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ABSTRACT
Importance sampling (IS) is the most widely used efficiency
improvement method for rare-event simulation. When es-
timating the probability of a rare event, the IS estimator
is the product of an indicator function (that the rare event
has occurred) by a likelihood ratio. Reducing the variance
of that likelihood ratio can increase the efficiency of the IS
estimator if (a) this does not reduce significantly the prob-
ability of the rare event under IS, and (b) this does not
require much more work. In this paper, we explain how this
can be achieved via weight windows and illustrate the idea
by numerical examples. The savings can be large in some
situations. We also show how the technique can backlash
when the weight windows are wrongly selected.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing

General Terms
Algorithms, Reliability

1. INTRODUCTION
Estimating the probability of a rare event has several ap-
plications in reliability, telecommunications, insurance, and
several other areas. For complicated models, this can be
done in principle by Monte Carlo simulation, but when the
event of interest is really rare, straightforward simulation
would usually require an excessive number of runs for the
rare event to happen frequently enough so that the estimator
is meaningful.

Importance sampling (IS) is a technique that changes the
probability laws that drive the model’s evolution, to increase
the probability of the rare event. The estimator is then
multiplied by an appropriate likelihood ratio so that it has
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the correct expectation. Details can be found in [3,14,15,17],
and other references given there.

A second technique that deals with rare events is splitting
and Russian roulette (often simply called splitting) [2,7–10,
13, 18, 19, 25]. It does not change the probability laws that
drive the model, but it creates an attraction toward the rare
event(s) by a applying a selection mechanism to the sample
paths: A trajectory (or sample path) that seems to go away
from the rare event is terminated with some probability (the
weight of the any survivor is multiplied by this probability;
this is Russian roulette) and those that seem to go in the
right direction are split (or cloned, and the weight is divided
equally among them).

In this paper, we are interested in combining the two meth-
ods as follows: We want to use splitting to control the vari-
ance of the likelihood ratio when applying IS. In our setting,
the estimator is an indicator function (it indicates if the rare
event has happened or not) multiplied by a likelihood ratio.
When the rare event happens, the likelihood ratio is usually
much smaller than 1 and it sometimes has a large variance.
In that case, reducing this variance could bring significant
efficiency improvement in addition to that obtained from IS.
Booth [1, 2] suggested the idea of splitting with weight win-
dows to reduce this variance. The weight of a sample path
at any given time is redefined as the product of its weight
from the splitting and Russian roulette by the likelihood ra-
tio that it has accumulated so far. When a sample path
reaches the rare event, this weight is its contribution to the
estimator. Ideally, two sample paths that have about the
same probability of reaching the rare event (conditional on
their state) should have about the same weight. The idea
is to figure out what this weight should be, on average, as
a function of the state, and define a window (an interval)
around this average, which can be viewed as a target for the
weight. Whenever the weight of a sample path falls below
the window, we apply Russian roulette; the path is killed
with some probability 1− ps and its weight is multiplied by
1/ps if it survives. The value of p is selected to that the new
weight falls in the window. When the weight goes above the
window, we split the sample path in a number of copies so
that the weight of each copy is inside the window. In the
proposal of [1, 2], the state space is partitioned in a finite
number of regions and each region has a different weight
window (constant over the region). Such weight windows



are used in the Los Alamos particle transport simulation
programs. The weight windows are selected by the user, or
by heuristics, or by using prior runs to estimate what should
be the average weight of a sample path in any given region,
if this path reaches the rare event.

The remainder of the paper is organized as follows. Our
basic rare-event setting is defined in Section 2. In Section 3,
we describe how to combine IS with weight windows based
on the weighted importance, defined as the product of the
weight by a function of the state called importance function.
With the right choice of importance function, the expected
weighted importance should be a constant, independent of
the state, and we center our weight window (which is on
the weighted importance and does not depend on the state)
around this constant. In Section 4, we give numerical il-
lustrations. In one of the examples, we show what can go
wrong with a bad guess of the importance function.

2. SETTING
We consider a discrete-time Markov chain {Xj , j ≥ 0} with
state space X . Let A and B be two disjoint subsets of X .
The chain starts in some state X0 = x, leaves the set A if
x ∈ A, and then eventually reaches B or A. Let

τA = inf{j > 0 : Xj−1 ∈ A and Xj ∈ A}

and

τB = inf{j ≥ 0 : Xj ∈ B}.
For all x ∈ X , let

γ(x) = P[τB < τA | X0 = x], (1)

which is the probability that the chain reaches the rare event
before getting back to A if it starts in state x. We have
γ(x) = 1 if x ∈ B. We also denote γ = γ(x0) = P[τB < τA],
where x0 is some fixed initial state. We want to estimate γ.
This form of rare-event problem, where γ is small, occurs in
many practical situations; see, e.g., [4, 17, 21,22].

The standard (or crude) Monte Carlo method to estimate γ
is to simulate the chain n times until it reaches the stopping
time τ = min[τA, τB ], independently, and define the estima-
tor γ̂n as the proportion of those n runs for which the event
{τB < τA} occurs. This estimator has relative error

RE[γ̂n] =
(Var[γ̂n])1/2

γ
=

(γ(1− γ)/n)1/2

γ
= O

�
1

(γn)1/2

�

when γ → 0. For a bounded relative error, this estimator re-
quires a n that increases as O(1/γ), so it eventually becomes
too time-consuming to be practical.

To introduce IS for this model, we consider the special case
of a Markov chain with denumerable state space X . The
same ideas apply if the state space is continuous; the transi-
tion probabilities can then be replaced by conditional den-
sities. Let p(x, y) = P[Xj = y | Xj−1 = x] be the transition
probabilities, for x, y ∈ X . With IS, these probabilities are
changed to q(x, y), for x, y ∈ X , where q(x, y) > 0 whenever
p(x, y)γ(y) > 0. To compute the IS estimator, we simulate
the chain with the transition probabilities q(x, y) instead of
p(x, y), and the (unbiased) estimator of γ (for each run)
becomes:

γ̂is = I[τB < τA]L(X1, . . . , Xτ ), (2)

where

L(X1, . . . , Xτ ) =

τY
j=1

p(Xj−1, Xj)

q(Xj−1, Xj)
(3)

is the likelihood ratio associated with the probability change.
For n independent simulation runs, we just average the n
copies of γ̂is; the corresponding estimator is denoted γ̂is,n.

There are two sources of variance in the estimator (2): the
indicator function and the likelihood ratio. Without IS, the
likelihood ratio is 1 and all the variance is in the indicator
function, which is nonzero only with a very small probability.
With IS, the indicator function should be 1 with much larger
probability (if the probabilities q(x, y) are well-chosen), but
the likelihood ratio can also vary. If this likelihood ratio was
a constant when the rare event occurs, then at least that
contribution to the variance would be eliminated and there
would only remain the variance of the (binomial) indicator
random variable, multiplied by some constant. One of our
goals here is to approximate this by making the (weighted)
likelihood ratio almost a constant when B is reached. We
also want to see if we can do better by using splitting to
reduce the variance of both the likelihood ratio and the in-
dicator simultaneously.

3. WEIGHT WINDOWS FOR IMPORTANCE
SAMPLING

3.1 Controlling the likelihood ratio.
Let Q denote the probability measure under IS, let Eq and
Varq denote the corresponding expectation and variance op-
erators, and let

γq(x) = Q[τB < τA | X0 = x], (4)

the probability that the chain reaches B before getting back
to A if it starts in state x, under IS. Note that

γ(x) = Eq[γ̂is | X0 = x]

= Eq[L(X1, . . . , Xτ ) | τB < τA, X0 = x]

× Q[τB < τA | X0 = x]

= `(x)γq(x)

where

`(x) = Eq[L(X1, . . . , Xτ ) | τB < τA, X0 = x].

When starting in state x, the IS estimator has variance

Varq[γ̂is | X0 = x]

= Eq[γ̂
2
is | X0 = x]− γ2(x)

= Eq[L
2(X1, . . . , Xτ ) | τB < τA, X0 = x]

× Q[τB < τA | X0 = x]− γ2(x)

= Eq[L
2(X1, . . . , Xτ ) | τB < τA, X0 = x]

× γq(x)− γ2(x)

≥ `2(x)γq(x)− γ2(x) (5)

= γ2(x)(1− γq(x))/γq(x).

In (5), equality holds if and only if

Q[L(X1, . . . , Xτ ) = `(x) | τB < τA, X0 = x] = 1, (6)

i.e., if the likelihood ratio is a constant (that depends only
on x) when the rare event occurs. Making the likelihood ra-
tio a constant does not necessarily minimize the variance



(because we could also increase γq), but it could reduce
it substantially. Finding transition probabilities q so that
(6) holds for the Markov chain under IS is rarely possible.
But we can use splitting to make the likelihood ratio (or a
weighted version of it) almost a constant, as follows.

Suppose for a moment that (6) holds for all x, that the chain
starts in state X0 = x0, and that after j steps, for j ≤ τ ,
it is in state Xj = x. It follows from (6) that if τB < τA,
then with probability 1, L(X1, . . . , Xτ ) = γ(x0)/γq(x0) and
L(Xj , . . . , Xτ ) = γ(x)/γq(x), which implies that

L(X1, . . . , Xj) =
L(X1, . . . , Xτ )

L(Xj , . . . , Xτ )
=

`(x0)

`(x)
. (7)

This means that if we are in state Xj = x, the likelihood ra-
tio accumulated so far should obey the equality (7), ideally.
What can we do if it does not?

In fact, L(X1, . . . , Xj) can be viewed as a weight that the
chain has accumulated so far. This weight will simply multi-
ply the contribution of this chain to the estimator at the end
(if τB < τA) and otherwise has no influence on the sample
path of the chain after step j. If we decide to apply splitting
or roulette to this chain at step j, then the weighting factors
that these methods introduce can simply multiply the like-
lihood ratio. We will denote the product of these two types
of weights by Wj at step j. Thus, we have W0 = 1 and

Wj = Wj−1Rjp(Xj−1, Xj)/q(Xj−1, Xj)

for j ≥ 1, where Rj = 1/ps if we kill the chain with proba-
bility 1 − ps at step j (we apply Russian roulette) and the
chain survives, Rj = 0 if the chain does not survive, and
Rj = 1/E[C] if we split the chain in C copies at step j
(where C can be a random variable). In the latter case,
the weight Wj is given to each copy of the chain. We take
C as a random variable when we have a non-integer target
value c for E[C]; we then take C = bcc+ 1 with probability
δ = c− bcc and C = bcc with probability 1− δ. If we start
with n chains in state x0, then the (unbiased) estimator γ̂is,n

of γ(x0) is now the sum of all the weights when the chains
have reached their stopping times τ , divided by n.

To mimic (7), we would like that

Yj = Wj`(Xj)/`(x0) ≈ 1 (8)

at all steps. To make this happen, we suggest to select a
window [α1, α2] for some real numbers α1 < 1 < α2. For
example, we could take α1 = 1/2 and α2 = 2. Whenever
Yj > α2, we split the chain in C copies where E[C] = Yj ,
and whenever Yj < α1, we apply Russian roulette, killing
the chain with probability 1 − ps = 1 − Yj . Note that it is
possible that doing this may decrease the fraction of chains
that reach B, in which case the variance is not necessarily
reduced.

Our development so far assumes that the goal of splitting
is only to keep the likelihood ratio close to its conditional
expectation, and not necessarily to favor the chains that are
getting closer to B. We rely only on IS to do the “pushing”
toward B. In fact, without IS, `(x) = 1 for all x, so with
the previous method all the chains would keep weight 1 and
no splitting or roulette would occur.

3.2 Controlling the weighted importance.
When splitting is used alone, it is known that the best thing
to do (in terms of variance) is to make sure that all the chains
have approximately the same expected contribution to the
estimator [19]. If a chain is in state Xj = x and has weight
Wj , its expected contribution is Wjγ(x), with or without
IS. Initially, the chain is in state x0 and has weight 1, so its
expected contribution is γ(x0). Thus, a second viewpoint
would be that we want

Yj = Wjγ(Xj)/γ(x0) ≈ 1 (9)

at all steps, instead of (8). The splitting and roulette then
helps pushing the chain toward B in addition to controlling
the likelihood ratio. We can apply the weight windows in
the same way, with (9) instead of (8), and the estimator has
the same definition. With either method, the chains evolve
independently of each other and the number of chains at any
given point in time is random.

3.3 Fixed number of chains.
Suppose now that we want the number of chains to be always
equal to some fixed integer n, minus the number nB of chains
that have reached the set B so far. Thus, the number of
chains that reach B will always be equal to n or slightly
smaller. It can be smaller because it may happen that all
the n − nB chains alive at a given step hit A in the next
transition. So at any given step, we want to have n− nB

chains with approximately the same weighted importance. If
chain i is in state Xi,j and has weight Wi,j at step j, counting
only the chains that have not reached their stopping time,
we should replace (9) by

Yi,j = Wi,jγ(Xi,j)/γ(x0) (10)

≈ 1

n− nB

n−nBX
i=1

Wi,jγ(Xi,j)/γ(x0) (11)

for all i. That is, the expected contribution should be di-
vided equally among the n − nB chains. A similar adapta-
tion can be defined for (8). To implement the method, we
select a fixed constant α > 1. At each step, we simulate one
transition for all the chains, then we split in two copies the
chain with the largest value of Yi,j in (10), repeatedly, until
we have n − nB chains. After that, as long as α times the
smallest value of Yi,j is less than the largest value of Yi,j , we
apply roulette to the chain with the smallest value so that
its weight is raised up to the average in (11) if it survives. If
it does not survive, then we split in two the chain with the
largest value. The estimator of γ(x0) is the same as before.

3.4 Multilevel setting.
So far we have considered splitting without levels. In the
usual multilevel splitting procedure [9, 12], we select m lev-
els γ(x0) < `1 < · · · < `m = 1 and simulate n chains inde-
pendently from state x0 until all these chains have reached
either A or a state Xj with γ(Xj) ≥ `1. Let R1 be the
number of chains for which the latter happens; these chains
are said to have reached level `1. In the fixed-effort and
fixed-assignment version of multilevel splitting, these R1

chains are split into n chains as follows: If c = bn/R1c
and d = n mod R1, we select d of the R1 chains at random,
without replacement; the selected chains are split in c + 1
copies and the other ones are split in c copies. This is the



first stage. In stage k, we start with n chains obtained af-
ter splitting (using the procedure just described) the Rk−1

chains that have reached level `k−1 and we simulate them
independently (from then on) until they reach either A or
level `k. Let Rk be the number of chains that reach `k.
Then it can be shown [9] that γ̂is,n = R1R2 · · ·Rm/nm is an
unbiased estimator of γ(x0).

To combine this method with IS and weight windows, we can
do the splitting and roulette based on (10), but do it only at
the end of each stage of the multilevel splitting procedure.
Suppose Rk chains have reached level `k in stage k. We want
to split/kill those chains so that we obtain n chains having
approximately the same value of Yi = Wi,jγ(Xi,j)/γ(x0) at
the beginning of stage k + 1. One simple way to achieve
this (approximately) is as follows. We split the chain with
the largest value of Yi = Wi,jγ(Xi,j)/γ(x0) and repeat this
until there are n chains. Then, as long as the largest Yi

is more than twice the smallest Yi, we apply roulette to
the chain with the smallest Yi, killing it with probability
1 − Yi/Ȳn where Ȳn is the average of the Yi’s, and if this
chain is killed then we split the chain with the largest Yi.
When this procedure stops, we have exactly n chains with
similar values of Yi, and we can start the next stage.

3.5 Approximating γ by an Importance Func-
tion.

We have described all the splitting methods in an idealistic
setting where the function γ would be known everywhere. If
this was true, there would be no need to do simulation to es-
timate γ(x0) in the first place. In practice, for the splitting
and roulette, the function γ is replaced by some approxi-
mating function h usually called the importance function.
A good choice of h is very important for the splitting to be
effective [11], but a rough guess of the true function γ is
often sufficient, especially in the context of multilevel split-
ting, provided that we have a good idea of its correct shape.
When weight windows are used with splitting without lev-
els, we need a good approximation of at least the order of
magnitude of γ in all the area of the state space that we are
likely to visit.

4. EXAMPLES
We consider a highly-reliable Markovian system (HRMS)
[22] with c types of components and ni components of type i,
for i = 1, . . . , c. Suppose that {Y (t) = (Y1(t), . . . , Yc(t)), t ≥
0} is a continuous-time Markov chain, where Yi(t) ∈ {0, . . . , ni}
is the number of failed components of type i at time t. Each
transition corresponds to the failure of an operational com-
ponent or the repair of a failed component. Let ξ0 = 0, let
0 ≤ ξ1 ≤ ξ2 ≤ · · · be the jump times of this chain, and let
{Xj , j ≥ 0} be the embedded discrete-time Markov chain,
defined by Xj = Y (ξj) for j ≥ 0. We denote its transition
probabilities by p(x, y) = P[Xj = y | Xj−1 = x].

The set A = {x0} contains only the state x0 = (0, . . . , 0)
in which all components are operational and B is the set
of states in which the system is down. Suppose that the
system is up when at least mi components of type i are op-
erational for each i, for some positive integers mi; otherwise
the system is down. When γ = P[τB < τA] is very small,
its estimation is the most challenging part in the estimation

of other quantities such as the mean time to failure or the
steady-state availability of the system [4,16,22]. To estimate
γ, we focus on the simulation of the discrete-time Markov
chain {Xj , j ≥ 0}.

Using a simplified version of the model of Shahabuddin [22],
we assume that each type-i component has repair rate µi

when it is down and failure rate λi = aiε
bi when it is op-

erational, where ai > 0 and bi is a strictly positive inte-
ger, whereas the rarity parameter ε satisfies 0 < ε � 1.
The constants ai, bi, and µi do not depend on ε. Several
heuristics have been proposed to select a change of mea-
sure for IS in this setting [4, 20]; the most robust approach
with respect to rarity is the balanced failure biasing (BFB)
scheme of [22], which has bounded relative error when ε → 0.
See [5, 20,23,24] for further discussions.

BFB replaces the probabilities p(x, y) by new transition prob-
abilities q(x, y) defined as follows. For any state x ∈ X ,
let F (x) [resp., R(x)] be the set of states y such that the
direct transition x → y (if any) corresponds to a failure
[resp., a repair]. Let pF(x) =

P
y∈F (x) p(x, y) and pR(x) =P

y∈R(x) p(x, y) be the overall failure and repair probabili-

ties, respectively. We select a constant ρ ∈ (0, 1), not too
close to 0 or 1. For a state x 6∈ B, we define

q(x, y) =

8>>><
>>>:

1
|F (x)| if y ∈ F (x) and pR(x) = 0;

ρ 1
|F (x)| if y ∈ F (x) and pR(x) > 0;

(1− ρ) p(x,y)
pR(x)

if y ∈ R(x);

0 otherwise.

For x ∈ B, we take q(x, y) = p(x, y). This change of measure
increases the probability of failure to at least ρ when the
system is up, so a failure-induced transition is no longer a
rare event. The new failure rate is split equally between all
states that can be reached directly from the current state by
a failure. The BFB estimator of γ and the likelihood ratio
are defined as in (2) and (3).

Example 1. For our first numerical illustration, we take
a simple system with 10 components of the same type, so
c = 1 and n1 = 10. The other parameters values are m1 = 2,
µ1 = 1, ε = 0.05, λ1 = 0.001, and ρ = 0.5. For this example,
we have γ ≈ 9.0×10−24 and the variance per run with BFB
is σ2

is ≈ 2.0× 10−44. Thus, the relative error with n runs is
approximately 15.7/

√
n.

To define an importance function h that approximates γ,
we first observe that for any choice of ρ < 1, γ(x) cannot
exceed the largest value of the likelihood ratio that can be
obtained over all sample paths going from state x to the set
B. This upper bound is smallest when ρ → 1 (in the limit),
so we define h(x) as its value when ρ = 1 (i.e., we take the
tightest upper bound). This gives:

γ(x)

γ(x0)
≈ h(x)

h(x0)
=

x−1Y
j=1

�
1 +

jµ1

(n1 − j)λ1

�
.

We applied the window [α1, α2] = [0.5, 2.0] to the weighted
importance (9), separately (independently) for each chain,
using this approximation for γ. We started with n chains
and computed the estimator γ̂is,n defined as the sum of weights



of all chains that reached B, divided by n. This was repli-
cated m times, independently. The mean and variance per
run were estimated by the average of the m realizations of
γ̂is,n and n times their empirical variance, respectively. We
denote these two quantities by γ̂is,w and σ̂2

is,w. Their expecta-
tions do not depend on n and m. In a simulation experiment
with n = 4 and m = 220, we obtained γ̂is,w = 9.0 × 10−24

and σ̂2
is,w = 8.6×10−46, so using the weight windows reduced

the variance (empirically) by a factor of 23. The number of
hits of B per initial chain was about 0.11 with BFB alone
and 0.51 with the weight windows.

To compare the work required by BFB with and without the
weight windows, we can look at the average number of simu-
lated steps of the Markov chain, per original chain, for each
of the two methods. The inverse of the product of this work
by the variance per run can be taken as a measure of effi-
ciency. The average number of simulated steps was 9.0 with
BFB alone and 7.6 with the weight windows. So not only
the variance is reduced but the work (measured by the num-
ber of simulated steps) is also reduced. Note that here, we
do not account for the overhead required by the splitting and
roulette, which depends heavily on the implementation.

We then tried the same example with ni = 20 instead of
ni = 10. Here, γ ≈ 1.9 × 10−53. The variance was reduced
(empirically) by a factor of 2409 and the average number of
simulated steps per initial chain was 19.0 for BFB alone and
15.6 for BFB with the weight windows.

Finally, returning to n1 = 10, we tried the method with a
fixed number of chains, with n = 1024 chains, m = 1024
independent replications, and α = 4.0. The variance was
reduced approximately by a factor of 29. The average num-
ber of steps per initial chain was 11.1 and the average num-
ber of hits of B per initial chain was 0.9998. Here we
have more hits and more variance reduction than with the
previous method, but also more work, and the efficiency is
roughly the same.

Example 2. We now consider a system with c = 3 com-
ponent types, ni = 6, mi = 2, and µi = 1 for all i, λ1 = ε,
λ2 = 1.5ε, λ3 = 2ε2, ε = 0.01, and ρ = 0.8. Here, γ ≈ 1.8×
10−7 and the variance per run with BFB is σ2

is ≈ 1.0×10−11.
For system’s failure, we need at least ni−mi +1 = 5 failures
of the same type of component.

We made a simulation experiment as in the previous exam-
ple, with n = 4 and m = 220. The function γ was also
approximated by the largest likelihood ratio that can be ob-
tained over all sample paths going from state x to the set
B, with ρ = 1, and we used the window [α1, α2] = [0.5, 2.0]
for (9). We obtained γ̂is,w = 1.8 × 10−7. The variance was
reduced (empirically) by a factor of 7.1 only. However, the
average number of steps per initial chain was also reduced
from 11.2 to 3.3. Interestingly, the average number of hits
of B per initial chain was reduced from 0.75 with BFB alone
to 0.0089 with the weight windows. This suggests that our
approximation h(x)/h(x0) grossly underestimates the ratio
γ(x)/γ(x0) when x approaches the set B, so the weighted
importance becomes much smaller than what it should be,
and this results in killing too many of the chains having a
large number of failed components.

To verify this intuition, we computed h(x0) ≈ 73.2 × 10−7,
a much larger value than γ(x0) ≈ 1.8× 10−7. On the other
hand, h(x) = γ(x) = 1 whenever x ∈ B. We thus have
h(x)/h(x0) = γ(x)/γ(x0) = 1 for x = x0, but h(x)/h(x0) �
γ(x)/γ(x0) for x ∈ B. Along the paths from x0 to B,
h(x)/h(x0) is generally much smaller than it should be when
x is close to B and not much smaller when x is near x0.

Why is that? With the BFB adopted here, the shortest path
to failure (with mi +1 failures for type-i components and no
other failure) does not represent the typical path to failure.
In a typical path, there is usually a few failures of other
components as well, and often a few repairs. This reduces
the (average) final value of the likelihood ratio and this is why
h(x0) overestimates γ(x0) (which equals the expected value
of the likelihood ratio times the indicator that we reach B).

If this explanation is correct, then the underestimation of
γ(x)/γ(x0) should get much worst if we increase ni and mi

while keeping the other parameters unchanged. This is con-
firmed by the next example.

Example 3. We take the same parameters as in the pre-
vious example, except that we now try ni = 8, 10, and 12.
As ni increases, the overestimation of γ(x0) gets worse very
quickly:

ni 8 10 12
γ(x0) 6.0× 10−11 1.7× 10−14 4.2× 10−18

h(x0) 1.5× 10−8 3.0× 10−11 6.0× 10−14

As a result, since γ(x)/γ(x0) is grossly underestimated, when
x approaches B the chains are killed with high probability at
each step, because their weighted importance is almost al-
ways much lower than the weight window. Then, very few
chains (if any) can reach the target set B and the weight
windows are doing more damage than good. In fact, in an
experiment with ni = 12 and a fixed number of chains, no
chain ever made it to B even after several hours of CPU
time. The chains were constantly killed as they were ap-
proaching B and were replaced by chains that were closer to
x0, so the weight windows were in fact preventing the chains
from reaching B.

How can we avoid this bad behavior and make sure that the
weight windows really help? One way is to first get some
rough estimate of the function γ via pilot runs, and use this
estimate to define the weight windows.

For the case of ni = 12 above, for example, we could raise
the current h to the power α ≈ 18.2/14 to get a new h
that better matches γ. With this new h, the weight windows
reduced the variance per run from 1.1×10−29 to 2.1×10−34;
that is, a spectacular reduction factor of more than 53000.
On the other hand, the average number of steps per initial
chain increased from 30 to 335 and the average number of
hits per initial chain decreased from 0.75 to 0.13. With a
fixed number of chains (n = 1024) and the same h for the
weight windows, we observed a variance reduction factor of
approximately 6200, while the average number of steps and
the average number of hits per initial chain were 46.4 and
1.0, respectively.



Another (potential) remedy is to adopt a different failure
biasing scheme that gives higher probabilities to the sam-
ple paths where all failures are for the same type of compo-
nent. To illustrate this, we consider an adaptation of the
distance-based biasing (DBB) scheme of [6], which (adap-
tively) increases the failure probabilities of component types
when more components of that type are already failed. DBB
allocates a fixed probability 1−ρ to repair transitions (as for
BFB), and splits this probability to the different repair types
in proportion to their original probabilities. There remains a
probability ρ for the failure transitions. A fraction ρc of this
probability (that is, a probability ρcρ) is allocated to a failure
transition of component type i type with the smallest value
of (ni−mi−xi+1)bi, i.e., which gives the largest probability
of failure if all failures are for the same type of component
(in case of equality, this probability is split equally among
the component types that reach the minimum). The same
procedure is applied recursively to the remaining component
types. That is, a fraction ρc of the remaining probability
is allocated to a failure transition of component type i type
with the second smallest value of (ni−mi−xi +1)bi, and so
on. In each subgroup, the individual probabilities are taken
proportional to the number of operational components of the
given type. Our modification to the original scheme of [6]
is that we consider the probability of paths instead of just
the number of transitions required for failure. We also bal-
ance the transition probabilities, leading to bounded relative
error [4].

For the present example with ni = 12, this method gave a
variance per run of 2.2× 10−33 without the weight windows
and 2.9 × 10−35 with the weight windows, with an average
number of steps and average number of hits per chain of
16.4 and 0.75 without weight windows, and 4853 and 63.5
with weight windows. Without weight windows, this is better
than BFB. With the weight windows, we get an even smaller
variance than with BFB with h raised to the power 18.2/14,
as reported earlier, but at the expense of a much longer sim-
ulation time, leading to poorer efficiency. For the case of
a fixed number of chains, we were unable to obtain a re-
sult because it required too long simulation times. Thus here
again, the approximation of γ(x) by h(x) needs to be im-
proved. For instance, we have h(x0) = 1.4× 10−20 whereas
γ(x0) = 4.2× 10−18. Similarly to what we did for BFB, we
decided to raise the current h to the power α ≈ 17.5/20, to
get a new h that matches γ(x) at x = x0. With this new h,
the variance per run for weight windows is 6.6× 10−35 with
an average number of steps and average number of hits per
chain of 458 and 0.49 (recall that for this example, we al-
ways take n = 4 and m = 220). Thus, the variance is slightly
larger than with the initial h, but the simulation time is re-
duced by a factor 10. With a fixed number of chains, we
obtained a variance per run of 8.0 × 10−34 and an average
number of steps per chain of 29.5. In summary, with DFB,
the weight windows are not very effective to improve the ef-
ficiency with this choice of h.

5. CONCLUSION
IS is one the most widely used variance reduction technique
in rare event simulation, though choosing a proper IS mea-
sure is often a difficult task. In this paper, we have proposed
to alleviate this problem by combining IS with a weight-
window technique that kills the chains whose weighted im-

portance is deemed too small and split those whose weighted
importance appears too large, so that all the chains have a
weighted importance around the same value. Our (very pre-
liminary) numerical examples with highly reliable Markov-
ian systems indicate that this can reduce substantially the
variance of the estimator. One difficulty, on the other hand,
is that the method requires a reasonably good approxima-
tion of the function γ.

This work is preliminary. As directions of future research,
we aim at investigating a proper choice of importance func-
tion for specific classes of problems, and provide hints to
ensure a variance reduction. We also want to explore the
combination with multilevel splitting, which we have de-
scribed but not tested empirically.
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