against uncertainty: they can be canceled on days of
high call volume and rescheduled (or recovered) on days of
lower volume.

Blending is yet another way of buffering against uncer-
tainty. In a blend system, inbound calls can be mixed with
other types of contacts such as email, FAX, or outbound
calls, which can be handled only when the traffic is lower.
An outbound call is when the center tries to reach a cus-
tomer. This could be because this customer has left a mes-
sage and wants to be called, or because of specific problems
with this particular customer (unpaid bill, etc.), but most of-
ten the outbound calls are marketing tools: the center wants
to reach customers to sell them products. In a blend cen-
ter with inbound and outbound calls, the outbound calls are
triggered by a predictive dialer; this is an automatic sys-
tem that dials customer numbers (usually several numbers
in parallel) when the traffic is deemed low enough, trying
to reach customers. A right party connect occurs when the
outbound contact is successful. A mismatch occurs when
the successful contact cannot be served immediately be-
cause no agent is available (this can happen if a larger than
expected fraction of the dials were successful or if a large
number of inbound calls arrived in the meantime). In this
context, we may want to put a lower bound on the expected
volume of outbound calls per day, or on the expected vol-
ume of sales per day from the outbound calls (the proba-
bility of reaching a customer and the probability of a sale
may depend on the time of day), and an upper bound on
the expected number (or fraction) of mismatches. We may
then want to optimize the operating cost of the center under
these additional constraints. This gives rise to challenging
optimization problems.

3. Realistic Modeling

Building realistic models of contact centers is difficult
mainly because of the lack of detailed information and data.
In most cases, the data is aggregated automatically by the
computerized systems that collect it. It is not uncommon to
have only averages over each half-hour of the day; e.g., the
total number of arrivals, the number of abandonments, the
average service time, the number of calls with good SL, and
perhaps a few other measures, for each call type and each
half-hour. For the agent groups, we may have their num-
ber and occupancy ratio over each half-hour. It is difficult
to find the appropriate distributions and dependencies be-
tween random variables with such aggregated data. There
is typically very little information available (if any) on the
patience-time distribution and on the retrials, for example.
Agents might not be logged-in to the system 100% of the
time for a number of reasons, and there is often little or
no information to model this. Call center managers often
have their own (undocumented) ad-hoc rules to control the
system when there is a change in the total call volume, or
call type proportions, or if the SL goes down too much.
Most models neglect these important aspects. Nevertheless,
enough information has been found in the available data to
support the following conclusions.

The arrival process of calls is not a Poisson process with
deterministic (time-dependent) rate. In all studies that we
know, the arrival process agrees with a Poisson process only
if the arrival rate of the Poisson process is itself a stochastic
process [6, 13, 36, 51]. Typically, the variance of the total
number of calls in a given time period is much larger than
the mean (for a Poisson process, it should be equal to the
mean). The (mean) arrival rate also depends strongly on the
time-of-day and often on the day-of-week. Finally, there is
positive stochastic dependence between arrival rates in suc-
cessive periods within a day, and between arrival volumes
of successive days. Models that agree with these properties
are proposed by [6].

Service time distributions are often assumed to be expo-
nential and some studies have found this reasonable [30].
However, recent call center data analyzes have found that,
among the parametric distributions, the lognormal is usu-
ally a much better fit [13, 19, 21, 50]. Christos Alexopoulos
(personal communication) recently found a case where the
lognormal was not appropriate but the log-logistic was an
excellent fit.

The patience-time distribution is important to model cor-
rectly, because it can have a significant impact on the SL
and abandonment ratio, especially in heavy-traffic condi-
tions [23, 56]. The data on time to abandonment (when
available) is highly censored, because the large majority of
call (usually more than 95%) are answered before abandon-
ment. Thus, estimating the patience-time distribution re-
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quires the use of special statistical techniques for censored
data [13].

There are very few studies on retrial estimation. One of
them is [33], where the first-call arrival rates and retrial rates
are estimated jointly from detailed data. Ignoring retrials
can lead to significant modeling errors, in particular because
in heavy-traffic conditions, the retrials amplify the observed
(net) arrival rate [1].

4. Queueing Approximations

In the case of a single call type, if we assume that the
system is in steady-state, the arrival process is Poisson with
constant rate λ, the service times are independent and expo-
nential with rate µ, there are no abandonments, and there are
s agents, then we have a standard M/M/s queue, for which
the delay probability P[W > 0] (where W is the waiting
time of a randomly selected customer) is given by the so-
called Erlang C formula [20, 23]. Given that a customer
must wait, its conditional waiting time in queue is exponen-
tial with known mean 1/(sµ − λ). The SL for a given s is
easy to compute from this information:

P[W > τ ] = P[W > 0] exp[(sµ− λ)τ ].

The minimal s required to reach a given SL can be obtained
via some root finding method, using the fact that the SL is
monotone in s.

Halfin and Whitt [29] have developed an approximation
to the Erlang C formula when s is large and the system has
high utilization, whereas P[W > 0] has a predetermined
value. It is much simpler to compute and provides better
insight than the exact formula. They consider a sequence
of M/M/s queues for which s → ∞ and (1 − ρ)

√
s → β

for 0 < β < 1, where µ is fixed and ρ = λ/(sµ) is the
utilization factor of the system, and prove that

P[W > 0] → 1
1 + βΦ(β)/φ(β)

(1)

where Φ and φ are the standard normal distribution func-
tion and density, respectively. This approximation has been
extended in [55] and is further discussed in [12, 23]. The
square-root safety staffing (approximation) formula com-
monly used in call centers is justified by this result. This for-
mula works as follows: To achieve a given target α for the
delay probability P[W > 0], for a load r = λ/µ, we take
s = r + ∆ agents, where ∆ = β

√
r is the “safety staffing”

above the load to account for the stochastic variability. To
obtain this formula, it suffices to multiply the approxima-
tion (1 − r/s)

√
s ≈ β by

√
s and note that

√
s/
√

r → 1
as s → ∞. The formula gives insight in the economy of
scale made when the load increases: the safety staffing is
proportional to the square root of the load. When expressed

as a percentage of the load, this percentage goes to zero as
1/
√

r when r →∞.
In the Halfin-Whitt asymptotic regime, s and r go to in-

finity simultaneously at the same rate and the delay prob-
ability converges to a constant. Other types of heavy-
traffic limits have been defined in the literature. In the
so-called conventional regime, for example, s is kept con-
stant whereas both λ and µ increase linearly so that ρ and
P[W > 0] both converge to 1 [54]. If ρ is fixed while
λ and s increase to infinity, then P[W > 0] converges to
0, so in the limit, nobody waits. This quality-driven as-
ymptotic regime is appropriate for call centers where speed
of answer is much more important than the cost of agents
(think of emergency services, for instance). If we fix the
safety staffing ∆ while both λ and s increase to infinity,
then P[W > 0] converges to 1, i.e., everyone waits in the
limit. This is an efficiency-driven regime. It is appropri-
ate for situations where the productivity of agents is much
more important than the wait (think of answering emails
or processing orders made by Internet, for example). An
asymptotic regime for which P[W > 0] is fixed to a con-
stant in the interval (0,1), such as the Halfin-Whitt regime,
is called a quality and efficiency-driven (QED) regime. This
type of regime is in good agreement with the dynamics of a
typical large call center with constraints on the SL and aban-
donment ratio. These regimes are further discussed in [54].

The formulas and approximations just described have
counterparts for the case where there are abandonments, un-
der the assumption that the patience times are exponential.
The Erlang C model is then replaced by the Erlang A model
(we obtain an M/M/s+M queue, i.e., with Markovian aban-
donment) [14,23,26,47]. There is still a square-root formula
for the safety staffing in the QED regime, but the constant
β that corresponds to a given value of the delay probability
is smaller than that given by (1) and could even be neg-
ative if there is a large percentage of abandonments [26].
Moreover, the percentage of abandonments, the mean ser-
vice time, and the server’s idleness are all in O(1/

√
s) in the

QED regime. In the extreme case where the abandonment
rate goes to infinity, we have a system where every waiting
customer abandons. This type of loss system corresponds to
the Erlang B model.

To accommodate time-dependent arrival rates, the stan-
dard procedure is to partition the time in short periods (e.g.,
half-hours), assume that the system is stationary with a
given arrival rate over each period, and apply the Erlang
models separately for each period. This neglects transient
effects. This type of piecewise stationary approximation
can be taken to the limit with the length of the periods go-
ing to zero; the arrival rate can vary continuously in time,
the Erlang formulas are used at each point in time, and the
results are integrated with respect to time [28, 53]. This is
pointwise stationary approximation. An improvement is to
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use some delay ∆ to account for the transient effect: the
arrival rate at time t is used to compute the performance
at time t + ∆ [27, 34]. Other methods are discussed and
compared in [34].

All these approximations are for a single call type only.
Queueing approximations for the SL in multiskill systems
are much more difficult to obtain.

In the context of a call center with multiple call types,
multiple skills, and doubly stochastic time-varying arrival
processes, Bassamboo et al. [9] study an asymptotic regime
where the arrival rates increase faster than linearly, the ser-
vice and abandonment rates increase linearly, and the num-
ber of servers also increases toward infinity. They show how
to compute a staffing and routing policy that minimizes a
the costs of staffing and abandonments (assumed to be lin-
ear in the service capacity and abandonment counts) in their
limiting regime.

In the case of loss systems (no waiting queues, calls that
cannot be served immediately are lost), good approxima-
tions of the loss (or blocking) probability per call type have
been obtained via a two-moment approximation of overflow
process (the equivalent random method, or Hayward’s ap-
proximation) [17,18,20,57] and using an hyper-exponential
approximation [22]. Loss systems are much easier to ana-
lyze than systems with queues, mainly because they have a
much smaller state space, and a strong correlation can be
observed between average waiting time or the loss proba-
bility in certain queueing systems and the loss probability
in the corresponding loss system.

Attempts to extend these types of approximations for es-
timating the SL in systems where there are waiting queues
and fixed routing rules can be found in [5,40,41]. Although
these approximations of the SL are often far from realistic,
they turn out to be useful as rough-cut approximations to
find a good starting solution in the first stage of a staffing
optimization algorithm [5]. But to obtain reliable estimates
of the SL, abandonment ratios, server utilization, etc., in a
multiskill center, one must use simulation.

5. Simulation Tools

In view of the large gap between call-center reality and
approximate queueing models that are tractable, simulation
is a key tool for accurate performance estimation and for
optimization [45, 48]. Once the model is well-defined (see
Section 3), there is no fundamental difficulty in principle to
incorporate its detailed stochastic behavior in a simulation
program. But the programming effort can be substantial if
the model is complicated and the execution time can also be
excessive, e.g., if the call center is large, each call is simu-
lated in detail, and the routing policy is complicated. Fast
simulation is especially important if the simulation is to be

used inside an optimization algorithm (so thousands of sim-
ulations at different parameter settings could be needed).

There is commercial software for detailed simulation
of contact centers; for example Rockwell’s Arena Contact
Center Edition [8] and NovaSim’s ccProphet [49]. These
products offer the advantages of a nice graphical interface,
graphical animation, and permit one to build and run a simu-
lation program without explicit programming. On the other
hand, they are expensive to buy, the execution is rather slow,
and the tools are often not flexible enough to easily model
the complexities of call centers (e.g., the routing policies in
multiskill centers) and to integrate variance reduction meth-
ods to make the simulation statistically more efficient.

To overcome these problems, Buist and L’Ecuyer have
developed a Java library for the simulation of contact cen-
ters, called the ContactCenters library [15]. see also http:
//www.ericbuist.com/contactcenters. It is
based on the well-supported modern programming lan-
guage Java and is built over the SSJ simulation library
[42, 43]. Since it not depend on a specific graphical in-
terface, we were able to make it much more flexible than
commercial products.

Interoperability with other software (statistics, optimiza-
tion, databases, etc.) is easily achieved via the Java in-
terfaces with this software. The library provides building
blocks to simulate all kinds of call centers. It supports sev-
eral types of contacts, multiskill, blend, arbitrary dialing
and routing policies, various types of arrival processes, and
so on. Execution times are faster than with commercial soft-
ware. We tried the examples provided with Arena Contact
Center Edition and they ran about 30 times faster with our
Java library than with Arena.

The flexibility offered by the library facilitates the imple-
mentation of variance reduction techniques and gradient (or
subgradient) estimators [3, 16]. Specific variance reduction
techniques for the simulation of a multiskill call center with
stochastic arrival rate are studied and experimented in [44].

A (quite general) generic model of a multiskill contact
center, preprogrammed in Java, comes with the library. The
model parameters can be specified in an XML file and sim-
ulations can be run either from another program (e.g., when
doing optimization) or just by running an executable (no
need to program).

6. Optimization

Here we concentrate on the staffing and scheduling. Op-
timization of routing rules was discussed briefly in Sec-
tion 2.3. At a slightly higher level, the optimization of out-
sourcing, hiring, and training decisions can be formulated
as a stochastic control problem which could be solved (at
least in principle) by dynamic programming [24]. Good
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forecasts of the arrival rates (workload prediction) are re-
quired before solving any of these problems.

The following scheduling optimization problem for one
day of operation of a multiskill center is taken from [16].
Single-skill versions of this problem were studied ear-
lier in [4, 35]. There are K call types, I skill groups,
P time periods, and Q types of working shifts for the
day. In general, a schedule specifies the working hours
of an agent over several days (e.g., a week), and a shift
specifies them over a single continuous presence at the
working place (e.g., a day), but here we consider a sin-
gle day, so a shift and a schedule are the same. The
cost vector is c = (c1,1, . . . , c1,Q, . . . , cI,1, . . . , cI,Q)t,
where “t” means “transposed” and ci,q is the cost of an
agent of type i having shift q. The decision variables are
x = (x1,1, . . . , x1,Q, . . . , xI,1, . . . , xI,Q)t, where is xi,q the
number of agents of type i having shift q. The staffing vec-
tor is y = (y1,1, . . . , y1,P , . . . , yI,1, . . . , yI,P )t where yi,p

is the number of agents of type i in period p. This vector y
can be written as y = Ax where A is a block diagonal ma-
trix with I blocks Ã, where the element (p, q) of Ã is 1 if
shift q covers period p, and 0 otherwise. The abandonments
and waiting times of the calls depend on x only via y. The
SL for call type k and period p is

gk,p(y) =
E[Num. calls ans. within τk,p sec in period p]

E[Num. calls arriving in period p]

for some constant τk,p, where the expectations are with
respect to the probability distributions that define the sto-
chastic model (arrival rate process, service times, abandon-
ments, etc.). Similarly, the aggregate SL over call type k
is the expected total number of calls of type k answered
within some time limit τk over the day (say), divided by the
expected total number of calls of type k received over the
day. We denote by gp(y), gk(y) and g(y) the aggregate
SLs for period p, call type k, and overall, respectively. The
corresponding time limits are τp, τk, and τ , and the corre-
sponding minimal SLs are lp, lk and l.

The scheduling optimization problem with SL con-
straints can then be formulated as

min ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to gk,p(Ax) ≥ lk,p for all k, p,
gp(Ax) ≥ lp for all p,
gk(Ax) ≥ lk for all k,
g(Ax) ≥ l,
x ≥ 0, and integer.

(P1)

Assume now (cavalierly) that any staffing y is admissible
and that an agent of group i in period p costs ci,p. Denot-

ing c = (c1,1, . . . , c1,P , . . . , cI,1, . . . , cI,P )t, this gives the
following staffing problem, which is a relaxation of (P1):

min cty =
∑I

i=1

∑P
p=1 ci,pyi,p

subject to gk,p(y) ≥ lk,p for all k, p,
gp(y) ≥ lp for all p,
gk(y) ≥ lk for all k,
g(y) ≥ l,
y ≥ 0, and integer.

(P2)

A further simplification of (P2) arises by considering a sin-
gle period (P = 1).

To solve any of these problems, we need to approximate
or estimate the SL functions g•. In general, each of these
functions may depend on several components of the vector
y in a complicated way, because changing the number or
mix of agents in one period may change the queue length
in the periods that follow, for example, or may change the
waiting time of a call that arrived in the previous period.
Simplified queueing models may sometimes provide rea-
sonable rough-cut approximations to these SL functions,
but simulation seems to be the only way of getting reliable
estimates of their values for realistic call centers.

Simulation-based methods combined with integer pro-
gramming have been used to solve instances of (P2) with
either a single skill [4] or a single period [16]. These au-
thors start with a relaxation of the integer program and add
cuts (linear constraints), derived from the SL constraints
that are not satisfied, to drive the solution toward feasibil-
ity. For large problems, they solve the linear program in-
stead of the integer program and round up the solution (the
variables xi,q or yi,p) to the next integer. A realistic prob-
lem instance with 65 call types and 89 skill sets is solved
in [16]. However, the delivered solution is often suboptimal
by a few percentage points, mainly because of the noise in
the simulation, and takes several minutes to compute. Dif-
ferent solution methods are proposed in [35], where the SL
is approximated by transient analysis of a continuous-time
Markov chain instead of by simulation, and in [5], where
the SL is approximated by a heuristic called the loss-delay
approximation and a near-optimal solution is found using
neighborhood search. In [5], simulation is used at the end
to correct the approximation and refine the solution. The
resulting method is competitive with that of [16]; it often
performs better when operating under a limited computing
budget. A fast two-step algorithm for shift scheduling in
multiskill centers, with aggregated SL constraints across all
call types only, is proposed in [11]. In the first step, the
method computes an optimal staffing for each time period.
In the second step, it solves a linear program to find a set
of shifts that cover this staffing, by allowing agents to use
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only a subset of their skills in certain periods if needed. This
type of two-step approach may lead to suboptimal solutions
of the original scheduling problem.

A key ingredient for the efficiency of the methods based
on relaxed integer programming is a good set of initial con-
straints to define a small region that contains the feasible
set. For the methods based on neighborhood search, it is
important to start from a good initial solution. Such sets of
constraints or initial solutions can be obtained by using the
following observations (and their refinements).

Consider a single time period. If the agents from skill
group i handle a fraction βi,k of the type-k calls, then
ri,k = βi,kλk/µi,k is the load of call type k that goes
to skill group i. If there are xi agents in group i and if
there are no abandonments, then we must obviously have
xi ≥

∑K
k=1 ri,k for all i, otherwise the system is clearly

unstable. In other words, we must have enough skill supply
to cover the load, for each i. Based on this, a naive way
to do the staffing would be to solve a linear optimization
problem that minimizes the agents’ costs under the above
inequality constraints, with real variables βi,k ≥ 0 and in-
teger variables xi,k ≥ 0. However, barely covering the load
is not sufficient to meet the SL constraints, because of the
stochasticity of the system. If there are abandonments, then
it may also be unnecessary to cover all the load.

To get a more accurate picture, in the formula given
above for the required skill supply, a safety staffing should
be added to the total load

∑K
k=1 ri,k that must be cov-

ered. This could be computed by inverting the Erlang-C or
Erlang-A formula, or by using an appropriate QED-regime
approximation, for each pair (i, k). This would provide a
set of constraints that can reduce in a useful way the set of
feasible solutions to be considered in an optimization prob-
lem.

However, the ri,k’s depend in turn jointly on the rout-
ing strategy and staffing decisions. Ideally, one would like
to optimize the routing and staffing/scheduling simultane-
ously. This gives rise to large and complex optimization
problems for which only special cases have been studied so
far; see, e.g., [2, 9, 31, 32, 46].
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