
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A JAVA LIBRARY FOR SIMULATING CONTACT CENTERS

Eric Buist
Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, CANADA

ABSTRACT

ContactCenters is a Java library for writing contact center
simulators. It supports multi-skill and blend contact centers
with complex and arbitrary routing, dialing policies, and
arrival processes. The programmer can alter the simulation
logic in many ways, without modifying the source code of
the library. A simulator can interoperate with other libraries,
e.g., for optimization and statistical analysis. Performance,
flexibility, and extensibility are the main goals of its design
and implementation. In this paper, we present the general
architecture of the library, its main components and their
interaction. We give an example of a contact center simulator
and provide comparisons with a widely used commercial
simulation system also offering facilities for contact center
simulation.

1 INTRODUCTION

A contact center is a set of resources (communication equip-
ment, employees, computers, etc.) providing an interface
between customers and a business (Mehrotra and Fama
2003, Gans, Koole, and Mandelbaum 2003). A contact
represents a customer’s request for some service such as
information, subscription, order, etc. Customers may use
various media for contacting a business: telephone, fax,
mail, or Internet.

Inbound contacts are initiated by customers trying to
communicate with the business. A customer can be blocked,
i.e., receive a busy signal, if all phone lines are used at
the time he calls. He can also be queued if service cannot
be started immediately. A queued customer may become
impatient and abandon without receiving service.

Outbound contacts are initiated by agents contacting
customers, or by a predictive dialer making phone calls by
trying to anticipate the number of free agents at the time
contacted customers are reached. A right party connect
occurs when an outbound contact is successful. A mis-

match represents a successful contact that cannot be served
immediately.

Modern contact centers use skill-based routing for
processing different types of requests when each agent is
trained for handling only a subset of these types. Each
contact is assigned a type (or skill). Before reaching an
agent, a customer must indicate his needs: callers interact
with an interactive voice response (IVR) unit while Internet
users enter data in a Web form. Outbound contacts can also
have a type, since all customers are not contacted for the
same reason.

The agents are partitioned in agent groups or skill sets.
All agents in a group share the same skills, i.e., they can
serve the same types of contacts (although some members
may be more efficient than others).

Queueing theory can be used to derivate approximations
for estimating the performance measures of contact centers,
but only for models that oversimplify the complexities of
real-life systems for which only simulation can provide
accurate results.

A contact center can of course be modeled using generic
simulation tools, but that could be a very large program-
ming task for complex models. Specialized software, such
as Rockwell’s Arena Contact Center Edition (Bapat 2003),
or NovaSim’s ccProphet (NovaSim 2003) can ease mod-
eling significantly. Supporting multi-skill contact centers
with complex routing policies, these point-and-click tools
provide convenient graphical user interfaces (GUIs). Many
common performance measures can be estimated, and an-
imations can help debugging models. However, the great
number of software layers reduces performance, and model-
ing some aspects not supported by the tool is often difficult,
complicated, and can lead to inefficient code.

The ContactCenters software tool introduced here pro-
vides facilities to construct an event-driven simulator for
an almost arbitrary contact center. It is implemented as
a package of Java classes, built on top of the SSJ Java
simulation library (L’Ecuyer, Meliani, and Vaucher 2002,
L’Ecuyer and Buist 2005, L’Ecuyer 2004), which provides

Buist and L’Ecuyer

a fast and robust simulation engine. It provides basic build-
ing blocks which can be combined and extended to model
various systems with great detail. Generic simulators with
a lot of flexibility can be constructed with the package and
specific ones are already available. Each contact, repre-
sented by an entity (i.e., an object) with several attributes,
is simulated individually for maximal flexibility. Its path in
the system can be arbitrarily complex: waiting in several
queues, getting served by several agents, etc.

The Java base offers the advantages of a general-
purpose, widely-used, and well-supported programming
language. The package can be extended easily to sup-
port additional logic and scenarios. By using inheritance,
this extension can usually be achieved without complete
rewriting of new components. Thanks to the optimizations
of modern Java Virtual Machines, simulators written with
ContactCenters run several times faster than if implemented
with the leading commercial simulation software products
(see Section 4).

Contact centers are often simulated with the aim of
optimizing some performance measures under a set of con-
straints; e.g., to find a least-cost staffing or routing under
quality-of-service constraints (Atlason, Epelman, and Hen-
derson 2004, Cez̧ik and L’Ecuyer 2004). This typically
requires a large number of simulation runs, so CPU times
are important in that context. While some commercial sim-
ulation tools provide an optimizer whose logic is typically
hidden, special purpose optimizers adapted to call centers
are usually more efficient. They can easily be accessed (or
programmed) in Java. Using Java also gives easy access to
external libraries such as GUI building tools, statistical and
optimization software, etc. The flexibility offered by the
library also facilitates the implementation of variance re-
duction techniques and gradient (or subgradient) estimators
(Atlason, Epelman, and Henderson 2003).

The next section of this paper provides an overview
of the architecture of ContactCenters by presenting the el-
ementary components and briefly summarizing how they
interact. Section 3 contains a commented example of a
contact center simulator. It illustrates how to use the li-
brary. Section 4 compares the performance with that of
a commercial simulation tool. Section 5 gives indications
on planned future work. A complete documentation of all
classes, and several additional examples, are given by Buist
and L’Ecuyer (2005) and Buist (2005).

2 GENERAL ARCHITECTURE

The main goal of the ContactCenters library is to provide a
flexible, extensible, and powerful framework for simulating
a large variety of contact centers. Flexibility is obtained
by constructing small independent components that can be
combined as needed, and extended by using inheritance.

Elementary components include contacts, contact
sources, waiting queues, and agent groups. These com-
ponents can interact without requiring much information
about each other via the observers design pattern (Gamma,
Helm, Johnson, and Vlissides 1998). In that setting, an
observable object, also called broadcaster, can broadcast
information to a list of registered listeners known at runtime
only. A listener, also called an observer, is an object receiv-
ing information from these broadcasters. In Java, listeners
are required to implement a particular interface used by the
broadcaster to transmit information through specified meth-
ods. In our implementation, each component of the library
defines its own listener interface to avoid the necessity of
type casting by the observers.

2.1 The Simulation Periods

In contact center models, time is usually divided into periods
of 15 to 60 minutes, between which model parameters such as
the number of agents in each group, arrival rates of calls, etc.,
may change. Sometimes, data must be collected separately
for the different periods. In the simulation, period-change
events take care of triggering the appropriate changes. In
our implementation, this is done via the observer pattern: at
the beginning of each period, an event notifies all registered
period-change listeners, who in turn make the appropriate
adjustments to the model parameters, statistical collectors,
etc., under their control. Both fixed-sized and variable-sized
periods are supported.

In ContactCenters, we assume that the center is opened
during P periods, called the main periods. Main period p,
for p = 1, . . . ,P, corresponds to a time interval [tp−1, tp),
where 0 ≤ t0 < · · · < tP. Since the simulation must often
start before the center opens and stop after it closes (e.g.,
incoming calls could start getting queued before the center
opens and calls in process or in the queue at closing time must
be completed), we add two extra periods: The preliminary
period [0, t0), during which the center is not yet open, and
the wrap-up period [tP, tP+1], which goes from the time the
center closes to the time tP+1 at which the simulation is
over.

2.2 The Contacts

A contact is represented by a data object of class Contact,
with fields corresponding to attributes such as arrival time,
type identifier, priority, etc. At any time, the simulator can
access these attributes and modify most of them. A contact
entity corresponds to a single customer, but a customer may
need to make several contacts before leaving the system.

A contact can be associated with a trunk group, i.e.,
a bank of communication channels such as phone lines.
A channel is like a resource which is allocated for the
time the contact is in the system. Contacts arriving when

Buist and L’Ecuyer

no communication channel is available are blocked. By
default, no trunk group is associated with contacts, avoiding
capacity limitation.

One is free to define any desired custom attribute by
creating a subclass of Contact and adding new fields. This
permits, e.g., to associate costs or random numbers with
contacts. For instance, generating all the required random
variates at the construction of a contact, even when some are
unused, may be useful for random number synchronization
for variance reduction.

2.3 The Contact Sources

Contact sources determine when contact objects need to be
created, according to specific (stochastic) arrival processes.
Each concrete arrival process must correspond to an algo-
rithm for generating inter-arrival times. These times could
depend on the entire state of the system in a complicated
way, but they often depend only on the simulation time
and previous inter-arrival times. Currently, only the Pois-
son process with piecewise-constant arrival rate and doubly
stochastic variations of it described by Avramidis, Deslauri-
ers, and L’Ecuyer (2004) are implemented, but many other
processes could be added. For each process, the first arrival
is scheduled when the arrival process is started, often at the
beginning of the simulation.

The factory design pattern is used to allow the sources
to construct contacts without knowing their types explic-
itly. The ContactFactory interface specifies a method
called newInstance returning a newly-constructed and
configured contact object. A contact source can create con-
tacts from any class that implements this interface simply
by invoking this newInstance method. Thus, changing
the type of contact (and the name of its explicit constructor)
requires no change to the implementation of the contact
source.

When a new contact occurs, it is instantiated by the as-
sociated factory and broadcast to the registered new-contact
listeners. Then the next arrival is scheduled. Each contact
source is assigned a factory that typically constructs con-
tacts of a single type. All contact sources can be initialized,
started, and stopped.

A predictive dialer is normally used to generate out-
bound calls. The dialer’s policy determines the number of
calls to try on each occasion (as a function of the system’s
state), and supplies a list to extract them from. This list
could be produced by a contact factory and is often as-
sumed to be infinite for simplicity. Such lists could also
be constructed from customer contacts who left a message,
who were disconnected, etc.

For each call extracted from the dialer list, a success
test is performed. This test succeeds with a probability
being fixed or depending on the tested call, and the state of
the system. Successful calls represent right party connects

whereas failed calls represent wrong party connects and
connection failures. The dialer generates a random delay
representing the time between the beginning of dialing and
the success or failure. This delay may depend on the success
indicator, the call itself, the current time, etc. An event for
broadcasting the call to registered listeners is then scheduled
to occur at the time of success or failure.

The dialer defines separate lists of new-contact listeners
for right party connects, and failed calls. Usually, only right
party connects reach the router, but statistical collectors may
need to listen to failed calls as well.

2.4 Waiting Queues

A WaitingQueue represents a data structure whose el-
ements are waiting contacts. To support abandonment,
rather than contact objects, the queue contains events being
scheduled to happen at the time of automatic removal, e.g.,
abandonment, disconnection, etc. After a contact is added
at the end of the queue, its dequeue event is constructed,
and scheduled if a maximal queue time is available. Queued
contacts can also be removed manually, e.g., by the router
when the service can begin, or enumerated sequentially.

A registered waiting-queue listener can be notified about
added and removed contacts. All the information being
transmitted through the dequeue event, the listener interface
remains unchanged even if new attributes need to be added
to the event in the future. The reason of the removal is
available for listeners through an integer called the dequeue
type, encapsulated in the dequeue event. For example, this
permits statistical collectors to distinguish abandonment
from disconnection.

Two data structures are available for storing queued
contacts, each implemented in concrete subclasses of
WaitingQueue. The standard waiting queue uses a linked
list for First In First Out (FIFO) and Last In First Out (LIFO)
queues. When the number of priorities is finite and small,
priority queues can be implemented efficiently by combin-
ing several standard waiting queues. For complex priority
schemes, the library provides a priority queue using a red
black tree with a user-defined comparator specifying how to
order pairs of contacts. A red black tree (Cormen, Leiser-
son, Rivest, and Stein 2001) is a binary tree with automatic
balancing for more stable search speed. All these waiting
queues use the Java Collections Framework, and allow the
internal data structure to be replaced if needed.

2.5 Agent Groups

An agent group i, represented by an instance of Agent-
Group, contains Ni(t) ∈ N members at simulation time t.
Among these agents, Ni,i(t) are idle, and Nb,i(t) are busy.
Since agents terminate their service before they leave, we can
have Ni(t) < Nb,i(t), in which case Ng,i(t) = Nb,i(t)−Ni(t)

Buist and L’Ecuyer

ghost agents need to disappear after they finish their work.
As a result, the true number of agents in a group i at time t
is given by Ni(t)+Ng,i(t). New contacts are not accepted
by the group when Ni(t) ≤ Nb,i(t). Since Nb,i(t) includes
the ghost agents, we have

Ni(t)+Ng,i(t) = Nb,i(t)+Ni,i(t). (1)

Some idle agents may be unavailable to serve contacts at
some times during their shift. They can be taking unplanned
breaks, going to the bathroom, etc. These details can be
modeled in the simulation if the appropriate information
is available. But in practice, they are often approximated
by various models such as an efficiency factor εi ∈ [0,1],
which corresponds to the fraction of agents being effectively
busy or available to serve contacts. If Nb,i(t) = 0, the
number of free agents Nf,i(t) available to serve contacts is
given by Nf,i(t) = round(εiNi(t)) where round(·) rounds its
argument to the nearest integer. If Nb,i(t) > 0, the number
of busy members of the group, Nb,i(t)−Ng,i(t), needs to
be subtracted to get Nf,i(t). This yields:

round(εiNi(t))+Ng,i(t) = Nb,i(t)+Nf,i(t). (2)

If εi = 1, Nf,i(t) = Ni,i(t) and we are back to (1). This
elementary efficiency model is provided because it can be
used without simulating individual agents. When agents
are differentiated, other more complex and more realistic
models can easily be implemented by manipulating the state
of agents during simulation.

The service of a contact is divided in two steps. Af-
ter communicating with a customer (first step), an agent
can perform after-contact work (second step), e.g., update
an account, take some notes, etc. After the first step,
the contact may exit the system (and release the allocated
communication channel if necessary), or be transferred to
another agent. However, the agent becomes free only after
the second step (if any) is over. The end of these steps is
scheduled using a simulation event that contains additional
information about the service. As for the waiting queue,
service can be terminated automatically through the event
or manually through methods of AgentGroup. Special
indicators tell us which type of termination has occured for
each step. These facilities are useful to construct contact
centers supporting preemptive service. For example, when
the router receives a new phone call, it can interrupt the
work of an agent answering an e-mail. This e-mail, along
with information on the remaining service time, can be
stored in a waiting queue for the service to be resumed
later. The termination-type indicators permit the router to
differentiate service terminations from service interruptions
for statistical collecting purposes.

Registered agent-group listeners can be notified when
Ni(t) changes, when a service starts, and when it ends. As

with the waiting queue, the simulation event is used rather
than a temporary object to transmit information.

By default, for better efficiency, an agent group does not
contain an object for each agent, preventing the simulator
from differentiating them. Individual agents can of course
be simulated by creating groups with a single member,
but regrouping the agents can be useful for more efficient
routing. The subclass DetailedAgentGroup offers an
implementation where each individual agent is a separate
object with its own characteristics. Each such agent can
be added to or removed from a group at any time during a
simulation.

2.6 Routers

A router, called an automatic call distributor (ACD) for
call centers, can be any class listening to new contacts, and
assigning them to agent groups or adding them to waiting
queues. The router listens to service terminations to assign
queued contacts to free agents and to waiting queue events
for statistical collection and overflow support.

The library provides the Router class as a convenience
tool, but since the elementary components do not have
information on the structure of the router, the user can
implement his own routing facilities if needed. Several
routing systems could exist in parallel in a single model.
For example, the current router requires Java code for its
logic, but new systems could be defined for a XML-based
logic with routing scripts constructed using a GUI. The
former solution is faster, but the latter may be easier to use.

For statistical collection, it is generally not sufficient to
listen to end of services directly, because a contact can be
handled by several agents before leaving the system. For
contacts to be counted correctly, an exited-contact listener
can be registered with a router which knows exactly when
they abandon, are blocked, and are served. The default router
implementation provides facilities to register new and exited
contact listeners, connect waiting queues and agent groups,
and helper methods for implementing routing policies. The
routing policy itself must be implemented in a subclass by
defining fields for the data and implementing or overriding
methods for the routing logic. The router needs schemes
for agent and contact selections, and it can optionally clear
waiting queues when the contact center does not have idle
or busy agents capable of serving the waiting contacts.
Algorithms to process dequeued and served contacts may
also be needed in complex systems supporting overflow or
service by multiple agents.

The library provides a few predefined policies inspired
from Whitt and Wallace (2004) and Koole, Pot, and Talim
(2003). These policies do not cover all possible scenarios,
but flexibility is achieved by allowing subclasses of Router
to be created.

Buist and L’Ecuyer

A first class of policies uses ordered lists as follows. For
each contact type k, the type-to-group map defines an ordered
list ik,1, ik,2, . . . of agent groups. For each agent group i,
the group-to-type map defines an ordered list ki,1,ki,2, . . . of
contact types. These lists indicate which agent groups can
serve a contact of type k and which contact types can be
served by agents in group i, respectively. The order of the
elements can be used to define priorities.

In a second type of policy, a ranks matrix assigns a
rank or priority r(i,k) to contacts of type k served by agents
in group i. If the rank is ∞, contacts of type k cannot be
served by agents in group i. Otherwise, the smaller is r(i,k),
the higher is the priority of contact type k for agents in
group i. This structure allows equal priorities to exist, and
avoids consistency problems, but routing policies are more
complex. When ranks are equal, a secondary algorithm
must be used for tie breaking, reducing the performance of
the simulator.

3 EXAMPLE OF A SIMULATOR

We present a small example to illustrate some of the basic
tools provided by the ContactCenters library. We consider
a center with three contact types, two agent groups, and
three two-hour periods. Contacts arrive according to a
Poisson process with randomized piecewise-constant arrival
rate Bλk,p for contact type k during period p, where the
λk,p are constant while B is a gamma random variable with
mean 1 and variance 1/α0, which represents the busyness
of the day (Avramidis, Deslauriers, and L’Ecuyer 2004). If
B > 1, the arrival rate of contacts is higher than usual. If
B < 1, it is lower than usual.

When a contact arrives, an agent is selected from a
group depending on its type. Contacts of type 0 can only
be served by agents in group 0 while contacts of type 2
can only be served by agents in group 1. Contacts of
type 1 are served by agents in group 0, or agents in group 1
if no agents are free in group 0. Service times are i.i.d.
exponential variables with mean 1/µp for contacts arriving
during period p.

Agents in each group i are not differentiated, and Ni(t)
changes between periods while being constant within each
period. If Nb,i(t)≥ Ni(t) at some time t, ongoing services
are finished, but new contacts are not accepted until Nb,i(t) <
Ni(t).

A contact that cannot be served immediately is added
to a waiting queue corresponding to its type. Abandonment
is supported, with patience times that are i.i.d. exponentials
with mean 1/νp for contacts arriving during period p.

Suppose we are interested in the long-term overall
service level and the occupancy ratio of the first agent
group. These quantities are defined as follows. For a given
constant s > 0 which can be interpreted as the maximum
acceptable waiting time in the queue, let X be the total

number of served contacts, Xg(s) the number of served
contacts having waited less than s, Y the total number of
contacts having abandoned, and Yb(s) the number of contacts
having abandoned after waiting at least s. The service level
is defined as

g(s) =
E[Xg(s)]

E[X +Yb(s)]
.

The occupancy ratio of an agent group i is defined as

oi =
E

[∫ T
0 Nb,i(t) dt

]
E

[∫ T
0 (Ni(t)+Ng,i(t)) dt

] ,

where T = tP+1 is the time at which all contacts are served
after the end of the day. We also estimate E[Xg,k,p(s)], the
expected number of served contacts meeting the service level
requirement, for contacts of type k arrived during period p,
for each k and p.

Figure 1 presents the code implementing this small
model. Its first part declares constants and variables, and
creates objects to set up the program. The main method,
located at the end of the second part, constructs a simu-
lator using new SimpleMSK(), triggers the simulation
by calling simulate, and displays statistical results by
using printStatistics. The simulate method calls
simulateOneDay n times whilesimulateOneDay ini-
tializes the system for a new replication, starts the simulation,
and collects some observations.

For simplicity, parameters are encoded into constants,
although real-life simulators should read them from files.
The simulator declares the components of the contact center
such as the arrival processes, agent groups, waiting queues,
and router, which do not compute any statistic. Counters
and statistical collectors are declared separately to estimate
the performance measures of interest only. For X , Xg(s), Y ,
and Yb(s), simple integers are sufficient for this example,
but a matrix is needed for Xg,k,p(s). The counters are used
to compute per-replication values whereas the statistical
probes collect these values to get averages, variances, and
confidence intervals across replications.

The constructor SimpleMSK(), at the bottom of the
first page of the program, creates the components declared
in fields, and links them together. The period-change event
is constructed with P+2 = 5 periods, i.e., one preliminary
period, three main periods, and one wrap-up period. Since
t0 = 0, the preliminary period has a duration of 0.

For each contact type, a factory and an arrival process
are constructed. The arrival process automatically registers
as a period-change listener to be notified when a new period
starts. This will allow the arrival rate to be automatically
changed from period to period. The busyness generator
bgen is then constructed for generating gamma variates
using inversion. Constructing the agent groups requires the

Buist and L’Ecuyer

// Import declarations

public class SimpleMSK {
// All times are in minutes
static final int K = 3; // Number of contact types
static final int I = 2; // Number of agent groups
static final int P = 3; // Number of periods
static final double PERIODDURATION = 120.0; // Two hours
// LAMBDA[k][p] gives the arrival rate for type k in period p
static final double[][] LAMBDA =

{ { 0, 4.2, 5.3, 3.2, 0 }, { 0, 5.1, 4.3, 4.8, 0 }, { 0, 6.3, 5.2, 4.8, 0 } };
static final double ALPHA0 = 28.7; // Gamma param. for busyness
static final double[] MU = { 0.5, 0.5, 0.6, 0.4, 0.4 }; // Service rate for each period
static final double[] NU = { 0.3, 0.3, 0.4, 0.2, 0.2 }; // Abandonment rate for each period
static final double AWT = 20/60.0; // Acceptable waiting time (20 sec.)
// NUMAGENTS[i][p] gives the number of agents for group i in period p
static final int[][] NUMAGENTS = { { 0, 12, 18, 9, 9 }, { 0, 15, 20, 11, 11 } };
// Routing table, TYPETOGROUPMAP[k] and GROUPTOTYPEMAP[i] contain ordered lists
static final int[][] TYPETOGROUPMAP = { { 0 }, { 0, 1}, { 1 } };
static final int[][] GROUPTOTYPEMAP = { { 1, 0 }, { 2, 1 } };
static final double LEVEL = 0.95; // Level for confidence intervals
static final int NUMDAYS = 10000; // Number of replications

PeriodChangeEvent pce; // Event marking the beginning of each period
PiecewiseConstantPoissonArrivalProcess[] arrivProc

= new PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] groups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;
RandomVariateGen sgen; // Service times generator
RandomVariateGen pgen; // Patience times generator
RandomVariateGen bgen; // Busyness generator

// Counters
int numGoodSL, numServed, numAbandoned, numAbandonedAfterAWT;
double[][] numGoodSLKP = new double[K][P];
GroupVolumeStat vstat; // Integral of the occupancy ratio

// statistical collectors
Tally served = new Tally ("Number of served contacts");
Tally abandoned = new Tally ("Number of contacts having abandoned");
MatrixOfTallies goodSLKP = new MatrixOfTallies

("Number of contacts meeting target service level",
new String[] { "Type 0", "Type 1", "Type 2" },
new String[] { "Period 0", "Period 1", "Period 2" });

RatioTally serviceLevel = new RatioTally ("Service level");
RatioTally occupancy = new RatioTally ("Occupancy ratio");

SimpleMSK() {
// One dummy preliminary period, P main periods, and one wrap-up period,
// main periods start at time 0.
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0);
for (int k = 0; k < K; k++) // For each contact type

arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), LAMBDA[k], new MRG32k3a());

bgen = new GammaGen (new MRG32k3a(), new GammaDist (ALPHA0, ALPHA0));
for (int i = 0; i < I; i++) groups[i] = new AgentGroup (pce, NUMAGENTS[i]);
for (int q = 0; q < K; q++) queues[q] = new StandardWaitingQueue();
sgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), MU);
pgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), NU);
router = new SingleFIFOQueueRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (int i = 0; i < I; i++) router.setAgentGroup (i, groups[i]);
for (int q = 0; q < K; q++) router.setWaitingQueue (q, queues[q]);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (groups[0]);

}

Figure 1: Example of A Contact Center Simulator

Buist and L’Ecuyer

// Creates the new contacts
class MyContactFactory implements ContactFactory {

int type;
MyContactFactory (int type) { this.type = type; }
public Contact newInstance() {

Contact contact = new Contact (type);
contact.setDefaultServiceTime (sgen.nextDouble());
contact.setDefaultPatienceTime (pgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, WaitingQueue.DequeueEvent ev) {

++numAbandoned;
if (ev.getContact().getTotalQueueTime() >= AWT) ++numAbandonedAfterAWT;

}
public void served (Router router, AgentGroup.EndServiceEvent ev) {

++numServed;
Contact contact = ev.getContact();
if (contact.getTotalQueueTime() < AWT) {

++numGoodSL;
int period = pce.getPeriod (contact.getArrivalTime()) - 1;
if (period >= 0 || period < P) ++numGoodSLKP[contact.getTypeId()][period];

}
}

}

void simulateOneDay() {
Sim.init(); pce.init();
double b = bgen.nextDouble(); // Busyness factor for today
for (int k = 0; k < K; k++) arrivProc[k].init (b);
for (int i = 0; i < I; i++) groups[i].init();
for (int q = 0; q < K; q++) queues[q].init();
numGoodSL = numServed = numAbandoned = numAbandonedAfterAWT = 0; vstat.init();
for (int k = 0; k < K; k++) for (int p = 0; p < P; p++) numGoodSLKP[k][p] = 0;
for (int k = 0; k < K; k++) arrivProc[k].start();
pce.start(); Sim.start(); // Simulation runs here
pce.stop();
served.add (numServed); abandoned.add (numAbandoned); goodSLKP.add (numGoodSLKP);
serviceLevel.add (numGoodSL, numServed + numAbandonedAfterAWT);
double Nb = vstat.getStatNumBusyAgents().sum(); // Integral of N_b0(t)
double N = vstat.getStatNumAgents().sum(); // Integral of N_0(t)
double Ng = vstat.getStatNumGhostAgents().sum(); // Integral of N_g0(t)
occupancy.add (Nb, N + Ng);

}

// Simulate n independent days
void simulate (int n) {

served.init(); abandoned.init(); goodSLKP.init();
serviceLevel.init(); occupancy.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));
System.out.println (occupancy.reportAndCIDelta (LEVEL, 3));
for (int k = 0; k < K; k++)

System.out.println (goodSLKP.rowReportAndCIStudent (k, LEVEL, 3));
}

public static void main (String[] args) {
SimpleMSK s = new SimpleMSK(); s.simulate (NUMDAYS); s.printStatistics();

}
}

Figure 1: Example of A Contact Center Simulator (continued)

Buist and L’Ecuyer

period-change event, and an array containing the number
of agents for each period. Each agent group also registers
as a period-change listener for Ni(t) to be automatically
updated during the simulation. During the preliminary
period, Ni(t) = 0 for all i, while during the wrap-up period,
Ni(t) corresponds to the number of agents in the last main
period. A second constructor is available to create an agent
group not using a period-change event, for which Ni(t) must
be changed manually.

Service and patience times are generated using sgen
and pgen which are random variate generators for multi-
ple periods. Such generators use a period-change event to
determine the current period and selects a period-specific
generator to get random values. The generic way for con-
structing them is to create a random variate generator for
each period and give the array of generators, with a period-
change event, to the constructor of MultiPeriodGen.
For some distributions such as exponential, helper methods
such as createExponential are available to construct
the generators more conveniently; this method is used in
the constructor to initialize sgen and pgen.

For the router to be constructed, a type-to-group map
and a group-to-type map are needed. The selectedSingle-
FIFOQueueRouter class affects how these structures are
used. Note how the arrival processes, the waiting queues,
and the agent groups are linked to the router. An exited-
contact listener is also connected for statistical collection.

The vstat object is used for computing the integrals
needed for the occupancy ratio in the first agent group. It
internally registers as an agent-group listener to observe and
integrate Ni(t), Ng,i(t), Nf,i(t), Ni,i(t), and Nb,i(t). Although
this is not used in this example, it can also compute Nb,i,k(t),
the number of busy agents in group i serving contacts of
type k, if K is given to the constructor. The program could
also compute the occupancy ratio in the second agent group
as well as the overall occupancy ratio.

The heart of the program is the simulateOneDay
method located in the middle of the second page. It first
initializes the simulation clock and the period-change event.
All contact center elements are then initialized to eliminate
any side effect from previous replications. The arrival
processes are initialized with a busyness factor to randomize
the arrival rates. All the statistical counters are reset to 0, and
the volume calculator is reset, which initializes the internal
“accumulators” that compute the integrals. Starting the
arrival processes using start schedules the first arrivals.
The period-change event is started, scheduling an event at
time 0 for the first main period, and the simulator is started
using Sim.start, which starts executing events.

When an arrival process triggers an arrival, the
newInstance method implemented in MyContact-
Factory, shown at the top of the second page of the
program, is called on the corresponding contact factory.
One factory object has been constructed for each arrival

process, the only difference between them being the value
of the type field. The factory constructs a contact of the
appropriate type and generates a service time and a patience
time. Each random value is associated with the returned
contact object. The arrival process broadcasts the contact
to the router, generates a new arrival time and schedules
the next arrival.

When a contact of type 0 arrives, the router takes the
element 0 of the type-to-group map, which corresponds
to an ordered list containing the agent group 0 only. If
Nf,0(t) > 0, the contact is served immediately. Otherwise,
it is added to waiting queue 0. Contacts of type 2 are
treated similarly. For contacts of type 1, the router obtains
an ordered list containing 0 and 1. If Nf,0(t) > 0, the contact
is served immediately. Otherwise, it overflows to the next
agent group in the list. If Nf,1(t) > 0, the contact is served.
Otherwise, it is added at the end of queue 1.

When an agent within group 0 becomes free or is added,
the router uses the group-to-type map to obtain its ordered
list, {1,0}. The chosen router selects the queued contact
with the longest waiting time rather than using the order
induced by the list. The longest waiting time is used because
of the selected routing policy; by using a different policy,
i.e., a different subclass of Router, another selection rule
could be enforced. If the waiting queues accessible for
agents in group 0 contain no contact, the agent remains free
until new arrivals occur. Agents in group 1 have similar
contact selection rules.

Each contact exiting the system is notified to the reg-
istered exited-contact listener. The blocked method does
nothing because the capacity of the contact center is infi-
nite by default. When a contact leaves the queue without
service, a new abandonment is counted. If its waiting time
is greater than or equal to s, an abandonment after the
acceptable waiting time is also counted. When a contact
is served, a new service is counted. If its waiting time is
small enough, it is also counted as a good contact, i.e., a
contact meeting service level requirement.

For a good contact to be counted in numGoodSLKP,
the main period of its arrival must be determined. The
getPeriod method returns a value in the range 1, . . . ,P
which is converted to a main period index by subtracting 1.
If the main period index is negative or greater than or equal
to P, the arrival occurred during the preliminary or wrap-up
periods, and the event is ignored. Otherwise, the appropriate
element of the matrix is incremented.

The contact center closes at time tP = 120P = 360 (after
6 hours of operation). Since the arrival rates λk,P+1 are 0
for all k, the arrival processes stop automatically at the
beginning of the wrap-up period. All queued contacts are
then served before the simulation stops.

Since the end of the wrap-up period is not scheduled
as an event, the stop method is used to notify registered
period-change listeners after Sim.start() returns. Com-

Buist and L’Ecuyer

puted observations are added to collectors and the service
level and occupancy ratio are computed for the replication.

If occupancy ratio was estimated for opening hours
only, the integrals would have to be obtained at time tP
rather than time T ; this requires a custom period-change
listener, which we avoided to keep the program as simple
as possible.

4 SPEED COMPARISON WITH A COMMERCIAL
PRODUCT

To evaluate the performance of the ContactCenters library,
we compare it with Rockwell’s Arena Contact Center Edi-
tion 8.0 (Rockwell Automation, Inc. 2005), using four
models provided as examples with the latter commercial
product. We provide a brief summary of these four models.
More details can be found in the Arena Contact Center
Edition User’s Guide. In all examples, arrivals follow a
Poisson process with a constant arrival rate through all the
simulation, except for the first (main) period.

Telethon deals with the organization of a pledge drive
local public radio station. From 6AM to 10AM, volunteers
process contacts to manage donations. Donors have the
possibility to abandon or being disconnected and asked to
leave a message.

Bilingual represents a contact center serving an Eng-
lish and a Spanish populations. English-speaking, Spanish-
speaking, and bilingual agents are available to serve the con-
tacts. The system is slightly more complex than Telethon,
because customers have the option to contact back and are
only routed to agents capable of serving them. However,
specialists do not have priority over bilingual agents.

Bank represents a bank model where each agent can
process all contact types but handles its specialty more
efficiently. This multi-skill contact center models agents’
preferences and has approximately the same complexity
level as Bilingual.

Teamwork models a contact center with complex routing
logic in which a contact is processed by several agents.
Many customers abandon after waiting for a receptionist
while many others are disconnected when trying to reach
technical support. Some agents are required to perform
after-contact work after the served contact is transferred.
Although this model supports a single contact type, it is
more complex than the three other ones, since contacts are
served by multiple agents.

Each of these four models has been implemented with
ContactCenters and simulated for n = 1000 independent
replications. CPU times have been obtained using facilities
from SSJ. The four examples were also executed in Arena,
in batch mode, to get the fastest possible execution times.
Since Arena does not compute the execution time of a
model directly, an external program executing the models
through Component Object Model (COM) was used to get

the system time which approximates the CPU time. For
maximal accuracy of the system times, no other user-level
tasks than the Arena simulation were performed on the
machine during the tests.

Table 1 compares the performance of the ContactCen-
ters samples with that of Arena. For each table entry, we find
the required CPU time on the left and the number of contacts
processed per second on the right. The reported times are
computed on an AMD Athlon Thunderbird 1000MHz. Java
times are computed under Linux, using Sun Java Runtime
Environment (JRE) 1.4.2 and 1.5.0 while Arena times are
computed under Microsoft Windows XP. To approximate
the number of contacts per second, the model-dependent
expected number of arrivals over all replications, nE[A], is
divided by the estimated CPU time.

ContactCenters runs approximately 25 times faster than
Arena on these examples. The execution times generally
increase with the complexity of the model. The Teamwork
model is more complex than the other examples, but it runs
faster than Telethon under Arena and faster than Bank under
ContactCenters. The explanation is that in Teamwork, the
abandonment rate is very high, because contacts are filtered
by the two-servers queue modeling the receptionists, and
contacts directed to technical support are disconnected if
no agent is available. The processing time of an abandoned
contact is smaller, because the service requires scheduling
an extra event or allocating and releasing a resource.

For both systems, performance depends on the number
of contacts to be processed as well as their path into the
system. It also depends on the routing policy being used,
whose performance depends on the size and complexity of
the contact center.

5 CONCLUSION

The library ContactCenters is flexible enough to simulate
practically any model of a contact center using Java and
SSJ. Some examples from the Arena User’s Guide have
been easy to implement and they execute faster than with
the commercial tool.

In the future, we plan to experiment with variance re-
duction techniques that could improve simulation efficiency.
We also plan to test various subgradients computation meth-
ods for optimization. The current generic simulator using
XML for parameter files will be maintained, and new ones
may be constructed for other contact center designs.

ACKNOWLEDGMENTS

This research was supported by grants number OGP-
0110050 and CRDPJ-251320 from NSERC-Canada, a grant
from Bell Canada via the Bell University Laboratories, and
grant number 00ER3218 from NATEQ-Québec to the sec-
ond author. We thank Athanassios Avramidis, Mehmet

Buist and L’Ecuyer

Table 1: Performance of the ContactCenters Library Compared with Arena

Example E[A] Arena JRE1.4 JRE1.5
Telethon 1000 4m23s 3802/s 10s 103950/s 10s 102040/s
Bilingual 5000 23m39s 3523/s 48s 104866/s 44s 112969/s
Bank 3600 23m57s 2505/s 48s 75774/s 46s 78947/s
Teamwork 7000 22m56s 5087/s 1m23s 83923/s 1m23s 84592/s

Tolga Cez̧ik and Wyean Chan for their helpful comments
on the design of ContactCenters classes, and for testing the
constructed simulators during software development.

REFERENCES

Atlason, J., M. A. Epelman, and S. G. Henderson. 2003. Us-
ing simulation to approximate subgradients of convex
performance measures in service systems. In Proceed-
ings of the 2003 Winter Simulation Conference, ed.
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice,
1824–1832: IEEE Press.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004.
Call center staffing with simulation and cutting plane
methods. Annals of Operations Research 127:333–358.

Avramidis, A. N., A. Deslauriers, and P. L’Ecuyer. 2004.
Modeling daily arrivals to a telephone call center. Man-
agement Science 50 (7): 896–908.

Bapat, V. 2003. The arena product family: Enterprise mod-
eling solutions. In Proceedings of the 2003 Winter
Simulation Conference, ed. S. Chick, P. J. Sánchez,
D. Ferrin, and D. J. Morrice, 210–217: IEEE Press.

Buist, E. 2005. Conception et implantation d’une librairie
pour la simulation de centres de contacts. Master’s
thesis, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal. Forthcoming.

Buist, E., and P. L’Ecuyer. 2005. ContactCenters: A Java
library for simulating contact centers. Software user’s
guide, forthcoming.

Cez̧ik, M. T., and P. L’Ecuyer. 2004. Staffing multiskill
call centers via linear programming and simulation.
submitted.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein.
2001, September. Introduction to algorithms. second
ed. MIT Press.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1998.
Design patterns: Elements of reusable object-oriented
software. second ed. Reading, Mass.: Addison-Wesley.

Gans, N., G. Koole, and A. Mandelbaum. 2003. Tele-
phone call centers: Tutorial, review, and research
prospects. Manufacturing and Service Operations Man-
agement 5:79–141.

Koole, G., A. Pot, and J. Talim. 2003. Routing heuristics
for multi-skill call centers. In Proceedings of the 2003
Winter Simulation Conference, 1813–1816: IEEE Press.

L’Ecuyer, P. 2004. SSJ: A Java library for stochastic sim-
ulation. Software user’s guide, Available at 〈http:
//www.iro.umontreal.ca/∼lecuyer〉.

L’Ecuyer, P., and E. Buist. 2005. Simulation in Java with
SSJ. In Proceedings of the 2005 Winter Simulation
Conference. submitted.

L’Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ: A
framework for stochastic simulation in Java. In Pro-
ceedings of the 2002 Winter Simulation Conference,
ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, 234–242: IEEE Press.

Mehrotra, V., and J. Fama. 2003. Call center simulation
modeling: Methods, challenges, and opportunities. In
Proceedings of the 2003 Winter Simulation Conference,
135–143: IEEE Press.

NovaSim 2003. ccProphet — simulate your call center’s
performance. See 〈http://www.novasim.com/
CCProphet/〉.

Rockwell Automation, Inc. 2005. Arena simulation. See
〈http://www.arenasimulation.com〉.

Whitt, W., and R. B. Wallace. 2004. A staffing algorithm
for call centers with skill-based routing. working pa-
per, available at 〈http://www.columbia.edu/
∼ww2040/poolingMSOMrevR.pdf〉.

AUTHOR BIOGRAPHIES

ERIC BUIST is a M.Sc. Student at the Université de
Montréal. His main interests are software engineering,
object-oriented programming, and simulation. His e-mail
address is <buisteri@IRO.UMontreal.CA>.

PIERRE L’ECUYER is Professor in the Département
d’Informatique et de Recherche Opérationnelle, at the Uni-
versité de Montréal, Canada. He holds the Canada Research
Chair in Stochastic Simulation and Optimization. His main
research interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete-
event stochastic systems, and discrete-event simulation in
general. He obtained the prestigious E. W. R. Steacie fellow-
ship in 1995-97 and a Killam fellowship in 2001-03. His re-
cent research articles are available on-line from his web page:
〈http://www.iro.umontreal.ca/∼lecuyer〉.

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
http://www.novasim.com/CCProphet/
http://www.novasim.com/CCProphet/
http://www.arenasimulation.com
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
mailto:buisteri@IRO.UMontreal.CA
http://www.iro.umontreal.ca/~lecuyer

	INTRODUCTION
	GENERAL ARCHITECTURE
	The Simulation Periods
	The Contacts
	The Contact Sources
	Waiting Queues
	Agent Groups
	Routers

	EXAMPLE OF A SIMULATOR
	SPEED COMPARISON WITH A COMMERCIAL PRODUCT
	CONCLUSION

