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ABSTRACT

We study an approximation for the zero-variance change
of measure to estimate the probability of a rare event in a
continuous-time Markov chain. The rare event occurs when
the chain reaches a given set of states before some fixed
time limit. The jump rates of the chain are expressed as
functions of a rarity parameter in a way that the probability
of the rare event goes to zero when the rarity parameter
goes to zero, and the behavior of our estimators is studied
in this asymptotic regime. After giving a general expression
for the zero-variance change of measure in this situation,
we develop an approximation of it via a power series and
show that this approximation provides a bounded relative
error when the rarity parameter goes to zero. We illustrate
the performance of our approximation on small numerical
examples of highly reliable Markovian systems. We compare
it to a previously proposed heuristic that combines forcing
with balanced failure biaising. We also exhibit the exact
zero-variance change of measure for these examples and
compare it with these two approximations.

1 INTRODUCTION

Rare-event simulation is concerned with estimating a per-
formance measure usually expressed as a mathematical ex-
pectation, and whose value is strongly affected by certain
events that occur rarely. A simple but commonly encoun-
tered special case is when the quantity to be estimated is
the probability of occurrence of some rare event. When
this probability is very small, we may have to simulate the
model an excessively large number of times to be able to

estimate it with reasonable relative accuracy, because the
rare event occurs only very rarely, by definition.

The best-known way of handling this problem isimpor-
tance sampling(IS): change the probability laws that drive
the system, to make the rare event occur more frequently,
and multiply the estimator by an appropriate likelihood
ratio to recover an unbiased estimator of the quantity of
interest. It is well-known that in the case where the esti-
mator is a nonnegative real-valued random variable, there
is a change of measure (change of probability law) that
gives a zero-variance estimator; that is, the IS estimator
becomes a constant (Hammersley and Handscomb 1964,
Glynn and Iglehart 1989, Juneja and Shahabuddin 2006).
More generally, zero-variance estimators have also been
defined for Markov chain models where we want
to estimate the probability that the chain reaches a
given set of (rare) states before reaching another set
of states (Juneja and Shahabuddin 2006), and for finite-
state discrete-time chains with a state-dependent cost,
where we want to estimate the total expected cost un-
til the chain hits a given set of states (Booth 1987,
Kollman, Baggerly, Cox, and Picard 1999).

However, implementing this zero-variance change of
measure requires the exact knowledge of the total expected
cost-to-go (future costs) from any state that can be visited
during the simulation. If we know this, there is no need to
perform a simulation in the first place! Nevertheless, at-
tempts to approximate the zero-variance change of measure
by various heuristics have been successful in some contexts
(Booth 1987, Booth 2001, Kuruganti and Strickland 1997,
Kollman, Baggerly, Cox, and Picard 1999,
Bolia, Juneja, and Glasserman 2004,
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Ahamed, Borkar, and Juneja 2006,
Juneja and Shahabuddin 2006).

In this article, we express the zero variance change of
measure, and develop approximations of the zero-variance
importance sampling in the setting of a continuous-time
Markov chain (CTMC), in which we want to estimate the
probability of reaching a given set of states before a given
time horizon (or time limit)t∗. Here we assume thatt∗
is fixed, but our results could be generalized to the case
where it is a random stopping time with fixed distribution
(that does not depend on the rarity), under the additional
assumption that having reached the stopping time or not
can be determined by looking only at the current time and
the current state of the CTMC. One application of this
is in a reliability setting, where we want to estimate the
probability that the system fails before accomplishing its
mission (Nakayama and Shahabuddin 2004).

FollowingShahabuddin (1994b), our model has a rarity
parameterε and the jump rates are assumed to be polynomial
functions ofε. We are interested in the asymptotic behavior
when ε → 0. For some of the rates, the polynomial may
have degree 0, i.e., some rates can be constant as functions
of ε. The other rates converge to 0 whenε → 0. We assume
that over every sample path that leads to the rare event of
interest, at least one jump rate is not constant; then the
rare-event probability converges to 0 and the relative error
of its naive estimator increases to infinity, whenε → 0.

In our setting, the zero-variance change of measure
can be written in terms of the original jump rates of the
chain and the probabilityµ(x, t) of reaching the rare event
before the time limit if the CTMC is in statex and there
remainst units of time. We propose an approximation of
the functionµ(x, t) by the first terms of its expansion in
powers ofε. We sketch a proof that an IS scheme that
uses this approximation gives a bounded relative error in
general, and a relative error that converges to 0 asO(

√
ε)

if all the original jump rates areO(ε). We report some
numerical experiments with simple models of highly reli-
able Markovian systems (HRMS). In these experiments, the
proposed scheme gives much smaller variance, for small
ε, than a combination of forcing and balance failure bias-
ing, recommended inNakayama and Shahabuddin (2004)
for this type of situation.

In the next section, we define our CTMC model and
derive the zero-variance sampling scheme. In Section3,
we introduce a rarity parameter for our model, develop
our approximation of the zero-variance sampling scheme,
discuss how it can be implemented in practice, and show
that the corresponding estimator has bounded relative error.
Numerical illustrations are given in Section4. A conclusion
follows.

2 CTMC MODEL AND ZERO-VARIANCE
SAMPLING

2.1 CTMC Model Over A Finite Time Horizon

Consider a continuous-time Markov chain (CTMC){Xj , j ≥
0} with denumerable state spaceX . When the chain is in
statex, the jump rate to statex′ is λx,x′ , the total jump rate
is λx = ∑x′∈X λx,x′ < ∞ (so the time until the next jump is
exponential with mean 1/λx), and the next state isx′ with
probability px,x′ = λx,x′/λx. Jumps to the same state (from
x to x) are allowed. We may also have absorbing states, for
which λx = 0.

We are interested in estimating the probability that the
chain hits a given set of states∆ ⊂ X before some fixed
time limit t∗. Let Tj be the time remaining on the clock (t∗
minus the current time) at thejth jump of the CTMC, into
stateXj . The process starts in stateX0 ∈X with remaining
clock time T0. Our main interest is forT0 = t∗, but for
notational convenience we shall allowT0 to take any value
t ∈ R. Let

τ = inf{ j ≥ 0 : Tj ≤ 0 or Xj ∈ ∆}.

To avoid fancy complications, we assume thatP[τ < ∞] = 1.
Define

X = I[Xτ ∈ ∆ andTτ > 0],

whereI is the indicator function. That is,X = 1 if the chain
hits ∆ before the time limit, andX = 0 otherwise.

We consider the discrete-time Markov chain (DTMC)
{(Xj ,Tj), j ≥ 0}, for which the second component of the
state indicates the current time. When this DTMC is in
state(x, t), the density of the next state at(x′, t−δ ) is given
by

π(x′, t −δ | x, t) = px,x′λx exp[−λxδ ] (1)

for δ > 0, and 0 elsewhere. Note that this density is
partitioned into several pieces, one piece for each value of
x′, and its total integral over all pieces equals 1.

Let µ(x, t) be the probability of hitting∆ before the
time limit when the DTMC is in state(x, t). Thus,

µ(x, t) =







1 if x∈ ∆ and t > 0,
0 if t ≤ 0,
E[X | X0 = x, T0 = t] otherwise.

For the latter case (x 6∈ ∆ andt > 0), we have the recurrence

µ(x, t) = E[µ(X1,T1) | X0 = x, T0 = t]

=
∫ t

0
∑

x′∈X

µ(x′, t −δ )px,x′λx exp[−λxδ ]dδ . (2)
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Clearly, µ(x, t) is a nondecreasing function oft for eachx.
An intuitive argument for this is that enlargingt can only
give more opportunity for hitting∆; a proof can be made
via a path-by-path comparison.

2.2 A Zero-Variance Sampling Scheme

We consider replacing the conditional (transition) density
π in (1) by another densityg such thatg(x′, t −δ | x, t) > 0
wheneverµ(x′, t − δ )π(x′, t − δ | x, t) > 0, until we reach
the stopping timeτ. The estimatorX is then replaced by

Xis = X
τ

∏
i=1

L(Xi−1,Ti−1,Xi ,Ti), (3)

where

L(Xi−1,Ti−1,Xi ,Ti) =
π(Xi ,Ti | Xi−1,Ti−1)

g(Xi ,Ti | Xi−1,Ti−1)

and an empty product is assumed to be 1. Thus, the original
estimator is weighted by the likelihood ratio that corresponds
to the change of densities.

LetEg,x,t and Varg,x,t denote the expectation and variance
operators under the conditional densitiesg, from initial state
(X0,T0) = (x, t). We have

Eg,x,t [Xis] = µ(x, t),

i.e., Xis is an unbiased estimator ofµ(x, t) under the new
densitiesg. Let v(x, t) be the variance ofXis underg, when
X0 = x and T0 = t. We havev(x, t) = 0 if x∈ ∆ or t ≤ 0;
otherwise,

v(x, t)
def
= Varg,x,t [Xis]

= Varg,x,t [Eg,x,t [Xis | X1,T1]]+Eg,x,t [Varg,x,t [Xis | X1,T1]]

= Varg,x,t [µ(X1,T1)L(x, t,X1,T1)]

+Eg,x,t [L
2(x, t,X1,T1)v(X1,T1)]

= Eg,x,t [µ2(X1,T1)L
2(x, t,X1,T1)]

−µ2(x, t)+Eg,x,t [L
2(x, t,X1,T1)v(X1,T1)]

= Eg,x,t [µ2(X1,T1)+v(X1,T1))L
2(x, t,X1,T1)]−µ2(x, t).

Suppose now thatg is the densityg0 defined by

g0(x
′, t −δ | x, t) =

µ(x′, t −δ )

µ(x, t)
π(x′, t −δ | x, t)

=
µ(x′, t −δ )

µ(x, t)
px,x′λx exp[−λxδ ]

for x′ ∈ X and 0< δ < t, and 0 elsewhere, ifµ(x, t) > 0.
By integrating with respect toδ and summing overx′, we
easily see that theseg0(· | x, t) are probability densities (they
integrate to 1). Under this density, the time until the next
jump is no longer exponential, so we no longer have a CTMC.
This time is nonzero only over the interval(0, t), and it is
not a truncated exponential either; in fact, sinceµ(x′, t−δ )
is decreasing inδ , the right “tail” of the new distribution of
the time to the next jump (before truncation) decreases faster
than for the exponential distribution. Whenµ(x, t) = 0, the
density is unchanged:g0(x′, t −δ | x, t) = π(x′, t −δ | x, t).

With this choice ofg, wheneverg0(x′, t −δ | x, t) > 0,
we have

L(x,t,x′, t −δ )

=

{

µ(x, t)/µ(x′, t −δ ) if µ(x, t) > 0,
1 if µ(x, t) = 0.

(4)

For state pairs(x, t,x′, t−δ ) for whichg0(x′, t−δ | x, t) = 0,
the definition ofL(x, t,x′, t − δ ) does not matter, because
this quantity will then never occur in the estimator. Since
(4) holds forg0, we have

Eg0,x,t [µ
2(X1,T1)L

2(x, t,X1,T1)] = µ2(x, t)

and we have the simplification:

v(x, t) = Eg0,x,t [(µ2(X1,T1)

+v(X1,T1))L
2(x, t,X1,T1)]−µ2(x, t)

= Eg0,x,t [v(X1,T1)L
2(x, t,X1,T1)].

Applying induction, we obtain

v(x, t) = Eg0,x,t

[

v(Xτ ,Tτ)
τ

∏
i=1

L2(Xi−1,Ti−1,Xi ,Ti)

]

= 0

becausev(Xτ ,Tτ) = 0. Thus, a change of measure that
satisfies (4) gives a zero-variance estimator ofµ(x, t) for
any (x, t) ∈ X × [0,∞).

3 ASYMPTOTIC ANALYSIS

3.1 Rarity Parameterization

We define an asymptotic rare-event setting by introducing
a parameterε ≪ 1 that characterizes rarity. We shall inves-
tigate what happens whenε → 0. We assume that all jump
rates of our CTMC have the form

λx,x′ = νx,x′ε
kx,x′

for some nonnegative constantsνx,x′ and kx,x′ which are
bounded uniformly in(x,x′).
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Observe that in our setting, dividing the time horizon
t∗ and all the timesTj by a factorκ , and multiplying all the
jump rates by the same factor, gives an equivalent model.
Therefore, without loss of generality, we can assume that
t∗ = 1. We do so for the remainder of this article.

A different way of doing the parameterization would
be to assume that the ratesλx,x′ are fixed and that the time
horizon has the formt∗ = νεk for some positive constants
ν and k. This parameterization is equivalent to a special
case of our setting, withkx,x′ = k for all x,x′, so it offers
less flexibility. In the next subsection, we start our analysis
with this special case, withk = 1.

3.2 Simplest Case: All Rates Proportional to ε

We start with the simplified case wherekx,x′ = 1 for all
x,x′ ∈ X , so λx,x′ = νx,x′ε. Note that the probability that
i or more transitions occur before the time limit isO(ε i).

Consider the statesx for which νx,m > 0 for at least
onem∈ ∆. For such states, the recurrence (2) implies that

µ(x, t) = ∑
{m∈∆:νx,m>0}

νx,mεt +O(ε2).

Next, consider the statesx for which νx,m = 0 for all m∈ ∆
but for which there is anx′ ∈ Y and m∈ ∆ such that
νx,x′νx′,m > 0; for those, we find

µ(x, t) = ∑
{m∈∆,x′∈X :νx,x′νx′,m>0}

νx,x′νx′,mε2t2/2+O(ε3).

This can be easily generalized: for a statex which is exactly
ℓx transitions away from∆, we have

µ(x, t) =
Axεℓxtℓx

ℓx!
+O(εℓx+1),

whereAx is the sum, over allℓx-step paths from statex to
∆, of the products of the coefficientsνx,x′ of the transitions
x→ x′ on that path.

Using only the leading terms of the above expressions
for µ(x, t), we obtain the following approximation to the
zero-variance density:

g0(x
′, t −δ | x, t)

= νx,x′ε exp[−ενx,x′δ ]
Ax′εℓx′ (t −δ )ℓx′/ℓx′ !

Axεℓxtℓx/ℓx!
(1+O(ε))

= νx,x′ε1+ℓx′−ℓx
Ax′ℓx!
Axℓx′ !

(t −δ )ℓx′

tℓx
+O(ε2+ℓx′−ℓx).

We shall approximate the zero-variance density by con-
sidering only the (normalized) leading term of the above
expansion. For transitions that go toward∆, we have that

1+ ℓx′ − ℓx = 0 by construction. For all other transitions,
this exponent ofε is positive, so their densities vanish as
ε → 0.

Computing this approximation requires determining,
for each transition(x,x′), the values ofAx and ℓx for the
states on both sides of the transition. These values can be
computed efficiently using a variant of Dijkstra’s algorithm
to find all shortest paths of the chain from statex to the set
∆, where the length of a path is measured by the number of
steps. TheAx’s are then computed by adding up the relevant
products of coefficients. For very large state spaces, this
can become cumbersome and further heuristics could be
developed. In certain situations, e.g., for birth-and-death
processes, this computation is almost trivial.

Let ĝ denote the resulting approximating density. To
compute the normalization factor and generate random vari-
ates from ˆg, we can proceed as follows. We integrate the
leading term with respect toδ , over the interval[0, t], for
eachx′ for which this term is nonzero. The sum of these
integrals gives the normalization factor. The relative con-
tribution of each integral to the sum gives the probability
that the next stateXj is x′ under the new density, so we
can easily generate the next state first. Then, knowing that
(Xj−1,Tj−1,Xj) = (x, t,x′), we can generateTj by inversion,
exploiting the fact that its conditional density atδ is a
monomial inδ . This conditional density is uniform over
the interval[0, t] whenℓx′ = 0 (i.e., for direct transitions to
∆), linearly decreasing over the same interval ifℓx′ = 1
(i.e., for transitions that bring us only one step away from
∆), and so on.

3.3 Generalizing to Mixed Powers of ε

We now generalize the preceding development to the case
wherekx,x′ is allowed to differ from 1. For the moment,
we will assume that allkx,x′ > 0; later on, we will relax this
to allow somekx,x′ = 0. Defineℓx as the smallest sum of
exponentskz,z′ of transition rates, the minimum being taken
over all paths fromx to ∆; all paths attaining this minimum
are henceforth referred to asdominant paths, because they
are the most probable paths forε sufficiently small. Define
alsoΓx,τ as the set of paths(X0, . . . ,Xτ) going fromX0 = x
to Xτ ∈ ∆ in exactly τ steps, and for which the sum of
exponents isℓx. For i = 1,2, . . . , let

Ax,i = ∑
(x0,...,xi)∈Γx,i

i

∏
j=1

νx j−1,x j .

Under appropriate conditions, it can be shown that for all
x /∈ ∆,

µ(x, t) = ∑
i≥1

Ax,iεℓxt i

i!
+o(εℓx), (5)
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that is, the probability of all non-dominant paths is negli-
gible with respect to dominant ones. For this to hold, we
need to make sure that the sum over all other paths, which
have exponent larger thanℓx, induces a probability with
exponent larger thenℓx too. This is not trivially satisfied
because there is generally an infinite number of such paths.
Nakayama and Shahabuddin (2004)provide a set of suffi-
cient conditions under which they prove a version of (5)
for a specific model of HRMS system. Their results could
be generalized.

Our approximationµ̂(x, t) of µ(x, t) will be the domi-
nant terms (the sum of terms with the smallest power ofε)
in the expansion (5). There may be multiple such terms
with different powers oft, if there are distinct values ofi
for which Γx,i 6= /0, i.e., if there are dominant paths fromx
to ∆ with different numbers of transitions. In the following
calculations, we will include all such terms for complete-
ness. However, in the numerical illustrations of Section4
we will only retain the term with the lowest power oft.
(This makes sense because we know thatt never exceeds 1.)
This means that in the following expressions, summations
over i are replaced by a single term with the lowesti for
which the summand is non-zero. This simplifies the expres-
sions significantly, and makes sampling easier because the
resulting densities are monomial. For our examples, this
simplification hardly affected the results; the differencein
the density plots was almost invisible.

Computing the approximation̂µ(x, t) could be compli-
cated in general, but there are many nontrivial situations
where this is rather easy. For example, for HRMS models
where the component failure rates do no depend on the
current state (the most typical case), the computations can
be quite simple, depending on the general form of∆.

Keeping only the leading powers ofε leads to the
following approximation for the zero-variance density:

g0(x
′, t −δ | x, t)

≈ νx,x′ε
kx,x′ exp[−λxδ ]

∑i≥1Ax′,iεℓx′ (t −δ )i/i!

∑i≥1Ax,iεℓxt i/i!
.

As a further approximation, we replace the exponential by
1, to obtain ˆg:

ĝ(x′, t −δ | x, t)

= νx,x′ε
kx,x′+ℓx′−ℓx ∑i≥1Ax′,i(t −δ )i/i!

∑i≥1Ax,it i/i!
(6)

= νx,x′ε
kx,x′+ℓx′−ℓx µ̂(x′, t −δ )

µ̂(x, t)
. (7)

As in Section3.2, this function must be multiplied by
a normalization constantρ(x, t), which can be calculated

straightforwardly:

1
ρ(x, t)

= ∑
x′∈X

∫ t

0
ĝ(x′, t −δ |x, t)dδ

= ∑
x′∈X

νx,x′ε
kx,x′+ℓx′−ℓx ∑i≥1Ax′,it

i+1/(i +1)!

∑i≥1Ax,it i/i!
.

Since the terms containing the lowest power ofε are already
normalized,ρ(x, t) is of order 1+O(ε).

So far, we have assumed that allkx,x′ > 0. This as-

sumption is needed for (5), and sinceλx = O(εminx′ kx,x′ ), it
also justifies replacing the exponential term by 1 in approx-
imation (6). In many practical problems however,kx,x′ = 0
for some transitions which are not on a dominant path; for
example, repair transitions in HRMS models. One may still
apply the change of measure (6) and (7) to this case, and in
fact the resulting simulation turns out to be asymptotically
efficient, as will be seen in the sequel.

3.4 Robustness of the Estimators as ε → 0

Using a change of measure with the density ˆg defined in (6),
for a sample path(X0,T0, . . . ,Xτ ,Tτ) with Xτ ∈ ∆ andTτ > 0
(so µ(Xτ ,Tτ) = 1), the IS estimatorXis in (3) becomes

Xis =
τ

∏
i=1

π(Xi ,Ti | Xi−1,Ti−1)

ĝ(Xi ,Ti | Xi−1,Ti−1)

≈ µ̂(X0,T0)
τ

∏
i=1

e−λXi−1(Ti−Ti−1)(1+O(ε)),

where we have used (1) and (7). The fact that we have a
random variable evenin the leading termof the expansion
in ε, instead of just a constant as expected for zero variance,
is due to the approximation (6), where the exponential term
was removed for ease of implementation. As we are going
to see, this results in a relative error that does not decrease
to zero whenε → 0, but remains bounded.

This estimator can be bounded as follows, forX0 = x
andT0 = t:

exp[−t max
x′∈X

λx′ ]µ̂(x, t) ≤ Xis ≤ µ̂(x, t).

With the proposed change of measure, we have
µ(Xτ ,Tτ) = 1 and Xis takes the above form with proba-
bility 1. Thus, the relative variance (or squared relative
error) of Xis when X0 = x and T0 = t can be bounded as
follows:

Varĝ,x,t [Xis]

µ2(x, t)
=

Eĝ,x,t [X2
is]

E
2
ĝ,x,t [Xis]

−1≤ supX2
is

(inf Xis)2 −1

≤ exp[2t max
x′∈X

λx′ ]−1.
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Thus, the estimator’s relative error remains bounded
when ε → 0. Moreover, in the case where all the rates
are O(ε) or smaller, i.e., ifkx,x′ ≥ 1 for all x,x′, then
maxx′∈X λx′ = O(ε) and the relative error is then at most
O(

√
ε). Including the normalization factor 1+O(ε) that

we have neglected here does not affect these conclusions.
As noted earlier, models with constant rates and a time

horizon of orderε can be studied by applying a simple
change of variables, which results in all rates being of
order ε; the previous result implies that in this case, the
relative error is bounded asO(

√
ε). Experimental results in

Section4.1show a relative error proportional toε, indicating
that the bound may actually be pessimistic.

4 NUMERICAL ILLUSTRATION

We illustrate the use of our approximation of the zero-
variance estimator with two toy examples representing
HRMS models in 1 and 2 dimensions. The dimension
represents the number of component types in the system
and the state is the number of components of each type
that are down. Each transition represents the failure or the
repair of one component. For the one-dimensional example,
we consider two variants, one with all transition rates of
orderε and one having a transition rate (corresponding to a
repair) equal to 1. For both examples,∆ is the set of states
where all components of any given type are down, and we
take t∗ = 1.

We compare three simulation approaches: standard
simulation (i.e., no importance sampling), forcing+BFB,
and our method which uses an approximation to the zero-
variance densities. Forcing+BFB (Balanced Failure Bi-
asing) is the classical importance sampling simulation
method for the types of HRMS examples we consider; see
(Shahabuddin 1994a, Nakayama and Shahabuddin 2004).
Briefly, forcing means that the probability distribution for
the time until the first failure is replaced by the distribu-
tion conditional on that failure happening before the time
horizon; and balanced failure biasing means that in any
state, all failure transitions are made equally likely and of
order 1 rather than orderε. We varyε from 1 to 10−4. All
our simulation results are obtained using 105 independent
replications.

4.1 Example 1: A Simple Model With a One-
Dimensional State Space

We consider a system with 2 components of a single type,
with ∆ containing the state where both components have
failed. Each component has failure rateε. In variant (a),
we assume that the repair rate is alsoε; this allows us to
look at the case where all transition rates are small and have
the same order, as in Section3.2, or equivalently the case

where the rates are fixed and the time horizon gets small.
In variant (b), the repair rate is 1.

Tables1 and 2 present the simulation results for the
three methods, for variants (a) and (b), respectively. For
variant (a), the relative error for our method seems to
decrease proportionally toε, which is better than the
O(

√
ε) bound obtained theoretically. For variant (a),

comparing our method with forcing+BFB might be unfair,
because the latter method was designed for models where
the repair rates were not small, as in variant (b). For
this second variant, the results agree very well with the
bounded relative error property for our method, as predicted
theoretically in Section3.4, and also for forcing+BFB, as
proved in (Nakayama and Shahabuddin 2004). However,
the relative error is about 10 times smaller with our method
than with forcing+BFB.

Table 1: Simulation Results for Variant (a) of Example 1.

ε Method µ(0, t∗) Relative Error
1 Standard 0.3356 0.0045
1 Forcing+BFB 0.3348 0.0039
1 Our method 0.3356 0.0019
0.1 Standard 0.00851 0.034
0.1 Forcing+BFB 0.00871 0.014
0.1 Our method 0.0087754 0.0001527
0.01 Standard 1.1e-4 0.30
0.01 Forcing+BFB 1.04e-4 0.044
0.01 Our method 0.986779e-4 0.00001495
0.0001 Standard 0 N/A
0.0001 Forcing+BFB 1.2e-8 0.41
0.0001 Our method 0.999867e-8 0.0000001491

Table 2: Simulation Results for Variant (b) of Example 1.

ε Method µ(0, t∗) Relative Error
1 Standard 0.3356 0.0045
1 Forcing+BFB 0.3348 0.0039
1 Our method 0.3355 0.0019
0.1 Standard 0.0066 0.039
0.1 Forcing+BFB 0.00680 0.0062
0.1 Our method 0.006762 0.000707
0.01 Standard 1.0e-4 0.32
0.01 Forcing+BFB 0.734e-4 0.0066
0.01 Our method 0.7292e-4 0.000696
0.0001 Standard 0 N/A
0.0001 Forcing+BFB 7.40e-9 0.0066
0.0001 Our method 7.353e-9 0.000697

4.2 Example 2: An HRMS Model with Two-Dimensional
State Space

We consider now a system with 2 types of components and
2 components of each type. The different rates are shown in
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Figure 1: Markov chain transition graph for Example 2.
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Figure 2: Transition probability densities in Example 2. The
solid line is for the zero-variance density, the dashed line
for our approximation, and the dotted line for forcing+BFB.
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Figure 3: Transition probability densities in Example 2.
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Figure 4: Transition probability densities in Example 2.
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Figure 5: Transition probability densities in Example 2.
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Figure 6: Transition probability densities in Example 2.
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Figure1, where (absorbing) states where the system is failed
are in grey. Simulation results are given in Table3. As in
the previous example, both forcing+BFB and our method
turn out to have bounded relative error, in accordance with
theory, and our method wins by a factor of about 30 for
the small values ofε.

For this example, we also show graphs of the (partial)
probability densities. Figures2 through 6 show (1) the
density g0 of the zero-variance change of measure (solid
line), (2) our approximate density ˆg (dashed line), and (3)
the density effectively being used by forcing+BFB (dotted
line), for some selected transition types (i.e., pairsx,x′); the
densities for the other transition types have a similar behav-
ior. Each density is shown as a function ofδ for t = 1 and
ε = 0.1. The zero-variance densities have been calculated
by computing the time-dependent state probabilities directly
by numerical evaluation of the exponential of the transi-
tion rate matrix, see (Kulkarni 1995, pages 266-269) or
(de Souza e Silva and Gail 2000): If A is the infinitesimal
generator of the CTMC{Xj , j ≥ 0}, the transition probabil-
ity matrixP(t) = (Px,x′(t))x,x′∈X , with Px,x′(t) the probability
of being inx′ at time t given that we were inx at time 0,
is such thatP(t) = eAt. If states in∆ are absorbing states,
µ(x, t) can then be computed asµ(x, t) = ∑x′∈∆ Px,x′(t).

Figures2, 3, and4 show the (partial) densities of the
transition times on the path that dominates in the limit when
ε → 0. These figures clearly demonstrate the fact that the
densities in our approach (dashed) are monomial, with the
direct transition to the failure state having a uniform den-
sity, the one before that having a linear density, and the one
before that a quadratic density. With the exception of the
last (uniform) density, our approximate densities are reason-
ably similar to the zero-variance densities (solid), whereas
the forcing+BFB densities (dotted) are quite different, and
typically much lower. This means that forcing+BFB tends
to put too little probability mass on the dominant path.
Again, the larger difference for the density corresponding
to direct transitions to failures stems from the absence of
the exponential term in approximation (6).

Figure 5 shows the densities for a transition toward
failure but on a non-dominant path, and Figure6 gives the
densities for a repair transition. One sees that forcing+BFB
tends to put too much probability on these transitions.

5 CONCLUSION

In this article, we have presented a framework for importance
sampling and calculation of the zero variance change of
measure in Markov chains, and shown how different HRMS
examples fit this framework. For this case, we have
shown that a first-order approximation to the zero-variance
distribution can easily be obtained and is effective.

This work needs to be pushed forward. First of all,
we need to relax as much as possible the conditions used

Table 3: Simulation results for the two-dimensional example.

ε Method µ((0,0), t∗) Relative Error
1 Standard 0.1839 0.0067
1 Forcing+BFB 0.1835 0.0072
1 Our method 0.1845 0.0036
0.1 Standard 0.00012 0.29
0.1 Forcing+BFB 0.000111 0.028
0.1 Our method 0.0001123 0.0028
0.01 Standard 0 N/A
0.01 Forcing+BFB 8.7e-8 0.041
0.01 Our method 8.693e-8 0.00158
0.0001 Standard 0 N/A
0.0001 Forcing+BFB 8.4e-14 0.043
0.0001 Our method 8.402e-14 0.00121

in our results. Second, the HRMS examples in the present
paper have very small state spaces for sake of illustrative-
ness, in order to get the explicit value of the zero variance
change of measure. We plan look at practical problems
with very large state spaces, such as for instance that in
(Nakayama and Shahabuddin 2004). Other applications in
insurance risk and queuing networks are also of interest.
Last but not least, we plan to investigate the case where
the exponential term is not skipped in Equation (6). Sam-
pling the approximate density will then be a litttle more
complicated, but significantly better results can be expected.
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