SOFTWARE FOR UNIFORM RANDOM NUMBER GENERATION:
DISTINGUISHING THE GOOD AND THE BAD

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT

The requirements, design principles, and statistical
testing approaches of uniform random number gener-
ators for simulation are briefly surveyed. An object-
oriented random number package where random num-
ber streams can be created at will, and with convenient
tools for manipulating the streams, is presented. A ver-
sion of this package is now implemented in the Arena
and AutoMod simulation tools. We also test some ran-
dom number generators available in popular software
environments such as Microsoft’s Excel and Visual Ba-
sic, SUN’s Jawva, etc., by using them on two very simple
simulation problems. They fail the tests by a wide mar-
gin.

1 WHAT ARE WE LOOKING FOR?

1.1 Introduction

The aim of (pseudo)random number generators (RNGs)
is to implement an imitation of the abstract mathe-
matical concept of mutually independent random vari-
ables uniformly distributed over the interval [0, 1] (i.i.d.
U|0, 1], for short). Such RNGs are required not only for
stochastic simulation, but for many other applications
involving computers, such as statistical experiments,
numerical analysis, probabilistic algorithms, computer
games, cryptology and security protocols in communi-
cations, gambling machines, virtual casinos over the in-
ternet, and so on. Random variables from other distri-
butions than the standard uniform are simulated by ap-
plying appropriate transformations to the uniform ran-
dom numbers (Law and Kelton 2000).

Various RNGs are available in computer software li-
braries. These RNGs are in fact small computer pro-
grams implementing (ideally) carefully crafted algo-
rithms, whose design should be based on solid math-
ematical analysis. Are these RNGs all reliable? Un-
fortunately, despite repeated warnings over the past
years about certain classes of generators, and despite

the availability of much better alternatives, simplistic
and unsafe RNGs still abound in commercial software.
Concrete examples are given in Section 4 of this paper.

A single RNG does not always suffice for simulation.
In many applications, several “independent” random
number streams (which can be interpreted as distinct
RNGs) are required, with appropriate tools to jump
around within these streams, for instance to make in-
dependent runs and to facilitate the implementation of
certain variance reduction techniques (Bratley, Fox, and
Schrage 1987; Law and Kelton 2000). Packages imple-
menting such RNG streams are now available. One of
them, which we describe in Section 5, has been imple-
mented in the most recent releases of the Arena and
AutoMod simulation environments.

In the remainder of this section, we give a mathe-
matical definition of an RNG, then we discuss design
principles, quality criteria, and statistical testing. In
Section 2, we review a few important classes of RNGs
based on linear recurrences in modular arithmetic. In
Section 3, we describe two very simple simulation prob-
lems which can be used as statistical tests (because a
very good approximation of the exact answer is known).
In Section 4, we see how certain widely-used genera-
tors perform on these tests. Section 5 gives a quick
overview of an object-oriented RNG package with mul-
tiple streams and substreams. It offer facilities that
should be included, we believe, in every serious general-
purpose discrete-event stochastic simulation software.
Implementations are available in C, C++4, and Java.

1.2 Definition

Mathematically, an uniform RNG can be defined (see
L’Ecuyer 1994) as a structure (S, y, f, U, g), where S is
a finite set of states, u is a probability distribution on
S used to select the initial state so (called the seed),
f S — S is the transition function, U = [0,1] is the
output set, and g : S — U is the output function.

The state evolves according to the recurrence s; =
f(si—1), for @ > 1, and the output at step ¢ is u; =

g(s;) € U. These u; are the so-called random numbers
produced by the RNG. Because S is finite, the generator
will eventually return to a state already visited (i.e.,
Si4; = s; for some [> 0 and j > 0). Then, s;1; = s;
and u;4; = u; for all @ > [. The smallest j > 0 for
which this happens is called the period length p. It
cannot exceed the cardinality of S. In particular, if b
bits are used to represent the state, then p < 2°. Good
RNGs are designed so that their period length is close
to that upper bound.

Formally, this deterministic construction certainly
disagrees with the concept of i.i.d. U[0, 1] random vari-
ables. But from a practical viewpoint, this is very con-
venient and experience indicates that this works fine.

1.3 Design Principles and Measures of Unifor-
mity

How should RNGs be constructed? One obvious re-
quirement is that the period length must be guaranteed
to be extremely long, to make sure that no wrap-around
over the cycle can occur in practice. The RNG must
also be efficient (run fast and use little memory), re-
peatable (the ability of repeating exactly the same se-
quence of numbers is a major advantage of RNGs over
physical devices, e.g., for program verification and vari-
ance reduction in simulation (see Law and Kelton 2000),
and portable (i.e., work the same way in different soft-
ware/hardware environments). The availability of effi-
cient methods for jumping ahead in the sequence by a
large number of steps, i.e., to quickly compute the state
Si+ for any large v, given the current state s;, is also
an important asset. It permits one to partition the se-
quence into long disjoint streams and substreams and
to construct an arbitrary number of virtual generators
from a single backbone RNG (see Section 5).

These requirements do not suffice. For example, the
RNG defined by s;;1 = s; + 1 if 5; < 2590 — 1, 5,11 =
0 otherwise, and u; = s;/2°%°, satisfies them but is
certainly not to be recommended.

We must remember that our goal is to imitate inde-
pendent uniform random variables. That is, the succes-
sive values u; should appear uniform and independent.
They should behave (in appearance) as if the null hy-
pothesis Ho: “The u; are i.i.d. U[0,1]” was true. This
hypothesis is equivalent to saying that for each integer
t > 0, the vector (ug,...,us—1) is uniformly distributed
over the t-dimensional unit cube [0,1]!. Clearly, Ho
cannot be formally true, because these vectors always
take their values only from the finite set

\I/t = {(u()a"'autfl) 180 € S}a

whose cardinality cannot exceed that of S. If s¢ is ran-
dom, ¥, can be viewed as the sample space from which

vectors of successive output values are taken randomly.
When several t-dimensional vectors are produced by an
RNG by taking non-overlapping blocks of ¢ output val-
ues, this can be viewed in a way as picking points at
random from W;, without replacement.

The idea then is to require that W, be very evenly
distributed over the unit cube, so that Hy be approzi-
mately true for practical purposes, at least for moderate
values of t. This suggests that the cardinality of S must
be huge, to make sure that ¥; can fill up the unit hyper-
cube densely enough. This is in fact a more important
reason for having a large state space than just the fear
of wrapping around the cycle because of too short a
period length.

How do we measure the uniformity of ¥,? We need
computable and convenient figures of merit that mea-
sure the evenness of its distribution. In practice, these
figures of merit are often defined as measures of the dis-
crepancy between the empirical distribution of the point
set ¥; and the uniform distribution over [0, 1]* (Nieder-
reiter 1992; Hellekalek and Larcher 1998). There are
several ways to define the discrepancy. This is closely
related to goodness-of-fit test statistics for testing the
hypothesis that a certain sample of ¢-dimensional points
comes from the uniform distribution over [0, 1]*. An im-
portant criterion in choosing a specific measure is the
ability to compute it efficiently without generating the
points explicitly (we must keep in mind that ¥ is usu-
ally too large to be enumerated), and this depends on
the mathematical structure of W;. For this reason, dif-
ferent figures of merit (i.e., different measures of dis-
crepancy) are used in practice for analyzing different
classes of RNGs. The selected figure of merit is usually
computed in dimensions ¢ up to some arbitrary integer
t1 chosen in advance. Examples of practical figures of
merit are given in Section 2.2.

One may also examine certain sets of vectors of non-
successive output values of the RNG. That is, for a

fixed set of non-negative integers I = {i1,i2, - ,it},
measure the uniformity of the ¢-dimensional point set
U(I) = {(ui,-..)| so €5, (1)

and do this for different choices of I. L’Ecuyer and
Couture (1997) explain how to apply the spectral test
in this general case. An open question is: What are
the important sets I that should be considered? It is
of course impossible to consider them all. As a sensible
heuristic, one may consider the sets I for which ¢ is
below a certain threshold and the indices ¢;’s are not
too far away from each other (L’Ecuyer and Lemieux
2000). One may also consider far apart indices that
correspond to the starting points of disjoint streams
of random numbers produced by the same underlying
generator and used in parallel in a simulation.

Some would argue that ¥, should look like a typical
set of random points over the unit cube instead of being
too evenly distributed, i.e., that its structure should be
chaotic, not regular. But chaotic structures are hard
to analyze mathematically. It is probably safer to se-
lect RNG classes for which the structure of ¥; can be
analyzed and understood, even if this implies more reg-
ularity, rather than selecting an RNG with a chaotic
but poorly understood structure.

1.4 Empirical Statistical Testing

Once an RNG has been constructed and implemented,
based hopefully on a sound mathematical analysis, it is
customary and good practice to submit it to a battery
of empirical statistical tests that try to detect empirical
evidence against the hypothesis Hy defined previously.
A test is defined by a test statistic T, function of a
finite set of w;’s, and whose distribution under Hq is
known. An infinite number of different tests can be
defined. There is no universal battery of tests that can
guarantee, when passed, that a given generator is fully
reliable for all kinds of simulations. Passing a lot of
tests may (heuristically) improve one’s confidence in the
RNG, but never proves that the RNG is foolproof. In
fact, no RNG can pass all statistical tests. Perhaps the
proper way of seeing things is that a bad RNG is one
that fails simple tests, whereas a good RNG is one that
fails only complicated tests that are very hard to find
and run. This can be formalized in the framework of
computational complexity, but we will not go in that
direction here.

Ideally, the statistical tests should be selected in close
relation with the target application, i.e., be based on a
test statistic 7" that closely mimics the random variable
of interest. But this is usually impractical, especially
when designing and testing generators for general pur-
pose software packages. For a sensitive application, it is
recommended that the user tests the RNG specifically
for his (or her) problem, or tries RNGs from totally
different classes and compares the results.

Specific tests for RNGs are proposed by Knuth
(1998), Hellekalek and Larcher (1998), Marsaglia
(1985), Mascagni and Srinivasan (2000), Soto (1999),
and other references given there. Experience shows that
RNGs with very long periods, good structure of their
set U, and based on recurrences that are not too sim-
plistic, pass most reasonable tests, whereas RNGs with
short periods or bad structures are usually easy to crack
by standard statistical tests.

2 SOME POPULAR FAMILIES OF RNG’S

2.1 Generators Based on Linear Recurrences

The most widely used RNGs by far are based on linear
recurrences of the form

T = (all‘z‘—l + -+ ak:L‘i_k) mod m, (2)

where the modulus m and the order k of the recur-
rence are positive integers, the coefficients a; belong
to Zm = {0,1,...,m — 1}, and the state at step i is
$;i = (Ti—k+1,---,2;). If mis a prime number and if the
a;’s satisfy certain conditions, the sequence {x;, i > 0}
has the maximal period length p = mF — 1 (Knuth
1998).

One way of defining the output function, in the case
where m is large, is simply to take

u;, = x;/m. (3)

The resulting RNG is known under the name of multi-
ple recursive generator (MRG). When k = 1, we obtain
the classical linear congruential generator (LCG). Im-
plementation techniques for LCGs and MRGs are dis-
cussed by L’Ecuyer and Cété (1991), L’Ecuyer (1999a),
L’Ecuyer and Simard (1999), L’Ecuyer and Touzin
(2000), and the references given there.

Another approach is to take a small value of m, say
m = 2, and construct each output value u, from L
consecutive z;’s by

L
U; = inﬁ»jflmij; (4)
Jj=1

where s and L < k are positive integers. If (2) has pe-
riod length p and ged(p,s) = 1, (4) has period length
p as well. For m = 2, u; is thus constructed from L
successive bits of the binary sequence (2), with a spac-
ing of s — L bits between the blocks of bits used to con-
struct u; and u;41. The resulting RNG is called a linear
feedback shift register (LFSR) or Tausworthe generator
(Tausworthe 1965; Niederreiter 1992). Its implementa-
tion is discussed by Fishman (1996), L’Ecuyer (1996b),
L’Ecuyer and Panneton (2000), and Tezuka (1995). Im-
portant variants of the LFSR are the generalized feed-
back shift register (GFSR) generator and the twisted
GFSR (Fushimi and Tezuka 1983; Tezuka 1995; Mat-
sumoto and Kurita 1994; Matsumoto and Nishimura
1998; Nishimura 2000). The latter provides a very fast
implementation of a huge-period generator with good
structure.

Combined MRGs can be constructed by running two
or more MRGs in parallel and adding their outputs
modulo 1 (L’Ecuyer 1996a). This gives just another

MRG with large modulus (equal to the product of the
individual moduli) and large period. Similarly, combin-
ing several LFSR generators by adding their outputs
bitwise modulo 2 (i.e., by a bitwise exclusive or) yields
another LFSR generator whose period length can reach
the product of the periods of its components, if the lat-
ter are pairwise relatively prime (L’Ecuyer 1996b; L'E-
cuyer 1999¢). GFSR and twisted GFSR generators can
be combined in a similar way. In both cases, combi-
nation can be seen as an efficient way of implementing
RNGs with huge period lengths. These RNGs are usu-
ally designed so that their individual components have
a fast implementation, whereas the combination has a
complicated recurrence and excellent structural proper-
ties in the sense that its point set W, is well distributed
over the unit hypercube [0, 1]* for moderate values of ¢.

Other types of generators used in practice include
the lagged-Fibonacci generators, the add-with-carry,
subtract-with-borrow and multiply-with-carry genera-
tors, and several classes of nonlinear generators. The
latter introduce nonlinearities either in the transition
function f or in the output function g. Nonlinear gen-
erators are generally slower than the linear ones for
a comparable period length, but some of them tend
to behave better (empirically) in statistical tests be-
cause of the less regular structure of their point sets W;.
For more details about these different types of genera-
tors, see, e.g., (Eichenauer-Herrmann 1995; Eichenauer-
Herrmann, Herrmann, and Wegenkittl 1997; Hellekalek
1998; Knuth 1998; L’Ecuyer 1994; L’Ecuyer 1998; La-
garias 1993).

2.2 Practical Figures of Merit

For the MRG (2)—(3), it is well known that ¥; = L; N
[0,1)%, where L; is a lattice in the t-dimensional real
space, in the sense that it can be written as the set of
all integer linear combinations of ¢ independent vectors
in R*. This implies that ¥; lies on a limited number
of equidistant parallel hyperplanes, at a distance (say)
d; apart (Knuth 1998). For ¥, to be evenly distributed
over [0,1)!, we want that distance d; to be small. This
d; turns out to be equal to the inverse of the (Euclidean)
length of a shortest nonzero vector in the dual lattice
L} to L, and computing d; is called the spectral test
(Dieter 1975; Knuth 1998; L’Ecuyer and Couture 1997).

To define a figure of merit for MRGs, one can choose
an integer t1 > k (arbitrarily) and put

My, = min dy /d,

where d} is an absolute lower bound on d; given the car-
dinality of ¥, (Fishman 1996; L’Ecuyer 1999b). This
figure of merit is between 0 and 1 and we seek a value
close to 1 if possible. L'Ecuyer (1999a) provides tables

of combined MRGs selected via this figure of merit,
together with computer implementations. For non-
successive indices, the set U;(I) defined in (1) also has
a lattice structure to which the spectral test can be ap-
plied in the same way as for successive indices (L Ecuyer
and Couture 1997; Entacher 1998).

For generators based on linear recurrences modulo 2,
such as LFSR and twisted GFSR generators, we do not
have the same kind of lattice structure so different fig-
ures of merit must be used. In this case, the cardinality
of W, is 2. Suppose that we consider the ¢ most sig-
nificant bits of ¢ successive output values wu;, ..., U;1¢—1
from the generator. There are 2t possibilities for these
bits. If each of these possibilities occurs exactly 2k~
times in W,, for all £ and t such that t¢ < k, the RNG is
called mazimally equidistributed (ME) or asymptotically
random (Tootill, Robinson, and Eagle 1973; L’Ecuyer
1996b). Explicit implementations of ME or nearly ME
generators are given by L’Ecuyer (1999c) and Tezuka
(1995). A property closely related to ME is that of a
(t,m, s)-net, where one requires equidistribution for a
more general class of partitions of [0,1)! into rectangu-
lar boxes, not only cubic boxes. See Niederreiter (1992)
and Owen (1998) for details and references.

3 TWO SIMPLE TEST PROBLEMS

In this section, we describe two simple simulation prob-
lems which we turn into statistical tests. This can be
done because we know in advance the answer to these
problems. The corresponding statistical tests are not
new: They are the collision test, studied by Knuth
(1998) and L’Ecuyer, Simard, and Wegenkittl (2001),
and the birthday spacings test, discussed by Marsaglia
(1985), Knuth (1998) and L’Ecuyer and Simard (2001).

We start by cutting the interval [0,1) into d equal
segments, for some positive integer d. This partitions
[0,1) into k = d' cubic boxes. We then generate n
points in [0,1)!, independently. We define the random
variable C' as the number of times a point falls in a
box that already had a point in it. This random vari-
able occurs in an important practical application: It
corresponds to the number of collisions for a perfectly
uniform hashing algorithm where n keys are hashed into
k memory addresses. Our first problem is to estimate
E[C], the mathematical expectation of C'.

For our second problem, suppose that the k boxes
are labeled from 0 to k — 1, say by lexicographic order
of the coordinates of their centers. Let Iy < Ip) <

S [be the labels of the cells that contain the
points, sorted by increasing order. Define the spacings
Sj = Ij41) — Iy, for j = 1,...,m — 1, and let Y be
the number of values of j € {1,...,n — 2} such that
S(j+1) = S(j), where Sq),...,Sn—1) are the spacings

sorted by increasing order. This is the number of col-
lisions between the spacings. Here, the n points can
be viewed as the birthdays of n random people in a
world where years have k days, whence the name birth-
day spacings (Marsaglia 1985). Our second problem is
to estimate E[Y].

To simulate this model, we simply take n non-
overlapping vectors of ¢ successive output values pro-
duced by the generator. Each vector corresponds to one
of the n points. In a real simulation study, we would
have to repeat this scheme, say, N times, independently,
then compute the sample average and variance of the
N values of C and Y, and compute confidence intervals
on the expectations E[C] and E[Y].

These expectations are actually known to a very good
approximation when k is large, which we assume here.
Indeed, for large k, C' and Y follow approximately the
Poisson distribution with means \; = n?/(2k) and
Ao = n3/(4k), respectively (Marsaglia 1985; L’Ecuyer,
Simard, and Wegenkittl 2001; L’Ecuyer and Simard
2001).

In the next section, to check the robustness of certain
generators for these simulation problems, we simulate
just a single value of C' and Y for each of several pa-
rameter sets (¢, k,n), with each generator. These two
random variables actually define statistical tests for the
generators. We call them the collision test and the
birthday spacings test, respectively. If ¢ and y denote
the values taken by these random variables in the ex-
periment, the right p-values of the corresponding tests
are

pT(c) def P[X > c¢| X ~ Poisson(\)] (5)
and
p(y) def P[X >y | X ~ Poisson(As2)], (6)

respectively. By replacing > by < in these definitions,
one obtains the left p-values p~(c) and p~(y). If one of
these p-values turns out to be extremely close to 0, this
would indicate a problem with the generator (e.g., the
points of ¥; are too regularly spread over the hypercube
and this shows up when we simulate C' or Y). This
would mean that this generator gives a wrong answer
for the corresponding simulation problem. In case of
doubt, we may want to repeat the experiment several
times, or with a larger sample size, to see if the suspect
behavior is consistent or not.

4 HOW YOUR FAVORITE RNG FARES IN
THOSE TESTS?

4.1 Some Popular Generators

We consider here the following widely-used generators.

Java. This is the generator used to implement the
method nextDouble in the class java.util.Random
of the Java standard library (see http://java.sun.
com/j2se/1.3/docs/api/java/util/Random.html) It
is based on a linear recurrence with period length 248,
but each output value is constructed by taking two suc-
cessive values from the linear recurrence, as follows:

Tiv1 = (25214903917 z; +11) mod 2%
ui = (277 |w2:/2%] + [w2i11/27"]) /2%,

Note that the generator rand48 in the Unix standard
library uses exactly the same recurrence, but produces
its output simply via u; = x;/24.

VB. This is the generator used in Microsoft Visual
Basic (see http://support.microsoft.com/support/
kb/articles/Q231/8/47.ASP). It is an LCG with pe-
riod length 224, defined by

x; = (11406714852; 1 + 12820163) mod 224,

up = x;/2%.

Excel. This is the generator found in Microsoft Excel
(see http://support.microsoft.com/directory). It
is essentially an LCG, except that its recurrence

u; = (9821.0u;—1 +0.211327) mod 1

is implemented directly for the u;’s in floating point
arithmetic. Its period length actually depends on the
numerical precision of the floating point numbers used
for the implementation. This is not stated in the doc-
umentation and it is unclear what it is. Instead of im-
plementing this generator in our testing package, we
generated a large file of random numbers directly from
Excel and feeded that file to our testing program.

LCG16807. This is the LCG defined by

z; = 16807x;_; mod (2% —1),
(17 = 337;/(231—1),

with period length 23! — 2, and proposed originally by
Lewis, Goodman, and Miller (1969). This LCG has
been widely used in many software libraries for statis-
tics, simulation, optimization, etc., as well as in oper-
ating system libraries. It has been suggested in several
books, e.g., Bratley, Fox, and Schrage (1987) and Law
and Kelton (1982). Interestingly, this RNG was used
in Arena and similar one was used in AutoMod (with
the same modulus but with the multiplier 742938285)
until recently, when the vendors of these products had
the good idea to replace it with MRG32k3a (below). It is
still used in several other simulation software products.

MRG32k3a. This is the generator proposed in Fig-
ure 1 of L’Ecuyer (1999a). It combines two MRGs of
order 3 and its period length is near 2191,

MT19937. This is the Mersenne twister generator
proposed by Matsumoto and Nishimura (1998). Its pe-
riod length is huge: 219937 — 1.

4.2 Results of the Collision Test

Table 1 gives the results of the collision test (our first
simulation problem) applied to these generators, for
t =2, d = n/16, and n equal to different powers of
2. With this choice of d as a function of n, we have
k = n?/256, and the expected number of collisions is
approximately A; = 128 regardless of n. Note that
only the b = log,(d) most significant bits of each out-
put value wu; is used to determine the box in which a
point belongs. In the table, ¢ represents the observed
number of collisions and p™(c) or p~(c) the correspond-
ing p-value. The value of ¢ and the p-value are given
only when the (left or right) p-value is less than 0.01.
The blank entries thus correspond to non-suspicious
outcomes. For the generators not given in the table,
namely Java, MRG32k3a, and MT19937, none of the
results were suspicious.

The VB generator clearly fails the test for all n > 21°:
the number of collisions is much too small. Note that
the test with n = 216 requires only 131072 random num-
bers from the generator, which is much much less than
its period length, and yet the left p-value is smaller than
10~1%, which means that it is extremely improbable to
observe such a small number of collisions (38) just by
chance. For n = 217 and more, we observed no collision
at alll Actually, we ran the test for higher powers of 2
(the results are not shown in the table) and there was no
collision for n up to 223, but 8388608 collisions (way too
many) for n = 224, We also repeated the test with the
VB generator by throwing away the first 10 bits of each
output value and using the following bits instead, that
is, replacing each u; by 2'%,; mod 1. The result was
that there was way too many collisions, with the right
p-values being smaller than 10715 for all n > 2'4. For
example, there was already 8192 collisions for n = 24
and 253952 collisions for n = 2'®. The explanation
is that the VB generator is an LCG with power-of-2
modulus, and for these generators (in general) the least
significant bits have a much smaller period length than
the most significant ones (e.g., L'Ecuyer 1990).

The Excel generator starts failing for slightly larger
sample sizes: The right p-value is less than 1079 for
n = 28 (approximately a quarter of a million) and
less than 1071 for n = 219 (just over half a million).
In this case, there are too many collisions. LCG16807

starts to fail at n = 2'9 (half a million points). The
other generators passed all these tests.

4.3 Results of the Birthday Spacings Test

For the birthday spacings problem, we first took ¢ = 2
and d? = n?/4, so that the expected number of colli-
sions was A2 = 1 for all n. Again, the first b = log,(d)
bits of each u; are used to determine the boxes where
the points fall. Table 2 gives the test results.

The Java, VB, Excel, and LCG16807 generators start
failing decisively with n = 218, 210, 214 and 24, respec-
tively. These are quite small numbers of points. For as
few as n = 2% = 16384 points, the number of colli-
sions was already 11129 for VB, 71 for Excel, and 150
for LCG16807. The probability that a Poisson random
variable with mean 1 takes any of these values is so tiny
that we cannot believe this occurred by chance.

Table 3 gives the results of three-dimensional birth-
day spacings tests (¢ = 3) with d = n/2, for which
Ao = 2 for all n. Table 4 gives the results for the same
tests, but with each u; replaced by 2'%; mod 1; i.e.,
the first 10 bits of each u; are thrown away and the test
uses the next log,(d) bits.

The VB generator fails very quickly in these tests,
especially when we look at the less significant bits (Ta-
ble 4): With as few as n = 256 points, we already
have 52 collisions and a p-value smaller than 10715,
The Excel generator starts failing decisively at n = 217.
The Java generator passes these tests when we take its
most significant bits, but starts failing at n = 2% points
when we throw away the first 10 bits. The LCG16807
generator starts failing decisively already for n = 2
(some sixteen thousand points), in both Tables 3 and
4. MRG32k3a and MT19937 gave no suspect p-value.

Looking at the test results in the tables, we observe
the following kind of behavior: When the sample size n
is increased for a given test-RNG combination, the test
starts to fail decisively when n reaches some critical
value, and the failure is clear for all larger values of n.
This kind of behavior is typical and was also observed
for other statistical tests and other classes of generators
(L’Ecuyer and Hellekalek 1998). Can we predict this
critical value beforehand? What we have in mind here
is a relationship of the form, say,

no ~ Kp’Y7

for a given type of test and a given class of generators,
where p is the period length of the generator, K and
~ are constants, and ng is the minimal sample size for
which the generator clearly fails the test.

This has been achieved by L’Ecuyer and Hellekalek
(1998), L’Ecuyer, Simard, and Wegenkittl (2001), L'E-
cuyer, Cordeau, and Simard (2000), and L’Ecuyer and

Table 1: Results of the Collision Tests

n d VB Excel LCG16807
c p_(c) c (o) c (o)

215 211 75 3.1x10°7

216 212 38 <107%

217 213 0 < 10715 170 2.2 x 1074

218 914 0 < 10715 202 9.5x10°t0

219 215 0 < 10715 429 <1071° 195 2.2 %1078

220 216 0 < 10715 — — 238 < 10715

Table 2: Results of the Birthday Spacings Tests with ¢t = 2
n d Java VB Excel LCG16807
y Pt (y) y rH(y) y r*(y) y rH(y)
210 214 10 11x10°7
212 217 592 <1071° 5 3.7x1073
214 220 11129 <1071° 71 <107% 150 < 10715
216 223 64063 <1071 558 <10°15 10066 <1071°
218 226 18 < 10715 261604 < 10715 4432 < 10715 183764 < 10715
Table 3: Results of the Birthday Spacings Tests with t = 3
n d Java VB Excel LCG16807
y r*(y) y r*(y) y Pt (y) y Pt (y)
210 29
2t 210 23 <107
212 2t 188 <107
213 g2 1159 <107 10 46x107°
914 213 5975 < 10715 92 < 10715
215 914 21025 <1071 799 < 10715
216 215 55119 < 10715 9 2.4 x 1074 5995 < 10715
217 216 123181 <1071 33 <1071? 34697 <1071?
218 217 8 1.1x 1073 256888 <10°15 117 <10°15 139977 <10°15
Table 4: Results of the Birthday Spacings Tests with ¢ = 3, with the First 10 Bits Thrown Away
n d Java VB Excel LCG16807
N P (y) y Pt (y) N P (y) N Pt (y)

28 27 52 < 10715
210 29 672 < 10715
212 211 3901 < 10710
213 g2 8102 <1071 7 45x1073
21 218 16374 <1071 96 <1071
215 914 18 6.2x10712 32763 <1071 736 <1071
216 215 76 <1071° 65531 < 10715 7 45x1073 6009 <1071
217 216 709 <1071° — — 34 < 10710 34474 <1071
2! 2] 685 <1071 — — 186 <1071 140144 <1071

Simard (2001) for certain classes of RNGs and tests.
For LCGs and MRGs with good spectral test behav-
ior, for example, we have obtained the relationships
no ~ 16 p'/? for the collision test and ng ~ 16 p'/?
for the birthday spacings test. This means that if we
want our LCG or MRG to be safe with respect to these
tests, we must construct it with a period length p large
enough so that generating p'/? numbers is practically
unfeasible. For example, p > 210 satisfies this require-
ment, but p &~ 232 or even p ~ 28 does not satisfy it.
In particular, keeping an LCG with modulus 23! — 1
and changing the multiplier 16807 to another number
does not cure the problem.

5 A MULTIPLE-STREAM PACKAGE

What kind of software do we need for uniform random
number generation in a general-purpose discrete-event
simulation environment? The availability of multiple
streams of random numbers, which can be interpreted
as independent RNGs from the user’s viewpoint, is a
must in modern simulation software (Law and Kelton
2000). Such multiple streams greatly facilitate the im-
plementation of certain variance reduction techniques
(such as common random numbers, antithetic variates,
etc.) and are also useful for simulation on parallel pro-
Cessors.

One way of implementing such multiple streams is to
compute seeds that are spaced far apart in the RNG
sequence, and use the RNG subsequences starting at
these seeds as if they were independent sequences (or
streams) (Bratley, Fox, and Schrage 1987; Law and Kel-
ton 2000; L’Ecuyer and Coté 1991; L’Ecuyer and An-
dres 1997). These streams are viewed as distinct inde-
pendent RNGs. In some of the software available until
a few years ago, N seeds were precomputed spaced Z
steps apart, say, for small values of N such as (for ex-
ample) N =10 or N = 32.

In the Java class java.util.Random, RNG streams
can be declared and constructed dynamically, without
limit on their number. However, no precaution seems
to have been taken regarding the independence of these
streams. A package with multiple streams and which
supports different types of RNGs is also proposed by
Mascagni and Srinivasan (2000). Its design differs sig-
nificantly from the one we will now discuss.

L’Ecuyer, Simard, Chen, and Kelton (2001) have
recently constructed an object-oriented RNG package
with multiple streams, where the streams are also
partitioned into disjoint substreams, and where con-
venient tools are provided to move around within
and across the streams and substreams. The back-
bone generator for this package is MRG32k3a, men-
tioned in Section 4. The spacings between the

successive streams and substreams have been de-
termined by applying the spectral test to the set
U(I) of vectors of non-successive output values
of the form (Up,... , Unts—1,Uhy .-+ s Unthts—1sUnt2hs

.y Un+2hts—1,---), tor different values of h, s, and
t. The spacings were chosen as large values of h for
which the spectral test gave good results for all s < 16
and ¢ < 32 (these upper bounds for s and ¢ were cho-
sen arbitrarily). The successive streams actually start
Z = 2127 steps apart, and each stream is partitioned
into 25 adjacent substreams of length W = 276,

Let us denote the initial state (seed) of a given stream
g by I,. If so = I is the initial seed of the generator
and f its transition function, then we have Iy = T%(s),
Iy = T?(I5) = T??(sp), etc. The first substream of
stream ¢ starts in state I;, the second one in state
TW (1,), the third one in state 72" (I,), and so on. At
any moment during a simulation, stream g is in some
state, say Cy. We denote by B, the starting state of
the substream that contains the current state, i.e., the
beginning of the current substream, and N, = T (B,)
the starting state of the next substream.

The software provides tools for creating new streams
(without limit, for practical purposes), and to reset any
given stream to its initial seed, or to the beginning of its
current substream, or to its next substream. This kind
of framework with multiple streams and substreams
was already implemented in L’Ecuyer and Coté (1991)
and L’Ecuyer and Andres (1997), but with a predefined
number of streams and based on different (smaller) gen-
erators.

Figure 1 describes a Java version of the RNG pack-
age of L’Ecuyer, Simard, Chen, and Kelton (2001).
(These authors describes a C++ version.) Implemen-
tations in C, C++, and Java, as well as test pro-
grams, are available at http://www.iro.umontreal.
ca/"lecuyer. A C version of this package is now im-
plemented in the most recent releases of Arena (re-
lease 5.0) and AutoMod (release 10.5) simulation envi-
ronments (see http://www.arenasimulation.com and
http://www.autosim.com/index.asp). The author is
also working on implementations of RNG classes with
the same interface (except for a few details), but based
on different types of RNGs.

6 CONCLUSION

Do not trust the random number generators provided in
popular commercial software such as Excel, Visual Ba-
sic, etc., for serious applications. Some of these RNGs
give totally wrong answers for the two simple simula-
tion problems considered in this paper. Much better
RNG tools are now available, as we have just explained
in this paper. Use them. If reliable RNGs are not avail-

public class RandMrg {

public RandMrg()
Constructs a new stream.

public RandMrg (String name)
Constructs a new stream with identifier name.

public static void setPackageSeed (long seed[])
Sets the initial seed for the class RandMrg to the six integers in the vector seed[0..5].

This will be the seed (initial state) of the first stream. By default, this seed is
(12345, 12345, 12345, 12345, 12345, 12345).

public void resetStartStream ()
Reinitializes the stream to its initial state: Cy and By are set to I,.

public void resetStartSubstream ()
Reinitializes the stream to the beginning of its current substream: Cy is set to By.

public void resetNextSubstream ()
Reinitializes the stream to the beginning of its next substream: N, is computed, and Cy and

By are set to INy.

public void increasedPrecis (boolean incp)
If incp = true, each RNG call with this stream will now give 53 bits of resolution instead

of 32 bits (assuming that the machine follows the IEEE-754 floating-point standard), and
will advance the state of the stream by 2 steps instead of 1.

public void setAntithetic (boolean a)
If a = true, the stream will now generate antithetic variates.

public void writeState ()
Prints the current state of this stream.

public double[] getState()
Returns the current state of this stream.

public double randU01 ()
Returns a U|0, 1] (pseudo)random number, using this stream, after advancing its state by

one step.

public int randInt (int i, int j)
Returns a (pseudo)random number from the discrete uniform distribution over the integers

{i,i+1,...,7}, using this stream. Calls randU01 once.

Figure 1: The Java Class RandMrg, which Provides Multiple Streams and Substreams of Random Numbers

able in your favorite software products, tell the vendors
and insist that this is a very important issue. An expen-
sive house built on shaky foundations is a shaky house.
This applies to expensive simulations as well.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada
Grant No. ODGP0110050 and FCAR-Québec Grant
No. 00ER3218. The author thanks Richard Simard,
who ran the statistical tests and helped improving the
paper. George Fishman and Steve Roberts suggested
looking at the Excel and VB generators and provided
pointers to their documentation. David Kelton and
Jerry Banks helped convincing the vendors of Arena
and AutoMod to change their generators for the bet-
ter.

REFERENCES

Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A
guide to simulation. Second ed. New York: Springer-
Verlag.

Dieter, U. 1975. How to calculate shortest vectors in a
lattice. Mathematics of Computation 29 (131): 827—
833.

Eichenauer-Herrmann, J. 1995. Pseudorandom number
generation by nonlinear methods. International Sta-
tistical Reviews 63:247-255.

Eichenauer-Herrmann, J., E. Herrmann, and S. We-
genkittl. 1997. A survey of quadratic and inversive
congruential pseudorandom numbers. In Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Com-
puting, ed. P. Hellekalek, G. Larcher, H. Niederre-
iter, and P. Zinterhof, Volume 127 of Lecture Notes
in Statistics, 66-97. New York: Springer.

Entacher, K. 1998. Bad subsequences of well-known lin-
ear congruential pseudorandom number generators.
ACM Transactions on Modeling and Computer Sim-
ulation 8 (1): 61-70.

Fishman, G. S. 1996. Monte Carlo: Concepts, algo-
rithms, and applications. Springer Series in Opera-
tions Research. New York: Springer-Verlag.

Fushimi, M., and S. Tezuka. 1983. The k-distribution
of generalized feedback shift register pseudorandom
numbers. Communications of the ACM 26 (7): 516—
523.

Hellekalek, P. 1998. Good random number generators
are (not so) easy to find. Mathematics and Computers
in Stmulation 46:485-505.

Hellekalek, P., and G. Larcher. (Eds.) 1998. Random
and quasi-random point sets, Volume 138 of Lecture
Notes in Statistics. New York: Springer.

Knuth, D. E. 1998. The art of computer program-
ming, volume 2: Seminumerical algorithms. Third
ed. Reading, Mass.: Addison-Wesley.

Lagarias, J. C. 1993. Pseudorandom numbers. Statisti-
cal Science 8 (1): 31-39.

Law, A. M., and W. D. Kelton. 1982. Confidence in-
tervals for steady-state simulation, ii: A survey of
sequential procedures. Management Science 28:550—
562.

Law, A. M., and W. D. Kelton. 2000. Simulation model-
ing and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer, P. 1990. Random numbers for simulation.
Communications of the ACM 33 (10): 85-97.

L’Ecuyer, P. 1994. Uniform random number generation.
Annals of Operations Research 53:77-120.

L’Ecuyer, P. 1996a. Combined multiple recursive ran-
dom number generators. Operations Research 44 (5):
816-822.

L’Ecuyer, P. 1996b. Maximally equidistributed com-
bined Tausworthe generators. Mathematics of Com-
putation 65 (213): 203-213.

L’Ecuyer, P. 1998. Uniform random number generators.
In Proceedings of the 1998 Winter Simulation Con-
ference, 97-104: TEEE Press.

L’Ecuyer, P. 1999a. Good parameters and implementa-
tions for combined multiple recursive random number
generators. Operations Research 47 (1): 159-164.

L’Ecuyer, P. 1999b. Tables of linear congruential gen-
erators of different sizes and good lattice structure.
Mathematics of Computation 68 (225): 249-260.

L’Ecuyer, P. 1999¢. Tables of maximally equidistributed
combined LFSR generators. Mathematics of Compu-
tation 68 (225): 261-269.

L’Ecuyer, P., and T. H. Andres. 1997. A random num-
ber generator based on the combination of four LCGs.
Mathematics and Computers in Simulation 44:99—
107.

L’Ecuyer, P., J.-F. Cordeau, and R. Simard. 2000.
Close-point spatial tests and their application to ran-
dom number generators. Operations Research 48 (2):
308-317.

L’Ecuyer, P., and S. Coté. 1991. Implementing a ran-
dom number package with splitting facilities. ACM
Transactions on Mathematical Software 17 (1): 98-
111.

L’Ecuyer, P., and R. Couture. 1997. An implementation
of the lattice and spectral tests for multiple recursive
linear random number generators. INFORMS Jour-
nal on Computing 9 (2): 206-217.

L’Ecuyer, P., and P. Hellekalek. 1998. Random number
generators: Selection criteria and testing. In Random
and Quasi-Random Point Sets, ed. P. Hellekalek and
G. Larcher, Volume 138 of Lecture Notes in Statistics,
223-265. New York: Springer.

L’Ecuyer, P., and C. Lemieux. 2000. Variance reduction
via lattice rules. Management Science 46 (9): 1214—
1235.

L’Ecuyer, P., and F. Panneton. 2000. A new class of lin-
ear feedback shift register generators. In Proceedings
of the 2000 Winter Simulation Conference, ed. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick,
690-696. Pistacaway, NJ: IEEE Press.

L’Ecuyer, P., and R. Simard. 1999. Beware of linear
congruential generators with multipliers of the form
a = +29+2". ACM Transactions on Mathematical
Software 25 (3): 367-374.

L’Ecuyer, P., and R. Simard. 2001. On the performance
of birthday spacings tests for certain families of ran-
dom number generators. Mathematics and Comput-
ers in Simulation 55 (1-3): 131-137.

L’Ecuyer, P.; R. Simard, E. J. Chen, and W. D. Kel-
ton. 2001. An object-oriented random-number pack-
age with many long streams and substreams. Submit-
ted.

L’Ecuyer, P., R. Simard, and S. Wegenkittl. 2001.
Sparse serial tests of uniformity for random number
generators. SIAM Journal on Scientific Computing.
To appear. Also GERAD report G-98-65, 1998.

L’Ecuyer, P., and R. Touzin. 2000. Fast combined mul-
tiple recursive generators with multipliers of the form
a = +2942". In Proceedings of the 2000 Winter Sim-
ulation Conference, ed. J. A. Joines, R. R. Barton,
K. Kang, and P. A. Fishwick, 683-689. Pistacaway,
NJ: IEEE Press.

Lewis, P. A. W., A. S. Goodman, and J. M. Miller.
1969. A pseudo-random number generator for the sys-
tem/360. IBM System’s Journal 8:136-143.

Marsaglia, G. 1985. A current view of random num-
ber generators. In Computer Science and Statistics,
Sixteenth Symposium on the Interface, 3-10. North-
Holland, Amsterdam: Elsevier Science Publishers.

Mascagni, M., and A. Srinivasan. 2000. Algorithm 806:
SPRNG: A scalable library for pseudorandom num-
ber generation. ACM Transactions on Mathematical
Software 26:436-461.

Matsumoto, M., and Y. Kurita. 1994. Twisted GFSR
generators II. ACM Transactions on Modeling and
Computer Simulation 4 (3): 254-266.

Matsumoto, M., and T. Nishimura. 1998. Mersenne
twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transac-
tions on Modeling and Computer Simulation 8 (1):
3-30.

Niederreiter, H. 1992. Random number generation and
quasi-Monte Carlo methods, Volume 63 of SIAM
CBMS-NSF Regional Conference Series in Applied
Mathematics. Philadelphia: STAM.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters.

ACM Transactions on Modeling and Computer Sim-
ulation 10 (4): 348-357.

Owen, A. B. 1998. Latin supercube sampling for very
high-dimensional simulations. ACM Transactions of
Modeling and Computer Simulation 8 (1): 71-102.

Soto, J. 1999. Statistical testing of ran-
dom number generators. Available at
http://csrc.nist.gov/rng/rngs.html.

Tausworthe, R. C. 1965. Random numbers generated by
linear recurrence modulo two. Mathematics of Com-
putation 19:201-209.

Tezuka, S. 1995. Uniform random numbers: Theory and
practice. Norwell, Mass.: Kluwer Academic Publish-
ers.

Tootill, J. P. R.;, W. D. Robinson, and D. J. Ea-
gle. 1973. An asymptotically random Tausworthe se-
quence. Journal of the ACM 20:469-481.

AUTHOR BIOGRAPHY

PIERRE L’ECUYER is a professor teaching sim-
ulation in the “Département d’Informatique et de
Recherche Opérationnelle”, at the University of Mon-
treal, Canada. He received a Ph.D. in operations re-
search in 1983, from the University of Montréal. He
obtained the prestigious E. W. R. Steacie Grant in
1995-97 and the Killam Grant in 2001. His main re-
search interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via vari-
ance reduction, sensitivity analysis and optimization
of discrete-event stochastic systems, and discrete-event
simulation in general. His recent research articles are
available on-line at http://www.iro.umontreal.ca/
“lecuyer.

