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Abstract We propose an adaptive parameterized method to approximate the zero-
variance change of measure for the evaluation of static network reliability models,
with links subject to failures. The method uses two rough approximations of the un-
reliability function, conditional on the states of any subset of links being fixed. One
of these approximation, based on mincuts, under-estimates the true unknown unre-
liability, whereas the other one, based on minpaths, over-estimates it. Our proposed
change of measure takes a convex linear combination of the two, estimates the opti-
mal (graph-dependent) coefficient in this combination from pilot runs, and uses the
resulting conditional unreliability approximation at each step of a dynamic impor-
tance sampling algorithm. This new scheme is more general and more flexible than
a previously-proposed zero-variance approximation scheme, based on mincuts only,
and which was shown to be robust asymptotically when unreliabilities of individual
links decrease toward zero. Our numerical examples show that the new scheme is
often more efficient when the unreliabilities of the individual links are not so small
but the overall unreliability is small because the system can fail in many ways.

1 Introduction

This paper investigates the evaluation of the probability that a given set of nodes are
not connected, in a network represented by a graph where links are considered failed
with specified probabilities. This type of problem finds applications in areas such as
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telecommunications, power supply systems, and transportation systems, among oth-
ers [3–5]. In practical situations, one typically faces large topologies and estimations
of very small probabilities. When dealing with large networks, Monte Carlo simu-
lation techniques are generally needed, because the exact evaluation is an NP-hard
problem in general [2], and variance reduction methods are required for an efficient
estimation of rare events [19]. The present work extends that of [15], where an im-
portance sampling (IS) technique approximating the zero-variance estimator was de-
veloped. The approximation in [15] is based on the computation of probabilities of
minimal cuts in subgraphs. The authors prove that in an asymptotic rare-event regime
where the failure probabilities of individual links become very small, the RE of their
IS estimator remains bounded, and can even converge to zero under additional con-
ditions, a property rarely verified by other rare event estimators. For general back-
ground on IS and zero-variance approximation, we refer the reader to [1,6,7,14,12,
15], and references therein.

On the other hand, there are situations where this assumption that failure proba-
bilities of individual links are very small is not realistic and is not a requirement for
the set of considered nodes not being connected to be a rare event. The probability
of this event can be very small for example because there is a large number of possi-
ble paths connecting the considered nodes, and this may happen even when the links
have a large failure probability. In this case, the unreliability approximation based on
mincuts may underestimate the true unreliability by a large factor. The goal and con-
tribution of this paper is to illustrate how the zero-variance approximation based on
mincuts can deteriorate in this type of situation, and to propose an alternative (more
general) estimator. We first introduce a second approximation, based on the proba-
bilities of minpaths, which overestimates the true value. Then we use a convex linear
combination of the two approximations to estimate the conditional unreliability of
subgraphs encountered during the sequential IS procedure. The coefficient in this lin-
ear combination is learnt (or approximately optimized) via pilot simulation runs in a
preliminary phase. With the optimal coefficient, the variance of the resulting estima-
tor is necessarily smaller than the one in [15], which is a particular case, and is robust
in more situations where system failure is a rare event. Note that this new estimator
is not equivalent to taking a linear combination of two IS estimators, which would
amount to using the difference between the two as a control variate.

The rest of the paper is organized as follows. In Section 2, we present the model
and recall the zero-variance IS scheme and its mincut-maxprob approximation pro-
posed earlier. In Section 3, we start with a motivating example where the mincut-
maxprob approximation does not work well, introduce a new zero-variance approxi-
mation based on minpaths, and finally propose an IS estimator based on the convex
linear combination of the two approximations at each step. In Section 4, we show how
the optimal coefficient in this linear combination can be estimated. In Section 5, we
illustrate the benefits of our method via several examples. Conclusions and directions
for future research are given in Section 6.
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2 Model and simulation by approximate zero-variance importance sampling

We consider an undirected graph G = (V, E ,K) where V is the set of nodes, E =
{1, . . . ,m} is the set of links connecting nodes, and K is a subset of the node-set,
called the terminal set. Nodes are assumed perfect, i.e., they do not fail, while links
can fail, link i ∈ E failing with probability qi. All failure events of individual links
are assumed independent. Our goal is to compute the probability u = u(G) that the
nodes in the terminal set K are not all connected by working links (i.e., not in the
same connected component), in which case we say that the system is failed. The
random configuration of the graph is fully characterized by vector

X = (X1, . . . , Xm),

where the Xi, for 1 ≤ i ≤ m, are independent Bernoulli random variables with
parameters 1− qi, giving Xi = 1 if link i is working, and 0 if it is failed,

We define the function ψ : {0, 1}m → {0, 1} by ψ(x) = 1 if the nodes in K
are not connected when the graph configuration is x ∈ {0, 1}m, and 0 otherwise. We
then have

u = u(G) = E[ψ(X)] =
∑

x∈{0,1}m
ψ(x)

m∏
i=1

((1− xi)qi + xi(1− qi)).

Computing this value is known to be NP-hard in general [2], because the number
of graph configurations grows exponentially with the number m of links, and Monte
Carlo simulation becomes a relevant tool. Though, standard Monte Carlo, consisting
in approximating u by the average over independent realizations of ψ(X) is ineffi-
cient because the failure event for the system happens too rarely and may even never
be observed. Specific rare-event simulation techniques have to be developed.

We refer the reader to [19] for general descriptions of rare-event simulation tech-
niques and applications, and to [4] for a state-of-the-art review specific to static de-
pendability analysis. Here we build on the zero-variance sequential IS formalism
introduced in [15], defined as follows. The link states X1, . . . , Xm are generated
successively, in that order, under an IS scheme that replaces the original probability
qi = P[Xi = 0] to generate Xi by a new probability q̃i, which may depend on the
previously generated link states X1, . . . , Xi−1. Denoting

L(x) =

m∏
i=1

(
xi

1− qi
1− q̃i

+ (1− xi)
qi
q̃i

)
,

the likelihood ratio of original and new probabilities, we have that ψ(X)L(X) is an
unbiased estimator of u. Moreover, if we define

ui(x1, · · · , xi−1) = E[ψ(X)|X1 = x1, . . . , Xi−1 = xi−1],
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the unreliability of graph G conditional on the states of links 1 to i− 1, and if we put
q̃i = q̃ ∗i where

q̃ ∗i
def
= P̃[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1]

=
qiui+1(x1, . . . , xi−1, 0)

qiui+1(x1, . . . , xi−1, 0) + (1− qi)ui+1(x1, . . . , xi−1, 1)
(1)

= qi
ui+1(x1, . . . , xi−1, 0)

ui(x1, . . . , xi−1)
, (2)

then the unbiased estimator ψ(X)L(X) has zero variance (that is, it always provides
the exact value); see [15] for the details and proofs.

However, implementing this estimator would require the knowledge of all the
ui(x1, . . . , xi−1), and if we knew them, there would be no need for simulation. The
principle of zero-variance approximation is to use a simple approximations ûi+1(·)
of ui+1(·) in (1), so that (1) is replaced by

q̃i = P̃[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1]

=
qiûi+1(x1, . . . , xi−1, 0)

qiûi+1(x1, . . . , xi−1, 0) + (1− qi)ûi+1(x1, . . . , xi−1, 1)
. (3)

This way, if the approximation ûi+1(·) is good enough, the sampling probabilities
will be close to the optimal ones and we can expect the variance to be reduced by
large factors. It is proposed in [15] to use for ûi+1(·) the maximal probability of
a mincut of the subgraph obtained when x1, . . . , xi are fixed. More specifically, a
mincut in G is a subset C of links such that when all the links in C are failed, then the
nodes of K cannot be all connected (the system is necessarily failed), and no strict
subset of C has this property. A mincut with maximal probability is one for which the
probability that all its links are failed is maximal among all mincuts. This maximal
probability is called the mincut-maxprob approximation, and can be computed in
polynomial time in m. When applying IS with this zero-variance approximation, we
take ûi+1(x1, . . . , xi) in (3) as the probability of a mincut with maximal probability
in the subgraph where (X1, . . . , Xi) are fixed to (x1, . . . , xi) (the links e ≤ i with
Xe = 0 are removed from the graph and those with Xe = 1 cannot fail, so we can
merge the nodes that they connect). We shall denote the resulting ûi+1(·) by ûmc

i+1(·).
It is shown in [15] that this approximation leads to an asymptotically robust estimator
when qi → 0 ∀i ∈ E , in the following sense.

Recall that for an unbiased estimator Y of an unknown quantity u, the variance is
Var[Y ] = E[(Y − u)2], the relative error (RE) is RE[Y ] = (Var[Y ])1/2/u, and the
relative centered moment of order β is E[((Y −u)/u)β ], for any β ≥ 1. If Y depends
on a parameter ε and if we consider an asymptotic regime under which ε → 0, then
Y = Y (ε) is said to have bounded [vanishing] relative centered moment of order β in
this asymptotic regime if E[((Y (ε) − u(ε))/u(ε))β ] remains bounded [converges to
0] when ε→ 0 [10]. When this holds for β = 2, that is, if RE[Y (ε)] remains bounded
[converges to 0] when ε→ 0, the estimator is said to have bounded [vanishing] RE. It
is proved in [15] that the dynamic IS estimator based on (3) with the mincut-maxprob
approximation always has bounded RE, and has vanishing RE under some additional
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conditions, in an asymptotic regime where maxi qi → 0 when ε → 0. These results
can be extended to bounded and vanishing relative moments of order β ≥ 1.

3 A minpath-maxprob approximation and a linear combination of two
approximations

In this section, we exhibit examples where the mincut-maxprob approximation does
not work well, we propose the minpath-maxprob approximation as an alternative,
then we propose a convex linear combination of the two approximations, which in-
cludes each of the two as a special case and is more general.

3.1 A motivating example

Example 1 Consider the graph topology described in Figure 1, comprised of a grid
of r rows and two columns for the intermediate nodes. We look for the probability that
the grey nodes s and t are not connected given that all links i ∈ E have a probability
qi = q to fail. Note that in the original graph, there are three (vertical) mincuts
with maximal probability qr, so ûmc

1 (∅) = qr. There are also several mincuts of
probabilities qr+1, qr+2, etc.

s

2

1

r − 1

r

r + 2

r + 1

2r − 1

2r

t

Fig. 1 A topology made of r rows of two links each.
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We estimated the unreliability of this network by simulation with the mincut-
maxprob approximation, for various values of r, while adjusting the unreliabilities
qi = q of the individual links deterministically in a way that that the overall unreli-
ability u was near 10−8 for all r. The sample size was n = 105 in all cases. Table 1
reports the empirical unreliability û and the estimated RE (which we adopt here as
a measure of effectiveness of the estimator) denoted R̂E, as functions of r. The (es-
timated) RE tends to increase with r, although there is noise in its estimation. For
r = 200 (last row in the table), the unreliability and the RE turn out to be highly
underestimated, and this happens because the most relevant configurations are rare
and not sampled anymore (or sufficiently), leading to misleading results. When this
happens, a confidence interval on u computed in a standard way is unlikely to cover
the true value of u. The last column gives the mincut-maxprob approximation for
the entire graph, ûmc

1 (∅). This approximation of u becomes much too small when r
increases.

Table 1 Empirical mean û and R̂E of the IS estimator of u based on the mincut-maxprob approximation
with sample size n = 105, for the graph of Figure 1, for selected values of r, and q chosen so that the
estimated u is near 10−8. The last column gives the mincut-maxprob approximation of u for the entire
graph.

r q 108û R̂E ûmc
1 (∅) = qr

2 0.00007 1.46 0.33 4.9× 10−9

5 0.02 1.06 0.46 3.2× 10−9

10 0.1245 1.11 1.8 8.9× 10−10

30 0.371 1.14 7.9 1.2× 10−13

40 0.427 1.05 9.9 1.6× 10−15

50 0.4665 1.08 31 2.7× 10−17

70 0.521 1.35 22 1.5× 10−20

100 0.575 1.48 40 9.2× 10−25

200 0.655 0.48 44 1.8× 10−37

The poor behavior of the estimator for this example can be explained as follows.
The mincut-maxprob approximation was proved in [15] to provide a bounded RE for
the unreliability when q → 0, using the fact that u = u(G) and the maximum proba-
bility of a mincut are then of the same order of magnitude. But here, q increases with
r, and the probability of a mincut is not a good approximation of u because there are
often too many mincuts with comparable probabilities. As an illustration, for the en-
tire graph G, the mincut-maxprob approximation gives q̂(G) = ûmc

1 (∅) = qr, because
the smallest mincuts are of cardinality r. But by comparing qr to the unreliability es-
timate û given in Table 1 (which is near 10−8), in the fifth and third columns, we find
huge gaps when r is large. For r = 100, for example, qr = 0.575100 ≈ 9.2× 10−25.
In other words, here the asymptotic regime where q → 0 is not the appropriate one
when r is large and q is not very small.
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3.2 The minpath-maxprob approximation

Define a path (or K-path) in the graph G as a set P of links i such that when these
links are up (Xi = 1 for all i ∈ P ), the nodes in K are in the same connected
component of the resulting graph, whatever the state of other links. A minpath of G is
a path P = P (G) for which no strict subset of P (G) is also a path. Let FG be the set
of minpaths of G. The probability that a minpath P has all its links up is p = p(P ) =∏
i∈P (G)(1− qi). The minpath-maxprob approximation of the unreliability of graph
G is then

ûmp(G) = 1− max
P∈FG

p(P ).

This approximation is the largest probability among all minpaths.
To implement IS with the minpath-maxprob approximation, we proceed in the

same way as with the mincut-maxprob approximation, except that the approximations
ûmc
i+1(·) used at each step are replaced by ûmp

i+1(·), defined as follows. At each step
i+1, for i = 0, . . . , i−1, the states of the first i links have been sampled already and
fixed to x1, . . . , xi, respectively. We define the graph Gi = Gi(x1, . . . , xi) obtained
from G by removing all links j ≤ i for which xj = 0 and forcing the links j such that
xj = 1 to be operational. We then define ûmp

i+1(x1, . . . , xi) as the minpath-maxprob
approximation of graph Gi, but not considering in the computations the probabilities
of links j ≤ i with xj = 1, because those links are known to be operational. This is
similar to the definition of ûmc

i+1(x1, . . . , xi) based on mincuts.
For any P ′ ∈ FG , let E(P ′) be the event that “all links of P ′ are working.” Then,

for any P ∈ FG ,

u = 1− P [∪P ′∈FGE(P ′)] ≤ 1− P[E(P )] ≤ ûmp(G).

The minpath-maxprob approximation therefore over-estimates the true conditional
unreliability, as opposed to the mincut-maxprob approximation which under-estimates
it.

It was shown in [15] that for a fixed topology, IS with the mincut-maxprob ap-
proximation provides an estimator of the unreliability with bounded RE when qi → 0
∀i, essentially because ûmc

i+1(·) = Θ(ui+1(·)) ∀i. Using similar arguments, one can
show that IS with the minpath-maxprob approximation provides an estimator with
bounded RE for the reliability 1 − u when qi → 1 ∀i, because 1 − ûmp

i+1(·) =
Θ(1− ui+1(·)) ∀i.

Example 1 (Continued). We applied IS to the same example as in Section 3.1,
with the same experimental setting and sample size, but this time with the minpath-
maxprob approximation. The results are given in Table 2. We observe (empirically)
that this time, the RE decreases with r, and that the method does better than the
mincut-maxprob approximation when r is large. Here, in the original graph, there
are r (horizontal) minpaths with maximal probability p = (1 − q)3, so the minpath-
maxprob approximation for the original graph is ûmp

1 (∅) = 1− (1− q)3. It is given in
the last column of the table. There are also several minpaths of probabilities (1− q)4,
(1 − q)5, etc. We see that the approximation ûmp

1 (∅) overestimates u by a factor of
approximately 108 when r is large, but it nevertheless provides an IS estimate with
much less variance than the one based on ûmc

1 (∅).
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Table 2 Empirical mean û and R̂E of the IS estimator of u based on the minpath-maxprob approximation
with sample size n = 105, for the graph of Figure 1, for selected values of r, and q chosen so that the
estimated u is near 10−8. The last column gives the mincut-maxprob approximation of u for the entire
graph.

r q 108û R̂E û
mp
1 (∅)

2 0.00007 1.68 66 0.0002
5 0.02 3.18 160 0.058

10 0.1245 1.15 110 0.32
30 0.371 1.36 75 0.75
40 0.427 1.20 36 0.81
50 0.4665 0.98 26 0.84
70 0.521 1.58 17 0.89
90 0.559 1.19 6.6 0.91
100 0.575 1.52 9.8 0.92
200 0.655 1.13 3.9 0.95

3.3 A linear combination of two unreliability approximations

What we now propose is an IS scheme that approximates the unreliability functions
ui+1(·) in the zero-variance scheme (3) by a convex linear combination of ûmc

i+1 and
ûmp
i+1. That is, we take

ûi+1(x1, . . . , xi) = αûmc
i+1(x1, . . . , xi) + (1− α)ûmp

i+1(x1, . . . , xi) (4)

∀i and ∀(x1, . . . , xi) ∈ {0, 1}s, for some coefficient α ∈ [0, 1] that remains to be cho-
sen. We know that for each choice of (x1, . . . , xi), there is an α = α(x1, . . . , xi) ∈
[0, 1] such that (4) is exactly equal to ui+1(x1, . . . , xi), because the right side is a
convex linear combination of one term that underestimates and one term that over-
estimates. So by choosing a different α for each configuration (x1, . . . , xi), it would
be possible in principle to achieve zero variance. But optimizing all these differ-
ent α’s would be difficult. Here we simplify by imposing a single α for all stages
and configurations. Ideally, we want to select α to minimize the variance V (α) of
the resulting (unbiased) IS estimator ψ(X)L(X), as a function of α. For that, we
will assume that V is differentiable and unimodal, with a minimum in (0, 1). Un-
der this condition, minimizing V (α) is equivalent to finding a root of the equation
V ′(α)

def
= (∂V/∂α)(α) = 0. (We do not have a proof that the condition holds in

all cases, but this has worked well in all the examples we tried.) Such a root can be
approximated in pilot experiments, as explained in the next section. By using a linear
combination with a nearly-optimal linear coefficient α, the IS method can self-adapt
to the underlying asymptotic regime of the considered graph topology.

Note that instead of using a single real-valued coefficient α for all i, we could take
a vector (α1, . . . , αm) where αi is used at step i of the IS algorithm, when sampling
the ith link. This increased flexibility could improve the performance of the combined
method. On the other hand, optimizing the vector is likely to become more difficult
(we would face a high-dimensional optimization problem). Moreover, the best αi
could also depend strongly on (x1, . . . , xi−1), so an αi that depends on i would also
be an average over several configurations. In this paper, we decided to avoid these
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complications and just take a single constant α. We will see that this simple approach
already provides a significant gain in some situations.

4 Learning a good coefficient α for the linear combination

We suggest in this section two ways of approximating the value α∗ of α that mini-
mizes the variance of the resulting estimator.

4.1 A heuristic based on the total unreliability estimation

If we knew u, we could compute the value of α for which the linear combination
would give the exact value of u when i = 1; that is, for which

u = u1(∅) = αûmc
1 (∅) + (1− α)ûmp

1 (∅).

This gives

α =
ûmp(∅)− u

ûmp(∅)− ûmc(∅)
, (5)

in which the mincut-maxprob and minpath-maxprob approximations ûmp(∅) and ûmc(∅)
are easily computed. This α is always in the interval [0, 1]. It is generally not optimal,
because it gives an exact value only for i = 1, but it can be the base of a heuristic.
We can replace the unknown u by a rough estimate ûn0

(G) obtained from pilot runs,
for instance the IS method with mincut-maxprob approximations, using a small to
moderate sample size n0. This yields

α = αtot
def
=

ûmp(∅)− ûn0
(G)

ûmp(∅)− ûmc(∅)
. (6)

Because of the noise in ûn0
(G), this αtot may end up outside [0, 1], in which case we

can project it to the interval [0, 1] (take the nearest boundary).

4.2 A Robbins-Monro algorithm

A second approach to estimate the optimal α is to use an iterative stochastic approx-
imation (SA) method to estimate a root of the equation V ′(α) = 0. The procedure
starts with an arbitrary α0 ∈ (0, 1), for example α0 = 0.5, or α0 given by the heuris-
tic of Section 4.1, or α0 taken as a crude estimate of α∗ if one is available, and iterates
as

α`+1 = α` − a`H−1` V̂ ′(α`), (7)

where V̂ ′(α`) is an estimate of V ′(α`) (we explain in the next subsection how it
can be obtained), H` is an estimate of V ′′(α`) in the case of second order SA algo-
rithm and is just taken as equal to 1 for a first-order algorithm, and the pre-specified
sequence of step sizes {a`, ` ≥ 0} is a positive decreasing sequence that satisfies∑∞
`=1 a` = ∞ and

∑∞
`=1 a

2
` < ∞, to ensure convergence to the minimum if V is
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unimodal and smooth. There is a vast literature on SA methods and their properties;
see for example [8,11,16,17,22,23] and references therein. We take a` of the general
form

a` =
e

(C + `)β
,

where e > 0, C ≥ 0, and β ∈ (1/2, 1] are tunable constants [17]. If the deriva-
tive estimator used at each step is unbiased, if H` → H when ` → ∞, and under
mild additional conditions, the best convergence rate of α` to α∗ when ` → ∞
is obtained (only) when β = 1 and 2eV ′′(α∗)/H ≥ 1, and then α` converges
to α∗ at the canonical rate of O(`−1/2). Moreover, the asymptotic variance con-
stant lim`→∞ `−1Var[α`] is minimized by taking a`H−1` = (`V ′′(α∗))−1. However,
finite-sample behavior is often better with a smaller β; that is, with a step size that
decreases more slowly. For example, [17] recommend β = 0.6. The performance is
also sensitive to the choice of e and C [11,17,23]. A more robust and stable approach
is to retain as the solution the average

ᾱ`0,` =
1

`− `0

∑̀
ι=`0+1

αι, (8)

for some fixed positive integer `0. This ᾱ`0,` converges to α∗ at the canonical rate of
O(`−1/2) even for β < 1 and for arbitrary e > 0 and C > 0 [8,17,18].

For our experiments, we used only the first-order algorithm (H` = 1) and retained
the average (8) as our estimate of the optimal α, with `0 ≈ `/2. We also took β = 0.6,
C = 1, e chosen so that α1 − α0 = eV ′(α0) ≈ min(α0, 1 − α0)/10, and α0 =
αtot from the heuristic in (6). This choice of e requires a preliminary estimation of
V ′(α0), which we obtained using 103 points. The idea behind this strategy is to take
(arbitrarily) 1/10 of a maximal move of min(α0, 1−α0), where this move is such that
when we are close to 0 or 1, we do not want to move too far, to avoid being trapped
in a “bad" area; for example an area where the variance is poorly estimated due to
important rare events and/or where the variance is almost constant as a function of
α.

4.3 Estimating the Derivative

We now turn to the question of how to estimate the derivative V ′(α`) at each step
of the SA algorithm. To write an explicit expression for V (α), we introduce some
notation. Let pi,xi

denote the probability that the state of link i is xi, that is, pi,1 =
pi = 1− qi and pi,0 = qi, let

ûi,α(xi) = αûmc
i+1(x1, . . . , xi) + (1− α)ûmp

i+1(x1, . . . , xi)

the approximation of u conditional on x1, . . . , xi−1 link i being in state xi (we abu-
sively omit from the notation the conditioning on the states of the first i − 1 links),
and let

ûtot
i,α = piûi,α(1) + qiûi,α(0).
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Let Ẽα and P̃α be the expectation and probability under IS with the linear coefficient
set to α. Then we can write

V (α) = Ẽα
[
ψ(X)L2(X)

]
=

∑
x∈{0,1}m

ψ(x)
(P[X = x])2

P̃α[X = x]

=
∑

x∈{0,1}m
ψ(x)

m∏
i=1

pi,xi
ûtot
i,α

ûi,α(xi)

=
∑

x∈{0,1}m
ψ(x)

m∏
i=1

(
pi,xi

αv̂tot
i + ûmp,tot

i

αv̂i(xi) + ûmp
i (xi)

)
, (9)

with

v̂i(xi) = ûmc
i+1(x1, . . . , xi)− ûmp

i+1(x1, . . . , xi)

ûmp
i (xi) = ûmp

i+1(x1, . . . , xi)

v̂tot
i = piv̂i(1) + qiv̂i(0)

ûmp,tot
i = piû

mp
i (x1, . . . , xi−1, 1) + qiû

mp
i (x1, . . . , xi−1, 0).

The derivative V ′(α) can be approximated by the (central) finite difference (FD)

V ′(α) ≈ V (α+ δ)− V (α− δ)
2δ

=
Ẽα+δ

[
ψ(X)L2(X)

]
− Ẽα−δ

[
ψ(X)L2(X)

]
2δ

(10)
for some small δ > 0, and this finite difference can be estimated by performing two
simulations with IS, one at α + δ and one at α − δ, with common random numbers
across the two (i.e., using inversion with the same uniform random numbers to gen-
erate the state of each link, for the two simulations [1,13]). Decreasing δ toward 0
decreases the bias of the derivative estimator (10), but in general it may increase the
variance. Then, to ensure convergence of the SA algorithm to α∗, one should use a
decreasing sequence {δ`, ` ≥ 0} of values of δ that converges slowly to zero. The
appropriate choice of such a sequence and the corresponding convergence rate of SA
depend on the behavior of the estimator of V (α) as a function of α, and are studied
in [16].

In our case, it turns out that the variance of the FD estimator with common random
numbers remains bounded when δ → 0. This means that not only we can take δ as
small as we want, but we can also take the limit when δ → 0 in (10), and we obtain an
unbiased derivative estimator that can be computed from a single simulation run. This
is an instance of a likelihood ratio (LR) gradient estimator [1,9]. More specifically,
the limit of (10) when δ → 0 is the same as the derivative of (9) with respect to α,
which gives∑
x∈{0,1}m

ψ(x)

m∑
i=1

pi,xi

v̂tot
i û

mp
i (xi)− v̂i(xi)ûmp,tot

i

(αv̂i(xi) + ûmp
i (xi))2

m∏
e=1,e6=i

(
pe,xe

αv̂tot
e + ûmp,tot

e

αv̂e(xe) + ûmp
e (xe)

)

= Ẽα

[
ψ(X)L2(X)

m∑
i=1

v̂tot
i û

mp
i (Xi)− v̂i(Xi)û

mp,tot
i

(αv̂i(Xi) + ûmp
i (Xi))(αv̂

tot
i + ûmp,tot

i )

]
.
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This expression can be estimated at any α by simulating from the IS distribution
with parameter α, and computing the quantity in brackets as an (unbiased) derivative
estimator.

At step ` of the SA algorithm, we will simulate n` independent realizations of this
estimator and take the average for V̂ ′(α`). How should we choose the n`’s? Suppose
we measure the computing effort (or cost) by the total number of simulation runs.
Thus, for a computing budgetB, the number of SA iterations that can be performed is
`(B) = max{` : n1 + · · ·+n` ≤ B}. The variance of the unbiased estimator V̂ ′(α`)
is proportional to 1/n` but its computation time is proportional to n`. It is shown
in [16] that under these circumstances, the variance of the estimator of α∗ returned
by the SA algorithm (with or without averaging) as a function of the total computing
budgetB does not depend on the n`’s, asymptotically whenB →∞. Roughly, doing
n` SA iterations using a derivative estimator based on a single run is approximately
equivalent to doing a single SA iteration using a derivative estimator based on n`
simulation runs [16]. In practice, for a finite computing budget, we recommend taking
n` = 1. This is what we did in our experiments.

Another (indirect) way of minimizing the variance of the IS estimator with respect
to α is minimize the Kullback-Leibler distance between the zero-variance change of
measure and the IS parametric family, as explained in [20,21] and references therein.
This can also be done via SA, in the same way as for the variance. In our numer-
ical experiments, we found no significant difference between the results from this
approach and those based directly on the variance. Therefore, we will report only our
results on the latter.

4.4 Summary of the SA Algorithm

The SA algorithm that we have used to estimate the optimal α can be summarized
as follows. For the stopping criterion, we specify a minimal number of iterations
`min > `0, a window size w, and a small preselected relative threshold ε > 0. At
each iteration after the first `min iterations, we compute the sum of absolute changes
on α` over the last w iterations, and we stop if this sum is less than min(α`, 1−α`) ε.
We use min(α`, 1 − α`) so that the stopping criterion is based on 1 − α` when α`
is close to 1 and on α` when α` is close to 0. We also select a maximal number of
iterations `max, after which we stop in all cases.

5 Numerical illustrations

In this section, we report some numerical results obtained with the proposed method
on representative examples, and compare them with those based on the mincut-
maxprob approximation. For all the numerical experiments reported here, the sample
size for the estimation after selecting α is n = 105. For the heuristic of Section 4.1,
we used a sample size of n0 = 104 to estimate u in the first stage. In the SA algo-
rithm, we took w = 1000, ε = 10−4, `min = 100, `max = 105, and `0 = `/2.
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Algorithm 1 The stochastic approximation algorithm to estimate α∗

Select the parameters β, e, C, w, ε, `min, `max, and `0;
Select an initial value α0;
` := 0;
repeat

Compute a derivative estimator V̂ ′(α`) based on a sample of n` independent simulation runs with
the IS estimator based on (4) with α = α`;
Compute α`+1 according to (7);
Compute or update E =

∑`
j=`−w+1 |αj+1 − αj |;

` := `+ 1;
until (` > `min and E < min(α`, 1− α`) ε) or ` ≥ `max;
return α̂ = ᾱ`0,`.

Example 1 (Continued). We return to the topology described in Figure 1. Table 3
reports the estimate û, its empirical RE, and the value α̂ of α used for IS, with α̂ =
αtot as defined in (6) (heuristic) or α̂ obtained from the SA algorithm to minimize
the variance (SA).

Table 3 Empirical mean û and R̂E of the IS estimator of u based on the linear combination method with
α selected by the heuristic and with α learned by SA, for the graph of Figure 1, for various values of r,
and q chosen so that u is near 10−8.

method r q 108û R̂E α̂

heuristic

2 0.00007 1.47 0.22 0.999953
5 0.020 1.07 0.37 0.99999987
10 0.1245 1.11 1.6 0.999999969
30 0.371 1.14 10 0.999999983
40 0.427 1.21 30 0.9999999879
50 0.4665 1.02 14 0.999999989
90 0.559 1.28 14 0.9999999814
100 0.575 1.63 34 0.9999999873
200 0.655 1.17 17 0.99999999278

SA

2 0.00007 1.470 0.15 0.9999743
5 0.020 1.067 0.33 0.9999999329
10 0.1245 1.10 1.3 0.999999987
30 0.371 1.13 12 0.9999999855
40 0.427 1.15 24 0.9999866
50 0.4665 1.13 23 0.999999963
90 0.559 1.43 27 0.999999625
100 0.575 1.68 30 0.9999998
200 0.655 1.072 11 0.9999998587

With the heuristic, αtot is very close to 1 in all cases. This is because ûmc(∅)
is very small, ûmp(∅) is close to 1, and u is around 10−8. For large r, ûmc(∅) be-
comes so small that is has practically no influence on the value of αtot, and we have
1− αtot ≈ 10−8 × ûmp(∅), so the heuristic ends up taking just ûmp(∅) rescaled by a
factor of 10−8. Note that to use ûmp(∅) without rescaling, we must take α = 0, and
not α = 1. For smaller r (and small q), e.g., r ≤ 40, we saw that the mincut-maxprob
approximation does better than minpath-maxprob. In this case, both the heuristic and
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SA use a more balanced linear combination in which the two terms contribute. In
all cases, the heuristic and SA use similar values of α and provide similar results
(slightly better for SA for small r). By exploiting the linear combination of two ap-
proximations, they provide a more robust approach than either approximation taken
alone.

Example 2 We now consider the classical dodecahedron topology, a popular bench-
mark for this problem, illustrated in Figure 2. It is made of 20 nodes and 30 links, and
we want to compute the probability that nodes s and t are disconnected. We consider
the homogeneous case, where all links have the same unreliability q. The results are
given in Table 4, for four values of q.
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Fig. 2 A dodecahedron graph with 20 nodes and 30 links.

In agreement with [15], the RE with the mincut-maxprob approximation de-
creases with decreasing q (a vanishing RE occurs when q → 0). We are in a context
where this method is very efficient. As expected, the minpath-maxprob approxima-
tion also becomes irrelevant, because some important configurations are not sampled
anymore. This is the reason why the estimate û is only about half the true value of u
with MP for q = 10−3 and 10−4. In this particular case, the R̂E is probably much
smaller than the true RE (the empirical results are misleading), and this is due to a
very noisy variance estimator. The heuristic gives an acceptable approximation, but
it is largely dominated by SA when q is small. Note that when q → 0, the com-
bined method with SA becomes essentially the same a the mincut-maxprob-based
algorithm, as expected. But for larger q, the combined method somehow rescales the
approximation to provide a better estimator. Thus, the learning algorithm manages to
find the best solution in the considered family in all cases.

Example 3 We now consider the topology described in Figure 3, made of two lines
of m nodes between s and t, again with homogeneous links of unreliability q, and
such that we want to compute the probability that nodes s and t are disconnected.
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Table 4 Estimation of the graph unreliability for the dodecahedron topology described in Figure 2.

method q û R̂E α̂ ûmc(∅) ûmp(∅)

MC

10−1 2.869× 10−3 1.91
10−2 2.063× 10−6 0.175
10−3 2.006× 10−9 0.050
10−4 2.001× 10−12 0.016

MP

10−1 2.907× 10−3 6.69
10−2 1.667× 10−6 85.4
10−3 1.003× 10−9 0.046
10−4 1.000× 10−12 0.0136

heuristic

10−1 2.879× 10−3 1.28 0.9955134 10−3 0.4095
10−2 2.063× 10−6 0.348 0.9999783 10−6 0.049
10−3 2.006× 10−9 0.303 0.99999979 10−9 0.00499
10−4 2.000× 10−12 0.298 0.9999999979 10−12 4.999× 10−4

SA

10−1 2.870× 10−3 0.722 0.99339
10−2 2.061× 10−6 0.171 0.9999999999999993
10−3 2.006× 10−9 0.0488 0.999999999999999
10−4 2.001× 10−12 0.016 0.9999999999999999

The results are in Table 5. For this topology, the mincut-maxprob approximation
performs poorly, for the same reasons as in Example 1, and the best results are again
obtained via SA, although the heuristic also performs well whemm is small. One case
where the combined method provides a large improvement over mincut-maxprob is
when q = 0.1 and m = 20, where the RE is reduced from 189 to 0.341 with SA; that
is, the variance (and the required computing effort for a given precision) is reduced
approximately by a factor of 5542 ≈ 307, 000.

s t

Fig. 3 A topology made of two rows of links and k nodes on each row.

Example 4 Consider an extreme topology made of a single line ofm+1 nodes andm
links, as described in Figure 4, where we want to estimate the probability that the two
extreme nodes are connected. Suppose that all the links have the same unreliability
q. It is easy to see that the exact unreliability of this system is u = 1− (1− q)m.

s t

Fig. 4 A topology made of one line of m links.
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Table 5 Empirical mean û and R̂E of the IS estimator of u based on different zero-variance approxima-
tions, for the graph of Figure 3, for various values of r, and q chosen so that u is near 10−8.

method q m û R̂E α̂ ûmc(∅) ûmp(∅)

MC

0.5 2 0.672 0.42
10 0.995 2.0
20 0.998 2.1

0.1 2 0.0329 0.50
10 0.123 5.3
20 0.518 190

MP

0.5 2 0.672 0.20
10 0.9889 0.049
20 0.99982 0.0063

0.1 2 0.0329 1.5
10 0.1208 1.5
20 0.2182 1.3

heuristic

0.5 2 0.672 0.14 0.33 0.25 0.875
10 0.988 0.044 0.0255 0.25 0.999
20 0.99978 0.014 0.02614 0.25 0.9999995

0.1 2 0.03315 0.56 0.912 10−2 0.270
10 0.1205 0.39 0.836 10−2 0.686
20 0.2188 0.34 0.8536 10−2 0.8905

SA

0.5 2 0.672 0.13 0.397
10 0.9886 0.045 0.0225
20 0.99983 0.006 1.6× 10−36

0.1 2 0.0330 0.33 0.946
10 0.1202 0.34 0.877
20 0.2184 0.32 0.828

Table 6 shows the results obtained for this topology. A R̂E equal to zero indicates
that we have a zero-variance estimator. Indeed, here the minpath-maxprob approxi-
mation gives u exactly, whereas the mincut-maxprob approximation is not very good
because it considers only one mincut out of the m available mincuts (and the nu-
merous other cuts). The learning algorithm with SA adapts itself very well to the
characteristics of this topology, and even the heuristic-based method is perfect from
(3), because the minpath-maxprob is the exact unreliability.

Example 5 We consider another large example, of a size for which simulation is typ-
ically required, but built with a structure such that we able to know the exact solution.
We consider three-dodecahedron topologies in series (so that the reliability of the re-
sulting graph is the cube of the reliability of the dodecahedron), as shown in Figure 5.
The source node is the source of the first copy and the destination is the destination
of the third one, while the destination of the first (respectively second) copy is the
source of the second (respectively third). We still consider the homogeneous case for
different unreliability values q. Table 7 gives the results obtained for this topology,
for different link unreliabilities.

Here too, the mincut-maxprob approximation improves as q → 0 while the
minpath-maxprob approximation becomes inefficient, to the point of producing here
estimates of u and RE that are too small by a large factor when q ≤ 10−3. The rea-
son is that the important configurations (that contribute to u) are still too rare with
this IS scheme and are not sampled. On the other hand, the learning-based algorithm
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Table 6 Estimation of u for the topology described in Figure 4.

method q m û R̂E α̂ ûmc(∅) ûmp(∅)

MC

10−9 20 2.883× 10−8 84
40 4.456× 10−8 154
100 4.456× 10−8 154

MP

10−9 20 1.999× 10−8 0
40 3.999× 10−8 0
100 9.999× 10−8 0

heuristic

10−9 20 1.999× 10−8 0 0 10−9 1.999× 10−8

40 3.999× 10−8 0 0 10−9 3.999× 10−8

100 9.999× 10−8 0 0 10−9 9.999× 10−8

SA

10−9 20 1.999× 10−8 0 0
40 3.999× 10−8 0 0
100 9.999× 10−8 0 0

s dodec. 1 dodec. 2 dodec. 3 t

Fig. 5 Three dodecahedron topologies in series

Table 7 Estimation of the graph unreliability for the three dodecahedron topologies in series.

method q û R̂E α̂ ûmc(∅) ûmp(∅)

MC

10−1 8.577× 10−3 2.8
10−2 6.173× 10−6 1.3
10−3 6.012× 10−9 1.3
10−4 5.989× 10−12 1.3

MP

10−1 8.205× 10−3 6.8
10−2 4.339× 10−6 91
10−3 1.002× 10−9 0.060
10−4 1.000× 10−12 0.018

heuristic

10−1 8.584× 10−3 0.75 0.990 10−3 0.794
10−2 6.015× 10−6 0.31 0.9999635 10−6 0.140
10−3 6.015× 10−9 0.28 0.999999665 10−9 1.489× 10−2

10−4 5.997× 10−12 0.27 0.999999996 10−12 1.498× 10−3

SA

10−1 8.599× 10−3 0.71 0.991277
10−2 6.188× 10−6 0.25 0.999974
10−3 6.014× 10−9 0.22 0.99999975
10−4 5.997× 10−12 0.22 0.99999999756

performs well and adapt themselves properly to the graph parameters. Even for small
link unreliabilities, it performs better than the mincut-maxprob approximation, con-
trary to the dodecahedron topology for which we had similar results. The reason for
the difference is probably that the number of mincuts with maximal probability is
larger on this topology and only one is considered with the mincut-maxprob approx-
imation, hence the approximation is poorer in this case.
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6 Conclusions

We have introduced a new approximation of the static unreliability u of a graph, based
on minimal paths, called the minpath-maxprob approximation, which underestimates
u. This approximation is dual to the mincut-maxprob approximation, which overesti-
mates u. Then we proposed an IS scheme that uses a convex combination of the two
approximations to determine the change of measure at each step. This new method
has the advantage of adapting itself to various kinds of asymptotic behaviors from
which rarity occur, instead of just rarer failure of individual links. In our numerical
experiments, this new method was much more robust than taking either of the two
non-combined approximations alone.

On the other hand, imposing a single parameter α for all stages, which we did for
simplicity, prevents us from mimicking the zero-variance IS as closely as we would
like. In our further work, we aim at investigating two directions: (i) instead of taking
a single α for all steps i of the algorithm (step i is when we sample link i), we could
try to find the optimal vector (α1, . . . , αm) such that αi is used at the i-th step. This
would give

ûi+1(x1, . . . , xi) = αiû
mc
i+1(x1, . . . , xi) + (1− αi)ûmp

i+1(x1, . . . , xi)

instead of (4). This generalization should lead to a better IS measure, but at the ex-
pense of a more complicated optimization. (ii) Another option is to replace the linear
combination in (4) by the geometric linear combination

ûi+1(x1, . . . , xi) = (ûmc
i+1(x1, . . . , xi))

α × (ûmp
i+1(x1, . . . , xi))

1−α,

which would better rescale when the two bounds have very different orders of mag-
nitude, like in Example 1. Preliminary experiments with the heuristic of Section 4.1
suggest that this geometric version indeed works better for this example when r is
large, but there are other examples where it does not work better.
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