
AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE WITH MANY LONG STREAMS AND

SUBSTREAMS

PIERRE L’ECUYER and RICHARD SIMARD

Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128
succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada

lecuyer@iro.umontreal.ca • simardr@iro.umontreal.ca

E. JACK CHEN

BASF Corporation, 3000 Continental Drive–North, Mount Olive, New Jersey 07828–1234, USA
chenej@basf.com

W. DAVID KELTON

Department of Management Science and Information Systems, The Smeal College of Business
Administration, 303 Beam, The Pennsylvania State University, University Park, PA 16802-1913,

USA
dkelton@psu.edu

(Received December 2000)

Multiple independent streams of random numbers are often required in simulation studies,
for instance, to facilitate synchronization for variance-reduction purposes, and for making
independent replications. A portable set of software utilities is described for uniform random-
number generation. It provides for multiple generators (streams) running simultaneously,
and each generator (stream) has its sequence of numbers partitioned into many long disjoint
contiguous substreams. The basic underlying generator for this implementation is a combined
multiple recursive generator with period length of approximately 2191, proposed in a previous
paper. A C++ interface is described here. Portable implementations are available in C,
C++, and Java via the Online Companion to this paper on the Operations Research website.

Subject classifications: Simulation: Random number generation, Simulation: Random vari-
able generation, Simulation: Statistical analysis, Computers/computer science: Software

Experts now recognize that small linear congruential generators (LCGs) with moduli around

231 or so should no longer be used as general-purpose random-number generators (RNGs).

Not only can one exhaust the period in a few minutes on a PC, but more importantly the

poor structure of the points can dramatically bias simulation results for sample sizes much

smaller than the period length.

As an example, L’Ecuyer and Simard (2001) consider a simple simulation problem where

n points are generated randomly in k cells over the two-dimensional square, to estimate the

expected number of repeated values for the spacings between successive cells that contain a

point. They find that with a LCG of the form

xi = axi−1 mod m, ui = xi/m, x0 ∈ {1, . . . ,m− 1},

1

if k is large (≈ n3/4) and n ≈ 8m1/3 (or more), the simulation gives totally wrong results,

regardless of m and a. This means only n ≈ 10, 000 for m ≈ 231 and n ≈ 500, 000 for

m ≈ 248.

Much better RNGs have already been proposed to replace older unsafe LCGs. We men-

tion, for instance, the Mersenne twister of Matsumoto and Nishimura (1998), the combined

MRGs of L’Ecuyer (1999a), the combined LCGs of L’Ecuyer and Andres (1997), and the

combined Tausworthe generators of L’Ecuyer (1999b). All of these have fairly solid theoret-

ical support, have been extensively tested, and are easy to use.

However, a single RNG does not always suffice. Many disjoint random-number sub-

sequences, each having long period and good statistical properties, are often required in

simulation studies, for instance, to make independent replications or to associate distinct

“streams” of random numbers with different sources of randomness in the system to facili-

tate synchronization for variance reduction (Law and Kelton 2000).

In this paper, we propose a package for uniform random-number generation with multiple

streams of (pseudo)random numbers and convenient tools to move around within and across

these streams. The structure and the tools offered are similar to those in the package pro-

posed by L’Ecuyer and Côté (1991) and L’Ecuyer and Andres (1997). The main differences

are:

• The underlying “backbone” generator is more robust and has longer period than those

used by these authors. We use the combined multiple recursive generator (CMRG)

MRG32k3a proposed by L’Ecuyer (1999a).

• The package proposed here has an object-oriented design. The streams, which can be

seen as virtual RNGs, are declared at will, as instances of a class, instead of being

numbered from 0 to N where N is fixed.

Other random number packages with multiple streams have been proposed in recent years;

see for example Mascagni and Srinivasan (2000). These packages do not offer the same tools

for streams and substreams as ours, and are not supported by the same theoretical analysis

for the quality and independence of the different streams.

In what follows, we provide some background on the backbone CMRG, explain how

the streams and substreams are defined, and give a C++ interface to the package. Im-

plementations in C, C++, and Java, as well as a more detailed version of this paper, are

2

available in the Online Companion to this paper on the Operations Research website, and

at http://www.iro.umontreal.ca/~lecuyer.

1 DESCRIPTION AND IMPLEMENTATION OF THE SOFTWARE

1.1 The underlying backbone generator

L’Ecuyer (1999a) gave several good parameter sets for CMRGs of different sizes. We have

selected one of them, called MRG32k3a, as our backbone generator. It has 2 components

each of order 3. At step n, its state is the pair of vectors s1,n = (x1,n, x1,n+1, x1,n+2) and

s2,n = (x2,n, x2,n+1, x2,n+2), which evolve according to the linear recurrences

x1,n = (1403580× x1,n−2 − 810728× x1,n−3) mod m1

x2,n = (527612× x2,n−1 − 1370589× x2,n−3) mod m2,

where m1 = 232− 209 = 4294967087 and m2 = 232− 22853 = 4294944443, and its output un

is defined by

zn = (x1,n − x2,n) mod 4294967087

un =

{
zn/4294967088 if zn > 0
4294967087/4294967088 if zn = 0.

Its period length is ρ = (m3
1 − 1)(m3

2 − 1)/2 ≈ 2191 ≈ 3.1 × 1057. RNGs with much

longer periods are also available, but their states must contain more bits and are therefore

more expensive to manipulate. We think that our choice is a reasonable compromise. The

parameters have been chosen so that the period is long, a fast implementation is available (in

floating point arithmetic), and the generator performs well with respect to the spectral test

in up to (at least) 45 dimensions. The spectral test in t dimensions measures the uniformity

of the point set

Tt = {(u0, . . . , ut−1) |(x1,0, x1,1, x1,2) ∈ Z3
m1
, (x2,0, x2,1, x2,2) ∈ Z3

m2
},

where Zm = {0, . . . ,m − 1}, and makes sure that this set covers the t-dimensional unit

hypercube very uniformly. This Tt is the set of all overlapping t-tuples of successive values

produced by the generator, from all possible initial states.

3

1.2 Multiple streams and substreams

Let ρ be the period length of the RNG and T its transition function; that is, T (sn) = sn+1

where sn is the generator’s state at step n, and T ρ(s) = s. To partition the generator’s

sequence into disjoint streams and substreams, we choose two positive integers v and w, and

let z = v + w. We first cut the long cycle into adjacent streams of length Z = 2z and then

partition each of these streams into V = 2v blocks (or substreams) of length W = 2w.

If s0 is the initial seed of the generator and Ig denotes the initial state of stream g for

g ≥ 1, then we have I1 = s0, I2 = TZ(s0), . . . , Ig = TZ(Ig−1) = T (g−1)Z(s0), The first

substream of stream g starts in state Ig, the second one in state TW (Ig), the third one in state

T 2W (Ig), and so on. At any moment during program execution, stream g is in some state,

say Cg. We denote by Bg the starting state of the substream that contains the current state,

i.e., of the current substream, and Ng = TW (Bg) the starting state of the next substream. In

the following illustration, for example, the state of stream g is at the 6th value of the third

substream, i.e., 2W + 5 steps ahead of its initial state Ig and 5 steps ahead of Bg.

Cg
⇓.

Ig Bg Ng

Whenever a new stream is created (instantiated), say the gth stream, the software auto-

matically computes Ig = TZ(Ig−1) and puts Cg = Bg = Ig. When going from a substream

to the next one, the software must compute Ng = TW (Bg). Of course, W and Z must

be huge numbers, so a quick way to compute sn+ν from sn for large integers ν, without

generating the intermediate values, must be available. For a combined MRG, we can do

this for each of its components separately, as explained in L’Ecuyer (1990): one can write

sj,n+1 = Ajsj,n mod mj for some 3×3 matrix Aj, and then sj,n+ν = (Aνj mod mj)sj,n mod mj.

The matrix Aνj mod mj is computed via a standard divide-and-conquer algorithm (Knuth

1998), and can be precomputed once for ν = W and ν = Z.

1.3 Choice of v and w

We have selected v = 51 and w = 76, so W = 276 and Z = 2127. To select v and w,

a spectral test for the vectors of non-successive output values spaced h = 2l steps apart

4

was performed for different integer values of l, and we chose v and w so that the be-

havior was good for l = v, l = w, and l = v + w. More specifically, let Tt(s, h) be

the point set obtained if we replace (un, . . . , un+t−1) by the first t components of the se-

quence (un, . . . , un+s−1, uh, . . . , un+h+s−1, un+2h, . . . , un+2h+s−1, . . .) in the definition of Tt. If

the streams are started h apart, the points of Tt(s, h) are those obtained by taking s suc-

cessive values from the first stream, s successive values from the second stream, and so on

until t values have been taken. We looked for values of l such that for h = 2l, the point set

Tt(s, h) was very uniformly distributed, according to the spectral test, for all s ≤ 16 and

t ≤ 32. This was done for 51 ≤ l ≤ 150 and we found that the uniformity was particularly

good for l = 51, 76, and 127.

2 A C++ INTERFACE TO THE PACKAGE RNGSTREAMS

We now describe the main public members of the class RngStream in C++. Other methods

and further details are available in the Online Companion to this paper on the Operations

Research website.

class RngStream
{
public:

RngStream (const char *name = "");
This constructor creates a new stream with (optional) descriptor name. It initializes its seed
Ig, and sets Bg and Cg to Ig. The seed Ig is equal to the initial seed of the package if this is
the first stream created; otherwise it is Z steps ahead of the seed of the most recently created
stream.

static void SetPackageSeed (const unsigned long seed[6]);
Sets the initial seed s0 of the package to the six integers in the vector seed. The first 3 integers
in the seed must all be less than m1 = 4294967087, and not all 0; and the last 3 integers must
all be less than m2 = 4294944443, and not all 0. If this method is not called, the default initial
seed is (12345, 12345, 12345, 12345, 12345, 12345).

void ResetStartStream ();
Reinitializes the stream to its initial state: Cg and Bg are set to Ig.

void ResetStartSubstream ();
Reinitializes the stream to the beginning of its current substream: Cg is set to Bg.

void ResetNextSubstream ();
Reinitializes the stream to the beginning of its next substream: Ng is computed, and Cg and
Bg are set to Ng.

5

void SetAntithetic (bool a);
If a = true, the stream will start generating antithetic variates, i.e., 1− U instead of U , until
this method is called again with a = false.

void IncreasedPrecis (bool incp);
After calling this method with incp = true, each call to the generator (direct or indirect)
for this stream will return a uniform random number with more bits of resolution (53 bits if
machine follows IEEE 754 standard) instead of 32 bits, and will advance the state of the stream
by 2 steps instead of 1. More precisely, if s is a stream of the class RngStream, in the non-
antithetic case, the instruction “u = s.RandU01()” will be equivalent to “u = (s.RandU01()
+ s.RandU01() * fact) % 1.0” where the constant fact is equal to 2−24. This also applies
when calling RandU01 indirectly (e.g., via RandInt, etc.). By default, or if this method is called
again with incp = false, each call to RandU01 for this stream advances the state by 1 step
and returns a number with 32 bits of resolution.

void WriteState () const;
Writes (to standard output) the current state Cg of this stream.

double RandU01 ();
Normally, returns a (pseudo)random number from the uniform distribution over the interval
(0, 1), after advancing the state by one step. The returned number has 32 bits of precision in
the sense that it is always a multiple of 1/(232−208). However, if IncreasedPrecis(true) has
been called for this stream, the state is advanced by two steps and the returned number has 53
bits of precision.

long RandInt (long i, long j);
Returns a (pseudo)random number from the discrete uniform distribution over the integers
{i, i+ 1, . . . , j}. Makes one call to RandU01.

};

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant number ODGP0110050 to the first
author.

REFERENCES

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Third ed. Reading, Mass.: Addison-Wesley.

Law, A. M and W. D. Kelton. 2000. Simulation Modeling and Analysis. Third ed. New
York: McGraw-Hill.

L’Ecuyer, P. 1990. Random numbers for simulation. Communications of the ACM, 33(10),
85–97.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1), 159–164.

6

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Math-
ematics of Computation, 68(225), 261–269.

L’Ecuyer, P and T. H. Andres. 1997. A random number generator based on the combination
of four LCGs. Mathematics and Computers in Simulation, 44, 99–107.

L’Ecuyer, P. and S. Côté. 1991. Implementing a random number package with splitting
facilities. ACM Transactions on Mathematical Software, 17(1), 98–111.

L’Ecuyer, P. and R. Simard. 2001. On the performance of birthday spacings tests for certain
families of random number generators. Mathematics and Computers in Simulation,
55(1–3), 131–137.

Mascagni, M. and A. Srinivasan. 2000. Algorithm 806: SPRNG: A scalable library for
pseudorandom number generation. ACM Transactions on Mathematical Software, 26,
436–461.

Matsumoto, M. and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1), 3–30.

7

