
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMULATION IN JAVA WITH SSJ

Pierre L’Ecuyer and Eric Buist

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal, H3C 3J7, CANADA

ABSTRACT

We describe SSJ, an organized set of software tools offering
general-purpose facilities for stochastic simulation program-
ming in Java. It supports the event view, process view, con-
tinuous simulation, and arbitrary mixtures of these. Random
number generators with multiple streams and substreams,
quasi-Monte Carlo methods and their randomizations, and
random variate generation for a rich selection of distribu-
tions, are all supported in an integrated framework. Perfor-
mance, flexibility, and extensibility were key criteria in the
design and implementation of SSJ. We illustrate its use by
simple examples.

1 INTRODUCTION

In the early days of computing, simulation programs were
written in a general-purpose language such as FORTRAN.
Then came specialized languages like GPSS, Simscript, etc.,
devoted to discrete-event simulation. Nowadays, most com-
mercial software products for simulation offer point-and-
click graphical environments that permit one to specify a
model and get the simulation program up and running with-
out explicitly writing programming code. These environ-
ments are quite convenient from the user’s viewpoint, be-
cause they do not require knowledge of a programming lan-
guage, provide graphical animation, have automatic facili-
ties to collect statistics and run experiments, and can some-
times perform some kind of optimization. On the other hand,
these point-and-click tools are often too restrictive, because
they are targeted at a limited class of models. With them,
simulating a system whose logic is complicated or uncon-
ventional may become difficult. One must frequently revert
to a general-purpose language to program the more com-
plex aspects of a model or unsupported operations. Compil-
ers and supporting tools for specialized languages are less
widely available and cost more than for general purpose
languages. The graphical and automatic devices also tend
to slow down the simulation significantly. Fast execution
times are important for example in a context of optimization,

where thousands of variants of a base system may have to be
simulated, or for on-line applications where a fast response
time is needed. For example, when pricing financial deriv-
atives by simulation, precise estimates are often required
within a few seconds or minutes. To optimize the staffing
and/or scheduling of a large telephone call center or other
complex stochastic systems by simulation, a well-tuned ef-
ficient program may already run for several hours or even a
few days, so slowing it down by a factor of 10 (say) makes a
significant difference. The constant increase of cheap com-
puting power will not change this: the complexity of models
increases at least as fast as the speed of computers.

SSJ (which stands for Stochastic Simulation in Java) is
an organized collection of Java packages whose purpose is
to facilitate simulation programming in the general-purpose
Java language. A early version was described by L’Ecuyer,
Meliani, and Vaucher (2002). Advantages of programming
in Java include: (1) greater flexibility than with graphical
environments, (2) extensive and high-quality Java develop-
ment tools, libraries, runtime optimizers, interfaces to other
softwares, etc., (3) runs on practically any type of computer
without change, and (4) programs run much faster than un-
der typical point-and-click simulation environments.

The facilities offered are grouped into different packages,
each one having its own user’s guide, in the form of a PDF
file, in addition to standard on-line documentation in HTML
produced via javadoc. There is also a set of commented
examples of simulation programs in a separate PDF docu-
ment. An excellent way of learning more about SSJ is to
study these examples. The tool is still under active develop-
ment; new packages and methods are being added on a reg-
ular basis. It is developed and maintained at the Université
de Montréal, and is available on-line from the first author’s
web page (L’Ecuyer 2004b).

SSJ is definitely not the only Java-based simulation
framework. There are more than a dozen others, including
for instance Silk (Kilgore 2003), J-Sim (Tyan 2005), JSIM
(Miller 2005), Simkit (Buss 2002), and DSOL (Jacobs and
Verbraeck 2004). Our framework has a different design, in
several aspects, from each of those.

L’Ecuyer and Buist

In the next section we give an overview of SSJ. In Sec-
tion 3, we illustrate some of the available facilities by a con-
crete example. Other examples can be found in L’Ecuyer,
Meliani, and Vaucher (2002), Buist and L’Ecuyer (2005b),
and in SSJ user’s guide (L’Ecuyer 2004b).

2 OVERVIEW OF SSJ

We now describe the different packages that currently com-
prise SSJ. They provide probability distribution functions,
goodness-of-fit tests for fitting distributions, uniform non-
uniform random number generators, highly-uniform point
sets that can replace the uniform random numbers, statisti-
cal collectors, event-list management tools for discrete-event
simulation, and higher-level facilities for process-oriented
simulation.

2.1 Package probdist

This package provides classes to handle probability dis-
tributions. Methods are available to compute mass, den-
sity, distribution, complementary distribution, and inverse
distribution functions for discrete and continuous distribu-
tions. It does not directly generate random variates (package
randvar does that) but its methods can be used together
with a random number generator to generate random vari-
ates by inversion. It is useful not only for simulation, but for
several other types of applications related to computational
probability and statistics.

Standard distributions are implemented, each in its own
class. Two types of methods are provided in most classes:
static methods, for which no object needs to be created, and
methods associated with distribution objects. Constructing
an object from one of these classes can be convenient if the
distribution function (or its inverse) has to be evaluated sev-
eral times for the same distribution. In certain cases (for the
Poisson distribution, for example), creating the distribution
object precomputes tables that speed up significantly all sub-
sequent method calls. This trades memory, plus a one-time
setup cost, for speed. On the other hand, the static methods
that do not require the creation of an object are sometimes
more appropriate.

2.2 Package gof

The gof package contains tools for univariate goodness-
of-fit (GOF) statistical tests, e.g., for testing the hypothesis
H0 that a sample X1, . . . ,Xn comes from a given univariate
probability distribution F . The available tests include the
chi-square, Kolmogorov-Smirnov, Anderson-Darling, and
Crámer-von Mises tests. Methods are available to apply var-
ious types of transformations to the observations, to com-
pute the test statistics and their p-values for the continuous

and discrete cases, and to format graphical plots and re-
ports. These tools are adapted from the TestU01 package
(L’Ecuyer and Simard 2002), used for statistical testing of
random number generators.

2.3 Package rng

This package offers the basic facilities for generating uni-
form random numbers. It defines an interface called
RandomStream and some implementations of that inter-
face. The interface specifies that each RandomStream ob-
ject provides a stream of random numbers partitioned into
multiple substreams. Methods are available to jump be-
tween the substreams, as discussed in (L’Ecuyer and Côté
1991, L’Ecuyer, Simard, Chen, and Kelton 2002). Several
implementations of this interface are available, each one us-
ing a specific backbone uniform random number generator
(RNG) whose period length is typically partitioned into very
long non-overlapping segments to provide the streams and
substreams. These RNGs have period lengths ranging from
(approximately) 2113 to 219937. They have different speeds
for generating the numbers and for jumping ahead. Most
are linear but some are nonlinear. A stream can generate
uniform variates (real numbers) over the interval (0,1), uni-
form integers over a given range of values {i, . . . , j}, and
arrays of these. Our example in Section 3 will illustrate
the usefulness of these streams and substreams. The same
RandomStream interface is used as well for quasi-Monte
Carlo point sets and sequences, in the package hups.

Other tools included in this package permit one to manage
and synchronize several streams simultaneously and to ap-
ply automatic transformations to the output of a given stream
(e.g., to get a stream that generates antithetic variates).

2.4 Package hups

This package implements highly uniform point sets and
sequences (HUPS) over the s-dimensional unit hypercube
[0,1)s, and tools for their randomization. HUPS are also
called low-discrepancy point sets and sequences are are
used for quasi-Monte Carlo (QMC) and randomized QMC
(RQMC) numerical integration (L’Ecuyer and Lemieux
2002, L’Ecuyer 2004a, Owen 1998, Niederreiter 1992).

A typical use of QMC or RQMC is to estimate an integral
of the form

µ =
∫

[0,1)s
f (u)du (1)

for some integer s. Practically speaking, any mathematical
expectation that can be estimated by simulation can be writ-
ten in this way, usually for a very complicated f and some-
times for s = ∞. The vector u = (u0,u1,u2, . . .) represents
the stream of i.i.d. U(0,1) random numbers produced by the
RNG underlying the simulation and s is an upper bound on
the number of calls to the RNG. The Monte Carlo method

L’Ecuyer and Buist

estimates µ by

Qn =
1
n

n−1

∑
i=0

f (ui), (2)

which is the average of f over a set Pn = {u0, . . . ,un−1} of
independent random points in [0,1)s.

RQMC replaces the independent points ui by a set of ran-
dom points having the following properties: (a) each point
ui taken individually is uniformly distributed over [0,1)s and
(b) the point set Pn is more evenly distributed over [0,1)s

than independent random points. Condition (b) amounts to
inducing negative dependence between the points and can
be interpreted as a generalized antithetic variates approach
(Wilson 1983, Ben-Ameur, L’Ecuyer, and Lemieux 2004).
The aim is to reduce the variance of Qn. Two important
classes of methods for constructing such point sets are dig-
ital nets and integration lattices (Niederreiter 1992, Sloan
and Joe 1994, L’Ecuyer and Lemieux 2000, L’Ecuyer and
Lemieux 2002). Both are implemented in this package, in
various flavors. Some are infinite sequences of points, of
which the first n points can be extracted for different values
of n. The set Pn can then be enlarged as needed by increas-
ing n. Some point sets are also infinite-dimensional. Avail-
able constructions include the Hammersley point sets, Hal-
ton sequences, Sobol’, Faure, and Niederreiter sequences,
Niederreiter-Xing nets, Korobov lattice rules and arbitrary
rank-1 lattice rules, recurrence-based digital nets, and digi-
tal nets constructed by coding theoretic techniques.

Several randomization methods that satisfy our require-
ments (a) and (b) are available for these point sets. Some
of them, such as the random shift and digital random shift,
apply to all point sets, whereas others such as affine matrix
scrambling, striped matrix scrambling, starting a sequence
at a random point, etc., apply to specific types of point sets
(see, e.g., the user’s guide and L’Ecuyer and Lemieux 2000,
L’Ecuyer and Lemieux 2002, Owen 2003).

Certain types of transformations (deterministic and ran-
dom) can be applied to point sets via predefined container
classes that act as filters. One example of such a transforma-
tion is the baker’s transform, which stretches each coordi-
nate by a factor of two and folds the [1,2) interval back over
(0,1] via the mapping u→ 2−u (Hickernell 2002).

The base class for point sets is an abstract class named
PointSet. Each point set can be viewed as a two-
dimensional array whose element (i, j) contains ui, j, the
coordinate j of point i. In the implementations of typical
point sets, the values ui, j are not stored explicitly in a two-
dimensional array, but relevant information is organized so
that the points and their coordinates can be generated effi-
ciently.

To enumerate the successive points or the successive co-
ordinates of a given point, we use point set iterators, which
resemble the iterators defined in Java collections, except that
they loop over bi-dimensional sets. These iterators must im-

plement an interface named PointSetIterator. Each
PointSet class has a method that returns an iterator of the
correct type for this point set. Several independent iterators
can coexist at any given time for the same point set. An
important feature of the PointSetIterator interface is
that it extends the RandomStream interface. This means
that any point set iterator can be used in place of a random
stream that is supposed to generate i.i.d. U(0,1) random
variables, anywhere in a simulation program. It then be-
comes very easy to replace the (pseudo)random numbers by
the coordinates ui, j of a randomized HUPS without changing
the internal code of the simulation program. The example in
Section 3 illustrates this.

2.5 Package randvar

This package provides tools for non-uniform random vari-
ate generation, primarily from standard distributions. A
generator can be obtained simply by pairing an arbitrary
distribution object (from package probdist) with an
arbitrary RandomStream object. The generic classes
RandomVariateGen and RandomVariateGenInt
do that for continuous and discrete distributions, respec-
tively. For example, a RandomVariateGen object g can
be constructed by providing a previously created beta dis-
tribution with specific parameters and a stream that gen-
erates the uniform random numbers. Then, each call to
g.nextDouble() will return a beta random variate. By
default, all random variates are generated by inversion. Note
that the stream can very well be an iterator over an RQMC
point set instead of a stream of pseudorandom numbers.

To generate random variates by other methods than in-
version, specialized classes are provided for a variety of
standard discrete and continuous distributions. For exam-
ple, five different methods are provided to generate random
variates from the standard normal distribution (inversion,
Box-Muller, polar, Kindermann-Ramage, and acceptance-
complement ratio). In many cases, the constructors of the
specialized classes precompute constants and tables that de-
pend on the specific parameter values of the distribution, to
speed up the marginal cost of generating each random vari-
ate. Static methods in the specialized classes allow the gen-
eration of random variates from specific distributions with-
out constructing a RandomVariateGen object.

This package also provides an interface to the UN-
URAN (Universal Non-Uniform RANdom number genera-
tors) package, a rich library of C functions designed and im-
plemented by Leydold and Hörmann (2002). This interface
can be used to access distributions and generation methods
not available directly in SSJ.

2.6 Package stat

This package provides basic tools for collecting statis-
tics and computing confidence intervals. Objects of class

L’Ecuyer and Buist

Tally collect data that comes as a sequence of real-
valued observations X1,X2, It can compute sample av-
erages, sample standard deviations and confidence intervals
on the mean based on the normality assumption. The class
TallyStore is similar, but it also stores the individual ob-
servations in an extensible array. The class Accumulate
in package simevents computes integrals and averages
with respect to time. This class is in package simevents
because its operation depends on the simulation clock.

Statistical collectors are also available for arrays and ma-
trices of observations. Some of them automatically compute
the empirical covariances between observations. Tools to
compute confidence intervals for functions of several means
(e.g., a ratio of two means) via the delta theorem (Serfling
1980) are also available.

Most classes in package stat extend the Observable
class of Java, which provides basic support for the ob-
server design pattern (Gamma, Helm, Johnson, and Vlis-
sides 1998) and facilitates the separation of data generation
(by the simulation program) from data processing (for sta-
tistical reports and displays). This can be very helpful in
particular in large simulation programs or libraries, where
different objects may need to process the same data in dif-
ferent ways. An Observable object in Java maintains a
list of registered Observer objects, and broadcasts infor-
mation to all its registered observers whenever a new obser-
vation is given to the collector. Any object that implements
the interface Observer can register as an observer.

2.7 Package simevents

Event scheduling for discrete-event simulations is managed
by the “chief-executive” class Sim, contained in this pack-
age, which contains the simulation clock and the central
monitor. Different implementations of the event list are of-
fered to the user. The default implementation is a splay tree.

The class Event provides facilities for creating and
scheduling events in the simulation. Each type of event must
be defined by implementing an extension of this class. It
must contain a method actions() which describes what
happens when the event occurs. Events can be scheduled,
rescheduled, cancelled, etc. Classes for collecting statis-
tics that depend on the simulation clock (such as the time-
average length of a queue, for example) are provided in
this package. Another class provides elementary tools for
continuous simulation, where certain variables vary contin-
uously in time according to ordinary differential equations
with respect to time.

2.8 Package simprocs

Process-oriented simulation is managed through this pack-
age. Processes can be seen as active objects whose behavior
in time is described by their method actions(). In con-
trast with the corresponding actions() method of events,

that of processes is generally not executed instantaneously
in the simulation time frame. A process class must be de-
fined as a subclass of the abstract class SimProcess and
implement the actions() method. The processes can be
created, started, and killed. They can interact, can be sus-
pended and resumed, can be waiting for a given resource
or a given condition, etc. These processes may represent
“autonomous” objects such as machines and robots in a fac-
tory, customers in a retail store, vehicles in a transportation
or delivery system, etc. The process-oriented paradigm is
a natural way of describing complex systems (Franta 1977,
Law and Kelton 2000) and often leads to more compact code
than the event-oriented view. However, it is often preferred
to use events only, because this gives a faster simulation
program by avoiding the process-synchronization overhead
(see the example at the end of this subsection). Most com-
plex discrete-event systems are quite conveniently modeled
only with events. In SSJ, events and processes can be mixed
freely. The processes actually use events for their synchro-
nization.

The classes Resource, Bin, and Condition pro-
vide additional mechanisms for process synchronization. A
Resource corresponds to a facility with limited capac-
ity and a waiting queue. A process can request an arbi-
trary number of units of a resource, may have to wait un-
til enough units are available, can use the resource for a
certain time, and eventually releases it. A Bin supports
producer/consumer relationships between processes. It cor-
responds essentially to a pile of free tokens and a queue
of processes waiting for the tokens. A producer adds to-
kens to the pile whereas a consumer (a process) can ask
for tokens. When not enough tokens are available, the
consumer is blocked and placed in the queue. The class
Condition supports the concept of processes waiting for
a certain boolean condition to be true before continuing their
execution.

Two implementations of processes are available in SSJ.
The first uses Java threads as described in Section 4 of
L’Ecuyer, Meliani, and Vaucher (2002). The second is taken
from DSOL (Jacobs and Verbraeck 2004). Unfortunately,
none of them is fully satisfactory. Java threads are designed
for real parallelism, not for the kind of simulated parallelism
required in process-oriented simulation. In the Java Devel-
opment Kit (JDK) 1.3.1 and earlier, green threads support-
ing simulated parallelism were available and our original im-
plementation of processes described in L’Ecuyer, Meliani,
and Vaucher (2002) was based on them. But green threads
are no longer supported in recent Java runtime environ-
ments. The threads are true threads from the operating sys-
tem. This adds significant overhead and prevents the use of
a very large number of processes in the simulation. This im-
plementation of processes with threads can be used safely
only with the JDK version 1.3.1 or earlier. The second im-
plementation, provided to us by Peter Jacobs, stays away

L’Ecuyer and Buist

from threads. It uses a Java reflexion mechanism that in-
terprets the code of processes at run time and transforms
everything into events. The implementation details are com-
pletely transparent to the user. There is no need to change the
Java simulation program in any way, except for the import
statement at the beginning of the program that decides which
subpackage of simprocs we want to use.

To demonstrate the loss of performance incurred when us-
ing processes instead of events, we report on the timing of a
simulation of an M/M/1 queue using events and processes.
Customers arrive according to a Poisson process with rate
λ = 1 and have exponential service times with mean 1/µ .
When a customer arrives while the server is busy, it is put
in a FIFO queue with unlimited capacity. In an event-
driven simulation, each arrival and departure correspond to
an event, and the waiting queue is represented by a list. In a
process-driven simulation, each customer is represented by
a process. The programs we used are very similar to those
given in L’Ecuyer, Meliani, and Vaucher (2002).

Table 1 gives the CPU times, in seconds, to simulate the
system for 105 time units (approximately 105 arrivals), for
different values of µ and with three different implemen-
tations: with events (Events), processes implemented by
Java threads (Threads), and the DSOL implementation of
processes (DSOL). The column marked Queue reports the
average queue size, to give an idea of the number of si-
multaneous processes. For µ ≤ 1, the queue is unstable so
the queue size increases steadily with the simulation length.
This permits us to examine the effect of a large number
of simultaneous processes on the performance, for process-
driven simulation. These times were obtained with an AMD
Athlon processor running at 2.088GHz, with Java Runtime
Environment (JRE) 1.5 running under Linux.

Table 1: Performance Comparison for Event-Driven and
Process-Driven Simulation: CPU times (in seconds) to sim-
ulate 105 customers

µ Queue Events Threads DSOL
2.0 0.50 0.11 1.29 73.5
1.8 0.71 0.12 1.31 75.8
1.6 1.09 0.12 1.37 77.6
1.4 1.77 0.12 1.43 80.5
1.2 4.04 0.11 1.54 85.6
1.0 272 0.11 4.44 101.8
0.8 10037 0.36 — 82.8
0.6 20059 0.34 — 64.8

We see that the process-driven simulations are much
slower than their event-driven counterparts, roughly by a
factor of 12 for Java threads and a factor of 700 for DSOL.
A greater queue size requires more internal node objects to
store queued customers in a linked list, adding work for the
virtual machine. This explains why CPU times for events
increase when the system is unstable. With thread-based

processes, the CPU times increase with the number of si-
multaneous processes. When that number is too large, the
program eventually crashes (this is why no CPU time is re-
ported), not because of insufficient memory but due to a lim-
itation on the number of native threads that can be provided
by the operating system. With the DSOL solution, the only
limitation on the number of threads is memory size. As long
as the queue is stable (µ > 1), the execution time increases
slowly with the average queue size. When the queue is un-
stable, decreasing µ reduces the number of events (ends of
service) that occur during a given time period and this re-
duces execution times. The cost of the interpretation domi-
nates the cost of object creation.

3 EXAMPLE: AN ASIAN OPTION

We provide an elementary example that illustrates how to
generate random numbers, exploit the multi-streams facili-
ties, compute distribution functions, and collect elementary
statistics with SSJ. In this example, we price an Asian op-
tion by simulation, using randomized quasi-Monte Carlo to
reduce the variance. We also show how to estimate a sensi-
tivity via finite differences with common random numbers.

3.1 The Model

A geometric Brownian motion (GBM) {S(ζ), ζ ≥ 0} satis-
fies S(ζ) = S(0)exp

[
(r−σ2/2)ζ +σB(ζ)

]
where r is the

risk-free appreciation rate, σ is the volatility parameter, and
B is a standard Brownian motion, i.e., a process whose in-
crements over disjoint intervals are independent normal ran-
dom variables, with mean 0 and variance δ over an interval
of length δ (see, e.g., Glasserman 2004). The GBM process
is a popular model for the evolution in time of the market
price of financial assets. A discretely-monitored Asian op-
tion on the arithmetic average of a given asset has discounted
payoff

X = e−rT max[S̄−K, 0] (3)

where K is a constant called the strike price and

S̄ =
1
s

s

∑
j=1

S(ζ j), (4)

for some fixed observation times 0 < ζ1 < · · ·< ζs = T . The
value (or fair price) of the Asian option is v = E[X] where the
expectation is taken under a so-called risk-neutral measure
(Glasserman 2004).

3.2 Pricing by Monte Carlo

This v can be estimated by simulation as follows. Gener-
ate s independent and identically distributed (i.i.d.) N(0,1)
random variables Z1, . . . ,Zs and put B(ζ j) = B(ζ j−1) +√

ζ j −ζ j−1Z j, for j = 1, . . . ,s, where B(ζ0) = ζ0 = 0. Then,

L’Ecuyer and Buist

S(ζ j) = S(0)e(r−σ2/2)ζ j+σB(ζ j) for j = 1, . . . ,s and the pay-
off can be computed via (3). This can be replicated n times,
independently, and the option value is estimated by the av-
erage discounted payoff.

The Java program of Figure 1 implements this. Due to
space limitations, we do not provide the most general and
reusable program; for example, in a good design, the op-
tion (payoff function) and the underlying stochastic process
might be defined in separate classes, the statistical collectors
might be external and passed as parameters to the methods,
etc. We have also removed certain parts of the program,
including the import statements and some uninteresting
instructions in the constructor.

The Asian constructor precomputes the discount factor
e−rT and the constants σ

√
ζ j −ζ j−1 and (r−σ2/2)(ζ j −

ζ j−1), that depend on the process parameters and observa-
tion times. The method generatePath generates the val-
ues of S(ζ j) at the observation times, whereas getPayoff
returns the corresponding option payoff. The method
simulateRuns performs n independent simulation runs
using the given random number stream and puts the n
observations of the net payoff in the statistical collector
statValue. In the main method, we first specify the
s = 10 observation times ζ j = (110+ j)/365 for j = 1, . . . ,s,
and put them in the array zeta (of size s+1) together with
ζ0 = 0. We then construct an Asian object with parame-
ters r = log1.09, σ = 0.2, K = 100, S(0) = 100, s = 12,
and the observation times contained in array zeta. We
then perform 106 (one million) simulation runs, and print
the results. This took approximately 6.6 seconds to run on
a 2.088GHz computer, with JRE 1.5 running under Linux,
and gave (5.848, 5.870) as 95% confidence interval on v.
We have Var[X]≈ 61.4 for this standard MC method.

3.3 Common Random Numbers

We now illustrate how the streams of SSJ are convenient
for comparing two different configurations of a given sys-
tem with common random numbers (CRNs) (Law and Kel-
ton 2000). Let X1 denote the payoff X for a given value
of σ = σ1 and X2 the payoff when σ = σ1 + δ , for some
small δ > 0, and suppose we want to estimate E[X2 −X1].
This is useful, e.g., for estimating the sensitivity of the op-
tion price with respect to the volatility parameter σ (Glasser-
man 2004). If X1 and X2 are simulated with independent
random numbers (IRNs), we have Var[X2−X1] = Var[X1]+
Var[X2]≈ 2Var[X1]. Simulating them with CRNs means us-
ing exactly the same uniforms at exactly the same place for
both X1 and X2, to make Cov[X1,X2] > 0.

The method compareWithCRN performs n pairs of
simulation runs with CRNs, using one substream of the
given stream for each pair of runs. For each pair, we first
generate the sample path for the current process and store the
payoff X1. The stream is then reset to the start of its current

substream so that it will generate exactly the same sequence
of random numbers when we generate the sample path for
the second process, p2. The difference X2−X1 is given as an
observation to the statistical collector statDiff. Then the
stream is advanced to the start of its next substream, ready
for the next pair of runs.

Here the two processes make exactly s calls to the RNG
for each run. In general, however, when comparing sim-
ilar systems with CRNs, the number of calls to the RNG
may be “random” and differ across systems. Even in that
case, using the SSJ substreams as illustrated here ensures
that the RNG starts at the same place for both systems and
that the sequences of random numbers that are used do not
overlap. For complex systems, different RandomStream
objects can be used for different parts of the system (e.g., in
a queueing network, perhaps one stream for the interarrival
times and one stream for the service times at each service
station) to maintain synchonization. Then, all streams must
be reset to their appropriate substreams between the runs.

For this particular example, CRNs could be imple-
mented by saving in an array the standard normal ran-
dom variates produced by NormalDist.inverseF01
(stream.nextDouble()) in generatePath and re-
using them for the second process. This would be more
efficient because there would be no need to generate the
uniforms and invert the normal distribution twice. But for
more complicated system, the random variates are often gen-
erated from different distributions across systems and/or it
is typically very inconvenient to store the random variates
across successive simulation runs. The approach we took
here works generally and requires no explicit storage.

This part of the program ran in about 10.83 seconds and
provided (0.212, 0.214) as a 95% confidence interval on
E[X2 −X1] with CRNs. The variance of X2 −X1 is 0.1436
with CRNs and 122.6 with IRNs. So CRNs improves the
efficiency roughly by a factor of 854.

3.4 Randomized Quasi-Monte Carlo

The program in Figure 2 extends Asian to AsianRQMC,
which estimates the option value via randomized quasi-
Monte Carlo (RQMC), as in L’Ecuyer (2004a). The method
simulateRQMC makes m independent randomizations of
an RQMC point set p of cardinality n and dimension
s, randomized using the stream noise. For each ran-
domization, it performs n simulation runs, one for each
point of p. For that, it uses an iterator over p, called
stream, as the underlying random number stream from
which are generated the normal random variates. Each call
to resetNextSubstream goes to the first coordinate of
the next point and resetStartStream goes back to the
first point. By taking the average over the n (correlated) sim-
ulations for each randomization, we get m i.i.d. observations
of an unbiased estimator of v, collected in statAver. The

L’Ecuyer and Buist

public class Asian {
double strike; // Strike price.
int s; // Number of observation times.
double discount; // Discount factor exp(-r * zeta[t]).
double[] muDelta; // Differences * (r - sigmaˆ2/2).
double[] sigmaSqrtDelta; // Square roots of differences * sigma.
double[] logS; // Log of the GBM process: logS[t] = log (S[t]).

// The array zeta[0..s+1] must contain zeta[0]=0.0, plus the s observation times.
public Asian (double r, double sigma, double strike,

double s0, int s, double[] zeta) {
...

}

// Generates the process S.
public void generatePath (RandomStream stream) {

for (int j = 0; j < s; j++)
logS[j+1] = logS[j] + muDelta[j] + sigmaSqrtDelta[j]

* NormalDist.inverseF01 (stream.nextDouble());
}

// Computes and returns the discounted option payoff.
public double getPayoff () {

double average = 0.0; // Average of the GBM process.
for (int j = 1; j <= s; j++) average += Math.exp (logS[j]);
average /= s;
if (average > strike) return discount * (average - strike);
else return 0.0;

}

// Performs n indep. runs using stream and collects statistics in statValue.
public void simulateRuns (int n, RandomStream stream, Tally statValue) {

statValue.init();
for (int i=0; i<n; i++) {

generatePath (stream); statValue.add (getPayoff ());
stream.resetNextSubstream();

}
}

// Estimates difference in option value between other process p2 and current process,
// from n pairs of runs using common random numbers and given stream.
public void compareWithCRN (Asian p2, int n, RandomStream stream,

Tally statValue, Tally statDiff) {
double payoff1;
for (int i=0; i<n; i++) {

generatePath (stream); statValue.add (payoff1 = getPayoff());
stream.resetStartSubstream();
p2.generatePath (stream); statDiff.add (p2.getPayoff() - payoff1);
stream.resetNextSubstream();

}
}

public static void main (String[] args) {
int s = 10;
double[] zeta = new double[s+1]; zeta[0] = 0.0;
for (int j=1; j<=s; j++) zeta[j] = (120.0 - s + j) / 365.0;
Asian process = new Asian (Math.log (1.09), 0.2, 100.0, 100.0, s, zeta);
Tally statValue = new Tally ("Stats on value of Asian option");
Tally statDiff = new Tally ("Stats on difference, with CRNs");

int n = 1000000;
process.simulateRuns (n, new MRG32k3a(), statValue);
System.out.println (statValue.reportAndConfidenceIntervalStudent (0.95));
System.out.println ("Variance with MC: " + statValue.variance());
System.out.println ("Total CPU time: " + timer.format() + "\n");

Asian process2 = new Asian (Math.log (1.09), 0.21, 100.0, 100.0, s, zeta);
process.compareWithCRN (process2, n, new MRG32k3a(), statValue, statDiff);
System.out.println (statDiff.reportAndConfidenceIntervalStudent (0.95));
System.out.println ("Variance with IRN: " + statValue.variance() * 2.0);
System.out.println ("Variance with CRN: " + statDiff.variance());

}
}

Figure 1: Pricing an Asian option on a GMB process

L’Ecuyer and Buist

public class AsianRQMC extends Asian {

public AsianRQMC (double r, double sigma, double strike, double s0, int s, double[] zeta) {
super (r, sigma, strike, s0, s, zeta);

}

public void simulateRQMC (int m, PointSet p, RandomStream noise,
Tally statValue, Tally statAver) {

PointSetIterator stream = p.iterator ();
statAver.init();
for (int j=0; j<m; j++) {

p.randomize (noise);
stream.resetStartStream();
simulateRuns (p.getNumPoints(), stream, statValue);
statAver.add (statValue.average());

}
}

// Compares MC and RQMC variances.
public void experimentRQMC (int m, PointSet p, RandomStream noise, double varMC,

Tally statValue, Tally statAver) {
Chrono timer = new Chrono();
simulateRQMC (m, p, noise, statValue, statAver);
System.out.println ("Average with QMC: " + statAver.average());
System.out.println ("Variance with MC: " + varMC);
System.out.println ("Variance with QMC: " + p.getNumPoints() * statAver.variance());
System.out.println ("Total CPU time: " + timer.format() + "\n");

}

public static void main (String[] args) {
int s = 10;
double[] zeta = new double[s+1]; zeta[0] = 0.0;
for (int j=1; j<=s; j++) zeta[j] = (120.0 - s + j) / 365.0;
AsianRQMC process = new AsianRQMC (Math.log (1.09), 0.2, 100.0, 100.0, s, zeta);
RandomStream noise = new MRG32k3a();
Tally statValue = new Tally ("Stats on value of Asian option");
Tally statAver = new Tally ("Stats on averages over RQMC point sets");

int n = 100000; // Number of runs for MC.
process.simulateRuns (n, noise, statValue);
double varMC = statValue.variance();

int m = 30; // Number of independent randomizations for QMC.
DigitalNetBase2 p1 = new SobolSequence (16, 31, s); // 2ˆ{16} points.
p1.leftMatrixScramble (noise);
System.out.println ("RQMC with Sobol point set with " + p1.getNumPoints() +

" points, with affine matrix scramble and random digital shift:\n");
process.experimentRQMC (m, p1, noise, varMC, statValue, statAver);

PointSet p2 = new BakerTransformedPointSet (new LCGPointSet (65521, 944));
System.out.println ("RQMC with Korobov lattice with " + p2.getNumPoints() +

" points, with random shift and baker transform:\n");
process.experimentRQMC (m, p2, noise, varMC, statValue, statAver);

}
}

Figure 2: Pricing the Asian option with RQMC

L’Ecuyer and Buist

method experimentRQMC uses this collector to compare
the MC and RQMC variances. For a fair comparison, the
variance with RQMC is multiplied by n to get a variance per
simulation run, because each of the m observations is based
on n simulation runs.

In the main routine, we first construct the AsianRQMC
object and the random stream noise used to randomize
the RQMC point sets. The program then estimates the MC
variance with n = 105 and tries two RQMC point sets with
m = 30 independent randomizations: (1) a digital net in base
2 defined as the first n = 216 points of the Sobol’ sequence
in s dimensions to which we apply a left matrix scramble,
plus a digital random shift at each randomization; (2) a Ko-
robov lattice with n = 65521 points (implemented as a lin-
ear congruential generator with modulus 65521 and multi-
plier 944) randomized by a random shift modulo 1, and to
which we apply a baker transformation after the random-
ization. Note that p.randomize() in simulateRQMC
performs a digital shift for digital nets and a random shift
modulo 1 for lattice rules.

Each RQMC experiment makes 30n (approximately 2
million) simulation runs and takes about 7.4 seconds to
run, compared with 6.6 seconds for one million runs for
MC. The variance per run is approximately 0.00629 for
the Sobol’ net, 0.00258 for the Korobov rule with baker’s
transform, and 61.3 for standard MC. Thus, the second
RQMC method improves the efficiency by a factor of (2×
6.6/7.4)×61.3/0.00258≈ 42382.

We urge the reader to replicate this experiment in her/his
favorite simulation software environment to compare the
simplicity of the code and the program speeds.

4 FUTURE AND CONCLUSION

SSJ provides a set of robust, efficient, and convenient basic
tools for stochastic simulation. Programming with SSJ pro-
vides more flexibility than using a graphical point-and-click
environment because all the power of a modern general-
purpose programming environment is readily available, to-
gether with a rich variety of libraries and development tools,
many of which come for free. The resulting programs also
run significantly faster in general.

Among the strengths of SSJ compared with other sim-
ulation softwares, we can also mention the availability of
quasi-Monte Carlo tools well integrated with standard uni-
form and non-uniform RNGs, uniform RNGs with multiple
streams and substreams, a choice of efficient event-list im-
plementations, and support for a large variety of probability
distributions. Specialized packages for certain areas of ap-
plications are currently developed in our lab on top of the
kernel described here. They include tools for simulation in
finance and in telecommunications, a package for contact
centers simulation (Buist and L’Ecuyer 2005a), and another
for revenue management in the airline industry.

The SSJ system, together with its documentation and
examples, is available from the first author’s web page
(L’Ecuyer 2004b).

ACKNOWLEDGMENTS

The following individuals have participated in the develop-
ment of SSJ: Eric Buist, Chiheb Dkhil, Yves Edel, Regina H.
S. Hong, Alexander Keller, Pierre L’Ecuyer, Étienne Mar-
cotte, Lakhdar Meliani, Abdelazziz Milib, François Pan-
neton, Richard Simard, Pierre-Alexandre Tremblay, Jean
Vaucher. Its development has been supported by NSERC-
Canada grant No. ODGP0110050, NATEQ-Québec grant
No. 02ER3218, a Killam fellowship, and a Canada Research
Chair to the first author.

REFERENCES

Ben-Ameur, H., P. L’Ecuyer, and C. Lemieux. 2004. Com-
bination of general antithetic transformations and control
variables. Mathematics of Operations Research 29 (4):
946–960.

Buist, E., and P. L’Ecuyer. 2005a. ContactCenters: A Java
library for simulating contact centers. Software user’s
guide, forthcoming.

Buist, E., and P. L’Ecuyer. 2005b. A Java library for simu-
lating contact centers. In Proceedings of the 2005 Winter
Simulation Conference: IEEE Press. Forthcoming.

Buss, A. 2002. Component-based simulation modeling with
Simkit. In Proceedings of the 2002 Winter Simulation
Conference, ed. E. Yücesan, C.-H. Chen, J. L. Snowdon,
and J. M. Charnes, 243–249: IEEE Press.

Franta, W. R. 1977. The process view of simulation. New
York: North Holland.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1998.
Design patterns: Elements of reusable object-oriented
software. second ed. Reading, Mass.: Addison-Wesley.

Glasserman, P. 2004. Monte Carlo methods in financial en-
gineering. New York: Springer-Verlag.

Hickernell, F. J. 2002. Obtaining o(n−2+ε) convergence for
lattice quadrature rules. In Monte Carlo and Quasi-Monte
Carlo Methods 2000, ed. K.-T. Fang, F. J. Hickernell, and
H. Niederreiter, 274–289. Berlin: Springer-Verlag.

Jacobs, P. H. M., and A. Verbraeck. 2004. Single-threaded
specification of process-interaction formalism in Java. In
Proceedings of the 2004 Winter Simulation Conference,
ed. R. G. Ingalls, M. D. Rosetti, J. S. Smith, and B. A.
Peters, 1548–1555: IEEE Press.

Kilgore, R. A. 2003. Object-oriented simulation with SML
and Silk in .NET and Java. In Proceedings of the 2003
Winter Simulation Conference, ed. S. Chick, P. J. Sánchez,
D. Ferrin, and D. J. Morrice, 218–224: IEEE Press.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer and Buist

L’Ecuyer, P. 2004a. Quasi-Monte Carlo methods in finance.
In Proceedings of the 2004 Winter Simulation Confer-
ence, ed. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and
B. A. Peters. Piscataway, New Jersey: IEEE Press.

L’Ecuyer, P. 2004b. SSJ: A Java library for stochastic sim-
ulation. Software user’s guide, Available at 〈http://
www.iro.umontreal.ca/∼lecuyer〉.

L’Ecuyer, P., and S. Côté. 1991. Implementing a random
number package with splitting facilities. ACM Transac-
tions on Mathematical Software 17 (1): 98–111.

L’Ecuyer, P., and C. Lemieux. 2000. Variance reduction via
lattice rules. Management Science 46 (9): 1214–1235.

L’Ecuyer, P., and C. Lemieux. 2002. Recent advances in ran-
domized quasi-Monte Carlo methods. In Modeling Un-
certainty: An Examination of Stochastic Theory, Meth-
ods, and Applications, ed. M. Dror, P. L’Ecuyer, and
F. Szidarovszky, 419–474. Boston: Kluwer Academic
Publishers.

L’Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ: A
framework for stochastic simulation in Java. In Pro-
ceedings of the 2002 Winter Simulation Conference, ed.
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, 234–242: IEEE Press.

L’Ecuyer, P., and R. Simard. 2002. TestU01: A software li-
brary in ANSI C for empirical testing of random number
generators. Software user’s guide. Available at 〈http:
//www.iro.umontreal.ca/∼lecuyer〉.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002.
An object-oriented random-number package with many
long streams and substreams. Operations Research 50 (6):
1073–1075.

Leydold, J., and W. Hörmann. 2002. UNURAN—a library
for universal non-uniform random number generators.
Available at 〈http://statistik.wu-wien.ac.
at/unuran〉.

Miller, J. A. 2005. JSIM: A java-based simulation and ani-
mation environment. Available from 〈http://chief.
cs.uga.edu/∼jam/jsim/〉.

Niederreiter, H. 1992. Random number generation and
quasi-Monte Carlo methods, Volume 63 of SIAM CBMS-
NSF Regional Conference Series in Applied Mathematics.
Philadelphia: SIAM.

Owen, A. B. 1998. Latin supercube sampling for very high-
dimensional simulations. ACM Transactions on Modeling
and Computer Simulation 8 (1): 71–102.

Owen, A. B. 2003. Variance with alternative scramblings of
digital nets. ACM Transactions on Modeling and Com-
puter Simulation 13 (4): 363–378.

Serfling, R. J. 1980. Approximation theorems for mathemat-
ical statistics. New York: Wiley.

Sloan, I. H., and S. Joe. 1994. Lattice methods for multiple
integration. Oxford: Clarendon Press.

Tyan, H.-Y. 2005. J-Sim home page. Available on-line at
〈http://www.j-sim.org〉.

Wilson, J. R. 1983. Antithetic sampling with multivariate
inputs. American Journal of Mathematical and Manage-
ment Sciences 3:121–144.

AUTHOR’S BIOGRAPHIES

PIERRE L’ECUYER is Professor in the Département
d’Informatique et de Recherche Opérationnelle, at the Uni-
versité de Montréal, Canada. He holds the Canada Re-
search Chair in Stochastic Simulation and Optimization.
His main research interests are random number genera-
tion, quasi-Monte Carlo methods, efficiency improvement
via variance reduction, sensitivity analysis and optimiza-
tion of discrete-event stochastic systems, and discrete-event
simulation in general. He is an Area/Associate Editor for
ACM TOMACS, ACM TOMS, and Statistics and Comput-
ing. He obtained the prestigious E. W. R. Steacie fellowship
in 1995-97 and a Killam fellowship in 2001-03. His recent
research articles are available on-line from his web page:
〈http://www.iro.umontreal.ca/∼lecuyer〉.

ERIC BUIST is a M.Sc. Student at the Université de
Montréal. His main interests are software engineering,
object-oriented programming, and simulation. His e-mail
address is <buisteri@IRO.UMontreal.CA>.

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
http://statistik.wu-wien.ac.at/unuran
http://statistik.wu-wien.ac.at/unuran
http://chief.cs.uga.edu/~jam/jsim/
http://chief.cs.uga.edu/~jam/jsim/
http://www.j-sim.org
http://www.iro.umontreal.ca/~lecuyer
mailto:buisteri@IRO.UMontreal.CA

	INTRODUCTION
	OVERVIEW OF SSJ
	Package probdist
	Package gof
	Package rng
	Package hups
	Package randvar
	Package stat
	Package simevents
	Package simprocs

	EXAMPLE: AN ASIAN OPTION
	The Model
	Pricing by Monte Carlo
	Common Random Numbers
	Randomized Quasi-Monte Carlo

	FUTURE AND CONCLUSION

