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ABSTRACT
We study and compare various methods to generate a ran-
dom variate from the normal distribution truncated to some
finite or semi-infinite interval, with special attention to the
situation where the interval is far in the tail. This is required
in particular for certain applications in Bayesian statistics,
such as to perform exact posterior simulations for parameter
inference, but could have many other applications as well.
We distinguish the case in which inversion is warranted, and
that in which a rejection method is also fine. The algorithms
are implemented and available in Java, R, and MATLAB,
and the software is freely available.

CCS Concepts
•Mathematics of computing→Distribution functions;
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Keywords
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1. INTRODUCTION
We consider the problem of generating (simulating) a stan-

dard normal random variable X, conditional on a ≤ X ≤ b,
where a < b are real numbers, and at least one of them is
finite. We are particularly interested in the situation where
the interval (a, b) is far in one of the tails, i.e., a ≫ 0
or b ≪ 0. The standard methods developed for the non-
truncated case do not always work well in this case. More-
over, if we insist on using inversion, the standard inversion
methods break down when we are far in the tail. Inversion
is preferable to a rejection method (in general) in various
simulation applications, for example to maintain synchro-
nization and monotonicity when comparing systems with
common random numbers, for derivative estimation and op-
timization, when using quasi-Monte Carlo methods, etc. [2,
11, 12, 13, 14, 16]. For this reason, a good inversion method
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is needed, even if rejection is faster. We examine both re-
jection and inversion methods in this paper.

Our motivation for this work stems from applications in
Bayesian statistics and computational biology, in which one
wishes to generate a random vector X from the multivariate
normal or Student-t distribution conditional on a ≤ X ≤ b

[11], or to accurately estimate the probability P[a ≤X ≤ b]
[9]. for some rectangular box [a, b]. These problems occur in
particular for the estimation of certain Bayesian regression
models and for exact simulation from these models; see [6]
and the references given there. More generally, the box can
be replaced by a simplex, which can be transformed into a
rectangular box by a change of variables (a linear transfor-
mation).

Efficient and reliable simulation methods based on im-
portance sampling were developed recently in [4, 5] for ex-
act simulation from such multivariate conditional distribu-
tions and to estimate the conditional probability P[a ≤
X ≤ b]. Software tools implementing these methods has
been made freely available at Matlab

r Central as a tool-
box (see www.mathworks.com/matlabcentral/fileexchange/
53796) and as an R package on CRAN (see cran.r-project.
org/web/packages/TruncatedNormal).

The simulation of X from these algorithms requires re-
peated draws from a standard normal distribution truncated
to different intervals, often far in the tail. That is, we need
fast and reliable algorithms to generate X ∼ N(0, 1), con-
ditional on a ≤ X ≤ b, for arbitrary real numbers a < b.
Various methods have already been proposed to do that; see
for example [6, 7, 10, 18, 21, 23]. Some methods work well
when the interval [a, b] contains 0 or is not far from it, but
not when a ≫ 0 or b ≪ 0. Other methods have been de-
signed for the right tail, i.e., when a ≫ 0 and b = ∞, and
use rejection. These methods may be adapted in principle to
a finite interval [a, b], but they may become inefficient when
the interval [a, b] is narrow. We also found no reliable inver-
sion method for an interval far in the tail (say, for a > 38;
see Section 2). To generate X from a more general normal
distribution with mean µ and variance σ2 truncated to an
interval (a′, b′), it suffices to apply a simple linear transfor-
mation to recover the problem studied here, so there is no
loss of generality in assuming a standard normal distribu-
tion.

The aim of this paper is to review and compare the most
popular methods we know for this task, propose new efficient
methods for certain situations, and provide reliable software
implementation of these methods. In particular, we propose
a new accurate inversion method for arbitrarily large a and



improvements to commonly used methods. In some of our
discussion, we assume that a > 0. The case where b < 0
is covered by symmetry (just change the sign) and the case
where a ≤ 0 ≤ b can be handled by standard methods.

2. SETTING AND BASIC INVERSION
All over the paper, we use φ to denote the density of the

standard normal distribution (with mean 0 and variance 1),
Φ for its cumulative distribution function (cdf), Φ for the
complementary cdf, and Φ−1 for the inverse cdf defined as

Φ−1(u) = min{x ∈ R | Φ(x) ≥ u}.
Thus, if X ∼ N(0, 1),

Φ(x) = P[X ≤ x] =

∫ x

−∞

φ(y)dy = 1− Φ(x).

Conditional on a ≤ X ≤ b, X has density

φ(x)

Φ(b)− Φ(a)
for a < x < b, (1)

and 0 elsewhere. We denote this truncated normal distribu-
tion by TNa,b(0, 1).
It is well known that if U ∼ U(0, 1), the uniform distribu-

tion over the interval (0, 1), then

X = Φ−1(Φ(a) + (Φ(b)− Φ(a))U) (2)

has exactly the standard normal distribution conditional on
a ≤ X ≤ b. But even though very accurate approximations
are available for Φ and Φ−1, (2) is sometimes useless to
generate X from the desired conditional distribution.
In particular, recall that whenever computations are made

under the IEEE-754 double precision standard (which is typ-
ical), any number of the form 1 − ǫ for 0 ≤ ǫ < 2 × 10−16

(approximately) is identified with 1.0, any positive number
smaller than about 10−324 cannot be represented at all (it
is identified with 0), and numbers smaller than 10−308 are
represented with less than 52 bits of accuracy. This implies
in particular that Φ(x) = Φ(−x) is identified as 0 whenever
x ≥ 39 and is identified as 1 whenever −x ≥ 8.3. Thus, (2)
cannot work when a ≥ 8.3. In the latter case, or whenever
a > 0, it is much better to use the equivalent form:

X = −Φ−1(Φ(a)− (Φ(a)− Φ(b))U), (3)

which is accurate for a up to about 37, assuming that we use
accurate approximations of Φ(x) for x > 0 and of Φ−1(u)
for u < 1/2. Such accurate approximations are available for
example in [3] for Φ−1(u) and via the error function erf on
most computer systems for Φ(x). For larger values of a (and
x), a different inversion approach must be developed. We do
it in the next section.

3. INVERSION FAR IN THE RIGHT TAIL
When Φ(x) is too small to be represented as a floating-

point double, we will work instead with the Mills ratio, de-

fined as q(x)
def
= Φ(x)/φ(x), which is the inverse of the haz-

ard rate (or failure rate) evaluated at x. When x is large,
this ratio can be approximated by the truncated series (see
[1], or [22], page 44):

q(x) ≈ 1

x
+

r
∑

n=1

1× 3× 5× · · · × (2n− 1)

(−1)nx2n+1
. (4)

For any x this series diverges when r → ∞ (because the
numerator increases faster than exponentially with n), but it
gives a lower bound when r is odd and an upper bound when
r is even, and the distance between the lowest upper bound
and the highest lower bound converges to 0 rapidly when x
increases. In our experiments with x ≥ 10, we compared
r = 5, 6, 7, 8, and we found no significant difference (up to
machine precision) in the approximation of X defined by the
inverse cdf in (3), by the method we now describe. In view
of (3), we want to find x such that

Φ(x) = Φ(−x) = Φ(a)− (Φ(a)− Φ(b))u,

for 0 ≤ u ≤ 1, when a is large. This equation can be rewrit-
ten as h(x) = 0, where

h(x)
def
= Φ(a)− Φ(x) + (Φ(b)− Φ(a))u (5)

To solve h(x) = 0, we will start by finding an approxi-
mate solution and then refine this approximation via New-
ton iterations. We detail how this is achieved. To find an
approximate solution, we replace the normal cdf Φ in (3)
by the standard Rayleigh distribution, whose complemen-
tary cdf and density are given by F (x) = exp(−x2/2) and
f(x) = x exp(−x2/2) for x > 0. Its inverse cdf can be writ-

ten explicitly as F−1(u) = (−2 ln(1− u))1/2. This choice of
approximation of Φ−1 in the tail has been used before (see
for example [3] and Section 4). It is motivated by the facts
that F−1(u) is easy to compute and that Φ̄(x)/F̄ (x) → 1
rapidly when x→∞. By plugging F and F−1 in place of Φ
and Φ−1 in (3), and solving for x, we find the approximate
root

x ≈ (a2 − 2 ln
(

1− u+ u exp
(

(a2 − b2)/2
))

)1/2, (6)

which is simply the u-th quantile of the standard Rayleigh
distribution truncated over (a, b), with density

f(x) =
x exp(−(x2 − a2)/2)

1− exp(−(b2 − a2)/2)
for a < x < b. (7)

The next step is to improve the approximation (6) by ap-
plying Newton’s method to Equation (5). For this, it is
convenient to make the change of variable x = ξ(z), where

ξ(z)
def
=

√

a2 − 2 ln(z) and z = ξ−1(x) = exp((a2 − x2)/2),

and apply Newton’s method to g(z)
def
= h(ξ(z)). Newton’s

iteration for solving g(z) = 0 has the form

znew = z − g(z)/g′(z),

where

g(z)

g′(z)
=

h(ξ(z))

h′(ξ(z))
· 1

ξ′(z)
, (by the chain rule)

= −zξ(z)Φ(a)− Φ(ξ(z)) + u(Φ(b)− Φ(a))

φ(ξ(z))

= zξ(z)
Φ(ξ(z))− Φ(a) + u(Φ(a)− Φ(b))

φ(ξ(z))

= zξ(z)
(

q(ξ(z))− q(a)(1− u) exp( ξ(z)
2
−a2

2
)−

− q(b)u exp
(

ξ(z)2−b2

2

))

= x
(

zq(x)− q(a)(1− u)− q(b)u exp
(

a2
−b2

2

))

,

where the identity x = ξ(z) was used for the last equality.
A key observation here is that, thanks to the replacement of



Φ by q, the computation of g(z)/g′(z) does not involve ex-
tremely small quantities that can cause numerical underflow,
even for extremely large a. The resulting Newton algorithm
converges rapidly whenever a is large (say, a ≥ 10).
The complete procedure is summarized in Algorithm 1,

which we have implemented in Java, Matlab
r, and R. Ac-

cording to our experiments, the larger a the faster the con-
vergence. Figure 1 shows the required number of Newton
iterations to have δx ≤ δ∗ = 10−10, as a function of a, where
δx represents the relative change in x in the last iteration.

Algorithm 1 : Returns the u-quantile of TNa,b(0, 1)

Require: Input u ∈ (0, 1), δ∗

qa ← q(a)
qb ← q(b)

c← qa(1− u) + qbu exp(a
2
−b2

2
)

δx ←∞
z ← 1− u+ u exp(a

2
−b2

2
)

x←
√

a2 − 2 ln(z)
repeat

z ← z − x(zq(x)− c)

xnew ←
√

a2 − 2 ln(z)
δx ← |xnew − x|/x
x← xnew

until δx ≤ δ∗

return Quantile x

Figure 1: Number of Newton iterations necessary to
achieve δx < δ∗ = 10−10 for the median of TNa,∞(0, 1),
as a function of a.
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Table 1: Inversion using (3) vs using Algorithm 1: a
comparison for some values of a, b, and u, with r = 5
and δ∗ = 10−14.

a b u using (3) using Algo. 1
10.0 12.0 0.99 10.446272896499 10.446272896855
10.0 12.0 0.30 10.035260039588 10.035260039626
20.0 22.0 0.99 20.228389499595 20.228389499595
20.0 22.0 0.30 20.017781627473 20.017781627473
30.0 32.0 0.99 30.152946658582 30.152946658582
30.0 32.0 0.30 30.011873653870 30.011873653867
40.0 42.0 0.99 — 40.114892634811
40.0 42.0 0.30 — 40.008910319783
50.0 52.0 0.99 — 50.091982066969
50.0 52.0 0.30 — 50.007130140913

We note that for an interval [a, b] = [a, a + w] of fixed
length w, when a increases the conditional density concen-
trates closer to a. As an illustration, Table 2 gives the con-
ditional probability P[X > a + 1 | X > a] = Φ(a + 1)/Φ(a)
for a few values of a. The third column in the table reports
the approximation (4) with w = 1,

Φ(a+ w)

Φ(a)
=

q(a+ w)φ(a+ w)

q(a)φ(a)
≈ a exp[−w2/2− wa]

a+ w
,

which shows that this conditional probability decreases as
exp(−aw) when a → ∞. We see that there is practically
no difference between generating X conditional on a ≤ X ≤
a+ 1 and conditional on X ≥ a when a ≥ 30, but there can
be a significant difference for small a.

Table 2: Conditional probability Φ(a + 1)/Φ(a) and
its Mill’s ratio approximation for some values of a.

a P[X > a+ 1 | X > a] a
a+1

exp(−a− 1/2)

2 5.93× 10−2 5.47× 10−2

10 2.51× 10−5 2.50× 10−5

20 1.19× 10−9 1.19× 10−9

30 5.49× 10−14 5.49× 10−14

4. REJECTION METHODS
We now examine rejection (or acceptance-rejection) meth-

ods, which can be faster than inversion. A large collection
of rejection-based generation methods for the normal dis-
tribution have been proposed over the years; see [6, 7, 10,
23] for surveys, discussions, comparisons, and tests. Most of
them (the fastest ones) use a change of variable and/or pre-
computed tables to speedup the computations. In its most
elementary form, a rejection method to generate from some
density f uses a hat function h ≥ f and rescales h vertically
to a probability density g = h/

∫

∞

−∞
h(y)dy, often called the

proposal density. A random variate X is generated from g,
is accepted with probability f(X)/h(X), is rejected other-
wise, and the procedure is repeated until X is accepted as
the retained realization. In practice, more elaborate versions
are used that incorporate transformations and partitions of
the area under h.

Any of these proposed rejection methods can be applied
easily if Φ(b) − Φ(a) is large enough, just by adding a re-
jection step to reject any value that falls outside [a, b]. The
acceptance probability for this step is Φ(b) − Φ(a). When
this probability is too small, this becomes too inefficient and
something else must be done. One way is to define a pro-
posal g whose support is exactly [a, b], but this could be
inefficient (too much overhead) when a and b change very
often. Chopin [6] developed a rejection method specially
adapted to this situation. It is based on a hat function de-
fined by juxtaposing a large number of vertical rectangles
of different heights but equal surface over some finite inter-
val [amin, amax], and use an exponential proposal with rate
a = amax (the RejectTail variant of Algorithms 2 below) for
the tail above amax or when a > a′

max. The fastest imple-
mentation uses 4000 rectangles, amax ≈ 3.486, a′

max ≈ 2.605.
This method is fast, although it requires the storage of very
large precomputed tables, which could actually slow down
computations on certain type of hardware for which memory
is limited, like GPUs.



Simple rejection methods for the standard normal trun-
cated to [a,∞), for a ≥ 0, have been proposed long ago.
Marsaglia [19] proposed a method that uses for g the stan-
dard Rayleigh distribution truncated over [a,∞). An effi-
cient implementation is given in [7, page 381]. Devroye [7,
page 382] also gives an algorithm that uses for g an expo-
nential density of rate a shifted by a. There two methods
have exactly the same acceptance probability,

α(a) = a
√
2π exp(a2/2)Φ(a),

which converges to 1 when a→∞. Geweke [8] and Robert
[21] optimized the acceptance probability to

β(a) = λ
√
2π exp

(

aλ− λ2/2
)

Φ(a)

by taking the rate λ = (a +
√
a2 + 4)/2 > a for the shifted

exponential proposal. However, the gain with respect to
Devroye’s method is small and can be wiped out easily by
a larger computing time per step. Table 3 compares these
two acceptance probabilities for some values of a. For large
a, both are very close to 1 and there is not much difference
between them.

Table 3: Acceptance probabilities α(a) and β(a) for
some values of a.

a α(a) β(a)
2 0.84273845 0.93364532

10 0.99028596 0.99520084
20 0.99751852 0.99876308
30 0.99889257 0.99944705

We will compare two ways of adapting these methods to
a truncation over a finite interval [a, b]. The first one is to
keep the same proposal g which is positive over the interval
[a,∞) and reject any value generated above b. The sec-
ond one truncates and rescales the proposal to [a, b] and ap-
plies rejection with the truncated proposal. We label them
by RejectTail and TruncTail, respectively. TruncTail has
a smaller rejection probability, by the factor 1−Φ(a)/Φ(b),
but also entails additional overhead to properly truncate the
proposal. Typically, it is worthwhile only if this additional
overhead is small and/or the interval [a, b] is very narrow,
so it improves the rejection probability significantly. Our
experiments will confirm this.
Algorithms 2, 3, 4, state the rejection methods for the

TruncTail case with the exponential proposal with rate a
[7], with the rate λ proposed in [21], and with the standard
Rayleigh distribution, respectively, extended to the case of
a finite interval [a, b]. For the RejectTail variant, one would
remove the computation of q, replace ln(1 − qU) by lnU ,
and add X ≤ b to the acceptance condition. Algorithm 5
gives this variant for the Rayleigh proposal.

Algorithm 2 : X ∼ TNa,b(0, 1) with exponential proposal
with rate a, truncated

Ka ← 2a2

q ← 1− exp(−(b− a)a)
repeat

Generate U, V ∼ U(0, 1), independent
X ← − ln(1− qU)
E ← − ln(V )

until X2 ≤ KaV
return a+X/a

Algorithm 3 : X ∼ TNa,b(0, 1) with exponential proposal
with rate λ, truncated

λ← (a+
√
a2 + 4)/2

q ← 1− exp(−(b− a)λ)
repeat

Generate U, V ∼ U(0, 1), independent
X ← a− ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)
return a+X/a

Algorithm 4 : X ∼ TNa,b(0, 1) with Rayleigh proposal,
truncated

c← a2/2
q ← 1− exp(c− b2/2)
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(1− qU)

until V 2X ≤ a
return X ←

√
2X

Algorithm 5 : X ∼ TNa,b(0, 1) with Rayleigh proposal and
RejectTail

c← a2/2
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b
return

√
2X

When the interval [a, b] is very narrow, it makes sense to
just use the uniform distribution over this interval for the
proposal g. This is suggested in [21] and shown in Algo-
rithm 6. Generating from the proposal is then very fast.
On the other hand, the acceptance probability may become
very small if the interval is far in the tail and b − a is not
extremely small. Indeed, the acceptance probability in this
case is:

√
2π exp(a2/2)(Φ(a)− Φ(b))

b− a
=

q(a)− q(b) exp((a2 − b2)/2)

b− a
,

which decays at a rate of 1/a when a → ∞ while (b − a)
remains constant.



Algorithm 6 : X ∼ TNa,b(0, 1) with uniform proposal,
truncated

repeat
Simulate U, V ∼ U(0, 1), independently.
X ← a+ (b− a)U

until 2 lnV ≤ a2 −X2

return X

Another choice that the user can have with those gener-
ators (and for any variate generator that depends on some
distribution parameters) is to either precompute various con-
stants that depend on the parameters and store them in
some“distribution”object with fixed parameter values, or to
recompute these parameter-dependent constants each time a
new variate is generated. This type of alternative is common
in modern variate generation software [15, 17]. The first ap-
proach is worthwhile if the time to compute the relevant
constants is significant and several random variates are to
be generated with exactly the same distribution parameters.
For the applications in Bayesian statistics mentioned earlier,
it is typical that the parameters a and b change each time a
new variate is generated [6]. But there can be applications
in which a large number of variates are generated with the
same a and b.
For one-sided intervals [a,∞), the algorithms can be sim-

plified. One can use the RejectTail framework and since
b =∞, there is no need to check if X ≤ b. When reporting
our test results, we label this the OneSide case.
Note that computing an exponential is typically more

costly than computing a log (by a factor of 2 or 3 for negative
exponents and 10 for large exponents, in our experiments)
and the latter is more costly than computing a square root
(also by a factor of 10). This means significant speedups
could be obtained by avoiding to recompute the exponential
each time at the beginning of Algorithms 2, 3, and 4. This
is possible if the same parameter b is used several times, or
if b =∞, or if we use RejectTail instead of TruncTail.

5. SPEED COMPARISONS
We report a representative subset of results of speed tests

made with the different methods, for some pairs (a, b). In
each case, we generated 108 (100 millions) truncated normal
variates, added them up, printed the CPU time required to
do that, and printed the sum for verification. The experi-
ments were made in Java using the SSJ library [15], under
Eclipse and Windows 10, on a Lenovo X1 Carbon Thinkpad
with an Intel Core(TM) i7-5600U (single) processor running
at 2.60 GHz. All programs were executed in a single thread
and the CPU times were measured using the stopwatch facil-
ities in class Chrono of SSJ, which relies on the getThread-

CpuTimemethod from the Java class ThreadMXBean to obtain
the CPU time consumed so far by a single thread, and sub-
tracts to obtain the CPU time consumed between any two
instructions. The measurements were repeated a few times
to verify consistency and varied by about 1 to 2 percent at
most. The compile times are negligible relative to the re-
ported times. Of course, these timings depend on CPU and
memory usage by other processes on the computer, and they
are likely to change if we move to a different platform, but
on standard processors the relative timings should remain
roughly the same. They provide a good idea of what is most
efficient to do.

Table 4: Time to generate n = 108 random variates
for [a, b] = [3.0, 3.1].

Method CPU time (seconds)
recompute precompute

Generation in [a, b)
ExponD 6.46 6.22
ExponDRejectTail 23.04 23.20
ExponR 16.63 9.92
ExponRRejectTail 32.40 32.40
ExponRRejectTailLog 25.10 25.30
Rayleigh 10.29 4.60
RayleighRejectTail 15.23 15.33
Uniform 4.26 4.34
InverseSSJ 15.14 8.14
InverseQuickSSJ 18.80 3.31
InverseRightTail 31.12 7.66

Generation in [a,∞)
ExponDOneSide 6.43 6.46
ExponROneSideLog 7.05 6.99
RayleighOneSide 4.07 4.41
InverseSSJOneSide 18.81 8.20
InverseRightTailOneSide 18.72 7.64

Table 5: Time to generate n = 108 random variates
for [a, b] = [7.0, 8.0].

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 11.70 6.16
ExponDRejectTail 6.04 6.08
ExponR 15.96 8.98
ExponRRejectTail 9.20 9.09
ExponRRejectTailLog 7.03 7.02
Rayleigh 9.86 4.27
RayleighRejectTail 3.91 3.99
Uniform 25.40 25.68
InverseSSJ 30.67 8.14
InverseRightTail 31.12 7.70

Generation in [a,∞)
ExponDOneSide 5.90 5.96
ExponROneSideLog 6.80 6.71
RayleighOneSide 3.74 4.05
InverseSSJOneSide 19.00 8.19
InverseRightTailOneSide 18.76 7.59



Table 6: Time to generate n = 108 random variates
for [a, b] = [100.0, 102.0].

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 11.68 6.01
ExponDRejectTail 5.88 5.91
ExponR 15.79 8.86
ExponRRejectTail 9.13 9.02
ExponRRejectTailLog 6.93 6.96
Rayleigh 9.97 4.16
RayleighRejectTail 3.84 3.90
Uniform 650.62 656.42
InverseMillsRatio 22.31 15.97
Generation in [a,∞)
ExponDOneSide 5.77 5.82
ExponROneSideLog 6.72 6.63
RayleighOneSide 3.67 3.96
InverseMillsRatioOneSide 15.62 15.84

Table 7: Time to generate n = 108 random variates
for [a, b] = [100.0, 100.0001].

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 12.31 6.83
ExponDRejectTail 543.80 546.58
ExponR 16.47 10.65
ExponRRejectTail 865.24 865.34
ExponRRejectTailLog 651.19 648.99
Rayleigh 10.59 5.07
RayleighRejectTail 323.08 322.41
Uniform 3.59 3.62
InverseMillsRatio 18.03 12.12
Generation in [a,∞)
ExponDOneSide 5.79 5.83
ExponROneSideLog 6.74 6.63
RayleighOneSide 3.66 3.99
InverseMillsRatioOneSide 15.67 15.84

Tables 4 to 7 report the timings, in seconds. The two
columns “recompute” and “precompute” are for the cases
where the constants that depend on a and b are recomputed
each time a random variate is generated or are precomputed
once for all, respectively, as discussed earlier.
ExponD, ExponR, and Rayleigh refer to the TruncTail

versions of Algorithms 2, 3, and 4, respectively. We add
“RejectTail” to the name for the RejectTail versions. For
ExponRRejectTailLog, we took the log on both sides of the
inequality to remove the exponential in the“until”condition.
Uniform refers to Algorithm 6. InversionSSJ refers to the
default inversion method implemented in SSJ, which uses
[3] and gives at least 15 decimal digits of relative precision,
combined with a generic (two-sided)“truncated distribution”
class also offered in SSJ. InverseQuickSSJ is a faster but
much less accurate version based on a cruder approximation

of Φ from [20] based on table lookups, which returns about
6 decimal digits of precision. We do not recommend it, due
to its low accuracy. Moreover, the implementation we used
does not handle well values larger than about 5 in the right
tail, so we report results only for small a. InverseRightTail
uses the accurate approximation of Φ together with (3). In-
verseMillsRatio is our new inversion method based on Mills
ratio, with δ∗ = 10−10. This method is designed for the case
where a is large, and our implementation is designed to be
accurate for a ≥ 10, so we do not report results for it in
Tables 4 and 5. For all the methods, we add “OneSide” for
the simplified OneSide versions, for which b =∞.

For the OneSide case, i.e., b = ∞, the Rayleigh pro-
posal gives the fastest method in all cases, and there is no
significant gain in precomputing and storing the constant
c = a2/2.

For finite intervals [a, b], when b−a is very small so Φ(b)/Φ(a)
is close to 1, the uniform proposal wins and the RejectTail
variants are very slow. See Table 7. Precomputing the con-
stants is also not useful for the uniform proposal. For larger
intervals in the tail, Φ(x) decreases quickly at the beginning
of the interval and this leads to very low acceptance ratios;
see Tables 5 and 6. A Rayleigh proposal with the RejectTail
option is usually the fastest method in this case. Precom-
puting and storing the constants is also not very useful for
this option. For intervals closer to the center, as in Table 4,
the uniform proposal performs well for larger (but not too
large) intervals, and the RejectTail option becomes slower
unless [a, b] is very wide. The reason is that for a fixed
w > 0, Φ(a + w)/Φ(a) is larger (closer to 1) when a > 0 is
closer to 0.

6. CONCLUSION
We have proposed and tested both inversion and rejec-

tion methods to generate a standard normal truncated to
an interval [a, b], when a≫ 0.

In general, inversion is slower than the fastest rejection
method. But as mentioned in the introduction, there are
many situations where inversion is required. The new Mills
ratio technique is useful for those situations when a is large
(say, a ≥ 10). For a not too large (say, a ≤ 30), the ac-
curate approximation of [3] implemented in InversionSSJ
works well.

When inversion is not needed, the rejection method with
the Rayleigh proposal is usually the fastest when a is large
enough, especially if a large number of variates must be gen-
erated for the same interval [a, b], in which case the cost of
precomputing the constants used in the algorithm can be
amortized over many calls. The RejectTail variant is usually
the fastest, unless Φ̄(b)/Φ̄(a) is far from 0, which happens
when the interval [a, b] is very narrow or a is not large (say
a ≤ 5). It is interesting to see that using the Rayleigh pro-
posal is faster than using an exponential proposal as in the
popular methods of [6, 8, 21].
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[10] W. Hörmann, J. Leydold, and G. Derflinger.
Automatic Nonuniform Random Variate Generation.
Springer-Verlag, Berlin, 2004.

[11] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of
Monte Carlo Methods. John Wiley and Sons, New
York, 2011.

[12] P. L’Ecuyer. Variance reduction’s greatest hits. In
Proceedings of the 2007 European Simulation and
Modeling Conference, pages 5–12, Ghent, Belgium,
2007. EUROSIS.

[13] P. L’Ecuyer. Quasi-Monte Carlo methods with
applications in finance. Finance and Stochastics,
13(3):307–349, 2009.

[14] P. L’Ecuyer. Random number generation with
multiple streams for sequential and parallel computers.
In Proceedings of the 2015 Winter Simulation
Conference, pages 31–44. IEEE Press, 2015.

[15] P. L’Ecuyer. SSJ: Stochastic simulation in Java,
software library, 2016.
http://simul.iro.umontreal.ca/ssj/.

[16] P. L’Ecuyer and G. Perron. On the convergence rates
of IPA and FDC derivative estimators. Operations
Research, 42(4):643–656, 1994.

[17] J. Leydold. UNU.RAN—Universal Non-Uniform
RANdom number generators, 2009. Available at
http://statmath.wu.ac.at/unuran/.

[18] G. Marsaglia. Generating a variable from the tail of
the normal distribution. Technometrics, 6(1):101–102,
1964.

[19] G. Marsaglia and T. A. Bray. A convenient method
for generating normal variables. SIAM Review,
6:260–264, 1964.

[20] G. Marsaglia, A. Zaman, and J. C. W. Marsaglia.
Rapid evaluation of the inverse normal distribution
function. Statistics and Probability Letters,
19:259–266, 1994.

[21] C. P. Robert. Simulation of truncated normal
variables. Statistics and computing, 5(2):121–125,
1995.

[22] C. G. Small. Expansions and Asymptotics for
Statistics. Number 115 in Monographs on Statistics
and Applied Probability. CRC Press, 2010.

[23] D. B. Thomas, W. Luk, P. H. Leong, and J. D.
Villasenor. Gaussian random number generators.
ACM Computing Surveys, 39(4):Article 11, Nov. 2007.


