
Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Moench, O. Rose, eds.

SPEEDING UP CALL CENTER SIMULATION AND OPTIMIZATION
BY MARKOV CHAIN UNIFORMIZATION

Eric Buist
Wyean Chan

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, CANADA

ABSTRACT

Staffing and scheduling optimization in large multiskill call
centers is time consuming, mainly because it requires lengthy
simulations to evaluate performance measures and their sen-
sitivity. Simplified models that provide tractable formulas
are unrealistic in general. In this paper we explore an
intermediate solution, based on an approximate continuous-
time Markov chain model of the call center. This model
is more accurate than the commonly used approximations,
and yet can be simulated faster than a more realistic simula-
tion (based on non-exponential distributions and additional
details). To speed up the simulation, we uniformize the
Markov chain and simulate only its discrete-time version.
We show how performance measures such as the fraction
of calls of each type answered within a given waiting time
limit can be recovered from this simulation, how to syn-
chronize common random numbers in this setting, and how
to use this in the first phase of an optimization algorithm
based on the cutting plane method. We also discuss various
implementation issues and provide empirical results.

1 INTRODUCTION

Telephone call centers, and more generally contact centers
where mail, fax, e-mail, and Internet contacts are handled
in addition to telephone calls, are important components of
large organizations (Akşin, Armony, and Mehrotra 2007,
Gans, Koole, and Mandelbaum 2003). Specifying the num-
ber and types of agents who handle the calls, and the working
schedules of these agents, under constraints on the quality of
service and on admissible schedules, is one of the main op-
timization problems encountered in managing these centers.
Large call centers are complex stochastic systems that can be
analyzed realistically only by simulation; tractable queueing
models oversimplify reality and are not very reliable. When
simulation is combined with an optimization algorithm, its
efficiency is a key issue, because optimization often requires
thousands of simulation runs at different parameter settings

(Cez̧ik and L’Ecuyer 2008, Avramidis, Gendreau, L’Ecuyer,
and Pisacane 2007b, Avramidis, Gendreau, L’Ecuyer, and
Pisacane 2007a). A common workaround for this problem
is to use approximation formulas during the first steps of
the optimization process, and then refine the solution using
simulation. However, these approximations are so rough
for complex models with multiple types of calls and agents
that they may lead to highly-suboptimal or even infeasible
solutions (Avramidis, Chan, and L’Ecuyer 2008).

One possible compromise, explored in this paper, is
to model the system as a continuous-time Markov chain
(CTMC) that can be simulated faster than a detailed (more
realistic) discrete-event simulation model. Speedup can be
achieved by uniformizing the CTMC and simulating only
the embedded discrete-time Markov chain (DTMC) instead
of the CTMC. Simulation must be used because this chain
has an enormous complicated state space and evolves in
non-stationary mode. The uniformization often increases
the average transition rate significantly if done in straight-
forward way, and this could wipe out the performance gain,
but our implementation uses an adaptive state-dependent
uniformization scheme that addresses this issue. For each
realization of the DTMC, performance measures are esti-
mated by computing their conditional expectation given the
DTMC and its number of steps. This quick (simplified)
simulation model is used in the first stage of a staffing
optimization procedure, whose second stage uses detailed
simulation of a more realistic model for fine tuning of the
solution. We give illustrations for a multiskill center over a
single time period. The technique can be extended to cover
multiple periods with different parameters.

The rest of the paper is organized as follows. The next
section provides a brief description of multiskill call centers
and the staffing optimization problem in these centers. Sec-
tion 3 explains how a CTMC can be simulated efficiently
over a finite horizon by simulating the embedded DTMC of
a uniformized chain. Section 4 presents our CTMC model
of a multiskill call center, explains how our methodology
can be applied in this case, and how the performance mea-

Buist, Chan, and L’Ecuyer

sures of interest are estimated. In particular, we will see
that estimating the service level, one of the most important
performance measures for call center managers, requires
extra bookkeeping. Section 5 describes how staffing is op-
timized using this simplified simulation. Section 6 presents
numerical results, whereas Section 7 concludes the paper
and outlines ideas for future work.

2 A MULTISKILL CALL CENTER

A call center is a set of resources for communication between
an organization and its customers over the phone. In a
multiskill center, calls are divided into K types, and are
served by agents partitioned into I groups. Each agent
group i = 1, . . . , I has a skill set Si ⊆ {1, . . . ,K}, which
corresponds to the list of call types that these agents can
serve. Calls arriving when no agent is available join a
waiting queue, and may abandon if they do not receive
service fast enough.

Managers are often interested in finding a staffing vector
y = (y1, . . . ,yI)t, where t denotes vector transposition and yi
is the number of agents in group i, to minimize the operating
costs under constraints on the quality of service. Suppose
ci is the cost of an agent of group i and let c = (c1, . . . ,cI)t.
The most widely used measure for the quality of service is
the service level, defined as the fraction of calls answered
within a given waiting time limit. For example, the service
level for call type k, denoted gk(y), can be defined as the total
expected number of calls of type k answered within a given
time limit sk, over the day, divided by the total expected
number of calls of type k received over the day. In the same
way, we can define the overall service level g(y) (over all
call types), for a given time limit s. A staffing optimization
problem can then be formulated as the nonlinear program
(Cez̧ik and L’Ecuyer 2008):

min cty =
I

∑
i=1

ciyi

subject to gk(y)≥ lk for all k,

g(y)≥ l,

y≥ 0,and integer, (P)

where l and the lk’s are user-defined service level targets.
This staffing problem is a relaxed version of a more com-
plex scheduling problem (Bhulai, Koole, and Pot 2005,
Avramidis, Gendreau, L’Ecuyer, and Pisacane 2007b).

Many heuristics have been proposed for Problem (P)
(Cez̧ik and L’Ecuyer 2008, Avramidis, Chan, and L’Ecuyer
2008, Wallace and Whitt 2005, Pot, Bhulai, and Koole
2007) Most methods perform a search in the space of
staffing vectors, and therefore need to estimate the perfor-
mance for different parameters settings. Frequently, such
estimations must be computed at a large number of slightly

different staffing levels, for sensitivity analysis (subgradient
estimation). These estimations are generally very time-
consuming, especially when simulation is used. A common
practice is therefore to use quick approximations to evaluate
the performance during the first steps of the optimization
(Franx, Koole, and Pot 2006, Koole, Pot, and Talim 2003,
Avramidis, Chan, and L’Ecuyer 2008). However, these ap-
proximations are often unreliable, especially for multiskill
centers with complex routing rules. As a result, optimiza-
tion heuristics driven by these approximations may produce
highly-suboptimal or even unfeasible solutions. Simulation
can be used in a second stage to improve the solution when
it is suboptimal, and fix it if it is unfeasible, but this second
stage may still produce a highly suboptimal solution if the
first stage did not produce a good enough solution to start
with. Our aim here is to replace the quick approximations
in the first stage by more accurate simulations of a CTMC
model.

3 DISCRETE-TIME SIMULATION OF CTMC
MODELS

3.1 A CTMC Model Over a Finite Horizon

We consider a continuous-time Markov chain (CTMC)
{X(t), t ≥ 0} defined over a discrete state space S =
{1,2, . . .}, where S is either finite or infinite (see Taylor
and Karlin 1998 for a definition). We can think of X(t) ∈ S
as representing the state of a system of interest at time t.
The sojourn time in any state i ∈ S follows the exponential
distribution, say with rate qi. When this sojourn ends, the
process jumps to state j with probability pi, j, independently
of its previous history. The jump rate to state j while in
state i is thus qi, j = pi, jqi. If we set qi,i =−qi for all i, the
|S| × |S| generator matrix of the CTMC, denoted Q, has
elements qi, j. The corresponding embedded discrete-time
Markov chain (DTMC) is defined as the stochastic process
{Xn = X(τn), n ≥ 0} where 0 = τ0 ≤ τ1 ≤ τ2 ≤ ·· · are the
jump times of the CTMC. The transition matrix of this
embedded chain, denoted P, has elements pi, j.

We are interested in the evolution of the CTMC over
a finite time horizon T . In the context of a call center, the
interval [0,T] may correspond to a period of an hour, a day,
etc. Let M(T) = max(n : τn ≤ T) be the (random) number
of transitions of the chain during [0,T]. This CTMC can be
simulated as follows. At each step n for which τn < T , we
generate the time τn+1−τn until the next transition (this is an
exponential), and the next state Xn+1 with the probabilities
pi, j if Xn = i.

If a cost is incurred at the state-dependent rate f (i) for
i ∈ S, then the total cost can be written as

C =
∫ T

0
f (X(t))dt (1)

Buist, Chan, and L’Ecuyer

=
M(T)−1

∑
n=0

f (Xn)(τn+1− τn) + f (XM(T))(T − τM(T)).

3.2 Uniformization

Suppose now that the chain is uniformizable, in the sense
that

q def= sup
i∈S

qi < ∞.

The uniformized CTMC has transition rate q from every
state, and its embedded DTMC {Yn, n ≥ 0} has transition
matrix P̃ = Q/q+ I, where I is the |S|×|S| identity matrix.
In other words, we increase the transition rate out of every
state to q, and each transition from state i is a “dummy”
transition to the same state (or self-jump) with probability
1−qi/q. The transitions of the uniformized chain then occur
according to a stationary Poisson process {N(t), t ≥ 0} with
rate q, independent of {Yn, n≥ 0}.

In the case where a cost is incurred at state-dependent
rate f (i), the total cost has expectation (Gross and Miller
1984, Fox and Glynn 1990)

c = E[C]

= E

[
N(T)

∑
n=0

T
N(T)+1

f (Yn)

]

= T
∞

∑
k=0

P[N(t) = k]
k

∑
n=0

E[f (Yn)]
k +1

= T
∞

∑
k=0

e−qT (qT)k

k!

k

∑
n=0

E[f (Yn)]
k +1

. (2)

Gross and Miller (1984), Grassmann (1989), Grassmann
(1991) provide numerical methods based on uniformization
and (2) to compute the expected cost over a fixed time
interval [0,T], when |S| is finite. The general idea is to
compute the probabilities p(n)(i) = P[Yn = i] iteratively for
n = 1,2, . . ., use them to compute E[f (Yn)] for each n, and
compute c via (2). This technique can actually provide the
state distribution of the CTMC at any given time t, if we
replace the inside sum (over n) by I[Yn = i], where I is the
indicator function, for each i ∈ S. However, this idea is
viable only when the state space S is not too large.

3.3 Discrete-time Conversion for Simulation

When S is very large (or infinite), one can exploit (2) to
estimate c by simulation as follows: Generate a realization
of the DTMC {Yn, n≥ 0}, and estimate c by the expression
(2) in which E[f (Yn)] is replaced by f (Yn):

E[C | Y0,Y1,Y2, . . .]

= T
∞

∑
k=0

e−qT (qT)k

k!

k

∑
n=0

f (Yn)
k +1

. (3)

Since this estimator is the expectation of C conditional on
{Yn, n ≥ 0}, its variance is guaranteed to be smaller than
that of C. This is a special case of discrete-time conversion,
studied by Fox (1990), who also examine alternative im-
plementations and other variants of the estimation problem.
In practice, the sum over k can be truncated at a point
where the remaining Poisson probabilities are deemed neg-
ligible. When qT is large, a good truncation point is easily
estimated via a normal approximation to the Poisson dis-
tribution. Another possibility is to sample the Poisson tail
instead of truncating it.

A simpler (unbiased) estimator of c is

E[C | N(T),Y0, . . . ,YN(T)] =
T

N(T)+1

N(T)

∑
n=0

f (Yn), (4)

where N(T) is generated from the Poisson distribution with
mean qT , and the DTMC {Y0, . . . ,YN(T)} is generated as
usual. The estimator (4) has more variance than (3), because
(3) is a conditional expectation of (4), but (4) can be less
expensive to compute, so it could be preferable in some
situations. Another possibility, which generalizes (4), is
to generate m ≥ 1 independent replicates of N(T), say
N1, . . . ,Nm, use them in (4) with the same realization of
{Yn, n≥ 0}, and take the average. This gives:

T
m

m

∑
i=1

1
Ni +1

Ni

∑
n=0

f (Yn). (5)

Increasing m reduces the variance, but since the variance
of (5) always remains larger than that of (3), there is an
optimal value of m beyond which the gain does not justify
the extra work.

An improved version of (5) stratifies on N(T): generate
m independent uniform random variates U1, . . . ,Um where
Ui is uniform over [(i−1)/m, i/m), then generate Ni from Ui
by inversion, for each i. That is, Ni = F−1

N(T)(Ui), where FN(T)
is the distribution function of a Poisson random variable
with mean qT . The estimator remains the same.

In the context of call center staffing problems, the
quantities that we typically want to estimate, such as the
service level, turn out not to be of the form (1). However,
they are of the general form

N(T)

∑
n=0

C̃n, (6)

where C̃n = E[Cn | N(T),Y0, . . . ,YN(T)] can be computed
analytically or numerically for each n≤ N(T), as we will

Buist, Chan, and L’Ecuyer

see in the next section. The estimators (3) to (5) can be
adapted rather easily to this setting. The adaptations of (3)
and (5) give

∞

∑
k=0

e−qT (qT)k

k!

k

∑
n=0

C̃n (7)

and

1
m

m

∑
i=1

Ni

∑
n=0

C̃n, (8)

respectively. In situations where C̃n depends on N(T) in a
complicated way, computing either (7), or (8) with a large
value of m, can be much more expensive than computing
(8) with m = 1, so the latter may turn out to be the most
efficient alternative. The next section will illustrate this.

4 CTMC MODEL OF A CALL CENTER

4.1 Call Center Model

Our CTMC model of a multiskill call center is defined
as follows. For each k = 1, . . . ,K, we suppose that calls
of type k arrive according to a Poisson process with rate
λk. Service times for calls of type k served by agents in
group i are i.i.d. exponential with rate µk,i. A call of type k
not served immediately balks (abandons immediately) with
probability ρk. The patience times for calls of type k joining
the queue without balking are i.i.d. exponential with rate νk.
A call becomes an abandonment whenever its waiting time
exceeds its patience time. Abandoning calls are removed
from the queue and lost.

There are I types of agents (or agent groups). For each
i = 1, . . . , I, group i contains yi agents. A router assigns
agents to newly arriving calls, and assigns queued calls
to agents when they become free, in the following way.
Each call type has a list of agent groups that can handle
it, say ik,1, ik,2, . . ., by order of preference. An arriving call
of type-k is assigned to the first group in this list having
an available agent. If no agent is available from the groups
in the list, the call is queued. Each call type has its own
FIFO queue. Similarly, each agent group has an ordered
list of call types these agents can handle, say ki,1,ki,2,
When an agent of group i becomes free, he picks a call
from the first non-empty queue in its list. Other similar
(state-dependent) routing schemes can be implemented with
this model without affecting the CTMC methodology that
we are presenting here.

The state of the CTMC must keep track of the number
of calls of each type being served by each agent group,
as well as the number of calls in each queue. Thus, each
element of the state space S is a vector whose elements are

Sk,i, the number of calls of type k currently served by agents
of group i, for 1≤ k≤K and 1≤ i≤ I, and Qk, the number
of type-k calls waiting in queue, for 1≤ k≤ K. Admissible
states must satisfy the constraints 0≤∑

K
k=1 Sk,i ≤ yi for each

i, and Sk,i = 0 whenever group i cannot handle call type
k. We assume that the system starts empty, so initially
we have Sk,i = 0 and Qk = 0 for all k and i. Call centers
with more than a dozen call types and a few dozen agent
groups, a total of several hundred agents, and queues that
may sometimes grow up to over a hundred calls, are not
uncommon. The size of the state space is then much too
large to consider exact numerical methods as in Gross and
Miller (1984), and one must rely on simulation.

The (I + 3)K types of transitions (or events) for our
CTMC are summarized in Table 1. The table gives the
type of event that causes the transition, the state-dependent
transition rate, and its usual effect on the state. We briefly
discuss these different types of events.

Upon arrival of a type-k call, the router selects an agent
group i′ that can handle the call, if there is one, in which case
Sk,i′ is increased by 1. Otherwise, the call either abandons
immediately (balks), or joins a queue and Qk increases by
1. When an agent of group i completes the service of a
type-k call, Sk,i is decreased by 1, and a queued call of
certain type k′ that can be handled by group i is chosen by
the router if there is one such call in the queues, in which
case Qk′ decreases by 1 and Sk′,i increases by 1. Otherwise,
the agent becomes free. When a call of type k abandons,
Qk decreases by 1.

4.2 Uniformization

Because of the unlimited queue size, the total abandonment
rate (for all calls) is unbounded; therefore the CTMC has
an unbounded total jump rate and is not uniformizable in its
original form. For this reason, we impose a finite limit H
on the total queue size ∑

K
k=1 Qk. Any call arrival that would

increase the total queue size beyond H is just dismissed.
With this modification, the CTMC has maximal transition
rate q given by the sum of maximal arrival, service, and
abandonment rates:

q =
K

∑
k=1

λk +
I

∑
i=1

yiµi +Hν ,

where µi = maxk∈Si µk,i, and ν = maxk∈{1,...,K} νk.
Another important issue is that at a given iteration of

the optimization algorithms we use, one simulates a large
number of very similar staffing configurations of the center,
that differ by only one or two agents, for sensitivity analysis.
These simulations are done with common random numbers,
and it is important to make sure that synchronization is
maintained, i.e., that the same random numbers are used
for the same purposes, so they produce mostly the same types

Buist, Chan, and L’Ecuyer

Table 1: Possible Types of Events with their Usual Effects on the State

Event Type Rate Usual Effect
Type-k arrival when an agent is available λk Increases the number of busy agents.
Type-k arrival with balking ρkλk State is unchanged.
Type-k arrival, no balking, no agent available (1−ρk)λk Increases the queue size Qk by 1.
Type-k abandonment Qkνk Decreases the queue size Qk by 1.
Group-i agent ends type-k service Sk,iµk,i Decreases the number of busy agents or the queue size.

of transitions, when simulating the DTMC. In particular, a
random number generating an arrival with a given staffing
vector should not trigger, say, a service termination with
another staffing vector. For this reason, we use a common
overall transition rate for the uniformized chain, taken as

q =
K

∑
k=1

λk +
I

∑
i=1

ȳiµi +Hν ,

where ȳi is the maximal number of agents in group i in all
the staffing configurations considered.

4.3 Simulation by Indexed Search

Because of the relatively large number of event types, gen-
erating transitions can be time-consuming. Indexed search
is used to generate transitions efficiently. For this, we split
the interval [0,1] in 2a sub-intervals of equal size, for some
integer a, and we associate an event type with each sub-
interval. Some of these event types correspond to a single
type of transition in Table 1. Others correspond to a subin-
terval that must be split again, say in 2b subintervals, and
an event is associated with each subinterval. Some of them
determine a DTMC transition, others must be split again,
and so on.

A transition is simulated by generating a independent
random bits to obtain an index, and executing the event
corresponding to the selected sub-interval. An event uses
its corresponding sub-interval [u1,u2], internal information,
and may use additional random bits to make further decisions
such as selecting a smaller sub-interval, or determining the
type of a call. This indexed search allows to select the
call type of an arrival, and the agent group concerned by a
service termination, in constant time, because the required
information only depends on the sub-interval [u1,u2], which
can be precomputed. But a linear search is required to
select the type of a served or abandoned call, because its
distribution depends on Sk,i, or Qk, so it changes with time.
For example, if the selected event corresponds to the end of
a service by an agent in group i, a call of type k is selected
with probability Sk,iµk,i/(yiµi), and a self-jump occurs with
probability 1−∑

K
k=1 Sk,iµk,i/(yiµi). Other search methods

such as binary search impose additional overhead, and would
be efficient only for large values of K. Alternative rejection
methods have been proposed (Fox and Glynn 1990, Fox and
Young 1991, Rajasekaran and Ross 1993), but we prefer
inversion because it provides better synchronization when
using common random numbers.

The selection of a call type k can be avoided at the
end of a service by an agent in group i if µk,i = µi for
k = 1, . . . ,K, and if we do not need to collect statistics on
the proportion of calls of each type in service by agents in
group i. The selection of a call type at the end of a service
or when abandonment occurs is also unnecessary if K = 1.
In both cases, the linear search is replaced by a simple test
to determine if the DTMC transition is a self-jump or not.

4.4 Reducing the Self-jumps

When the agents’ occupancy is low, or if the queue capacity
is high, the DTMC has a large proportion of self-jumps,
whose simulation eventually adds significant overhead. Fox
and Glynn (1990) propose to telescope the self-jumps by
noting that the number of self-jumps of the uniformized
chain between any two jumps of the original chain is a
geometric random variable with parameter qi/q when we
are in state i, and generating this geometric variable directly.
However, this requires an efficient method to generate the
transitions of the original DTMC (without the self-jumps),
for which the transitions depend strongly on the current state.
This is incompatible with the fast indexed search method
described earlier, because we would need a different index
for each current state i.

To reduce the number of self-jumps, we adopt a solution
of compromise based on the idea of constructing a limited
number of search indexes. The idea is to partition the state
space in, say, R pieces, and compute an upper bound q(r)
on the jump rate for each piece r. Whenever the current
state is in piece r, we generate the next transition based on a
DTMC with jump rate q(r), and we add a random number
Z of self-jumps before this next transition (which may
actually be a self-jump itself), where Z has the geometric
distribution with parameter p(r) = q(r)/q. We thus obtain
a valid realization for the DTMC {Yn, n≥ 0}, from which

Buist, Chan, and L’Ecuyer

we can compute estimators for the performance measures
we have in mind.

Implementing this scheme efficiently requires setting
up a different search index for each piece r. In our imple-
mentation, the index incorporates a precomputation of the
inverse distribution function of the geometric distribution
with parameter p(r), so both Z and the next transition are
generated together from the index, using a single uniform
random number. It is usually better to keep the number R
of pieces rather small (say, no more than a dozen, or even
less), because computing and storing them can be costly.

In the context of our call center, we partition the state
space according to the total queue size. The idea is that when
there are many calls in queue, the overall abandonment rate
becomes quite high, and this forces us to use a large value
of q, which in turn implies a large fraction of self-jumps
when there are few calls in the queues. More specifically, let
0 = η0 < η1 < · · ·< ηR = H be an increasing sequence of
thresholds on the queue size. Each threshold ηr corresponds
to an operating mode with a specific transition rate q(r) =
q− (H−ηr)ν ≤ q for the corresponding uniformized chain
and search index. The current operating mode r is given
by the smallest integer for which ∑

K
k=1 Qk ≤ ηr.

4.5 Estimating the service level from the uniformized
DTMC

The service level, one of the primary performance measure
in which call center managers are interested, is not of the
form (1). To estimate the service level (for each call type
and globally), we proceed as follows. For each queued call,
the transition number of its arrival is saved. These numbers
are stored in arrays representing the K waiting queues of
the model. The current transition number is added to the
kth array when a call of type k enters the queue. When a
call of type k abandons, an element of array k is chosen
randomly and uniformly, and removed. Whenever a service
completion triggers a start of service for a call of type k′,
the first call in queue k′ is removed, and we count the
number D of DTMC transitions since its arrival. Keeping
these arrays up-to-date involves some overhead, especially
when removing elements, which generally requires shifting
all subsequent elements of the array. Since the first array
element is often removed, we store the array in a circular
buffer, to avoid the linear-time shifting for this (frequent)
special case.

Suppose now that a call waits for D transitions before
starting its service. The waiting time W of this call is
the time required for these D transitions in the CTMC.
Conditional on N(T) and D < N(T), this W has the same
distribution as the time required for the first D transitions,
which in turns has the same distribution as the Dth order
statistic in a sample of N(T) independent uniform random
variables over [0,T]. (See David 1981 for standard results

on order statistics.) We have

P[W > s | N(T),D]
= P[B < D]

=
D−1

∑
j=0

(
N(T)

j

)
(s/T) j(1− s/T)N(T)− j,

where B has the binomial distribution with parameters n =
N(T) and p = s/T . Then we can easily compute

P[W > s | N(T),D] = E[I[W > s] | N(T),X0,X1, . . . ,XN(T)]

for each waiting call. The sum of these conditional proba-
bilities over all calls of type k gives an unbiased estimator
of the expected number of calls who wait more than s. To
speed up these computations, once we know N(T), we pre-
compute the distribution function of B, up to some cut-off
value where this function is close to 1, and store it in a
table. It is important to notice that this binomial distribution
depends on N(T). For this reason, computing an estimator
of the form (7) becomes too expensive here, because a new
binomial table must be computed for each value of n in
that equation.

5 APPLICATION TO OPTIMIZATION

Cez̧ik and L’Ecuyer (2008) solve a sample average ap-
proximation (P1) of Problem (P), in which the service level
functions gk are estimated by their sample averages ĝk based
on a certain number of simulation runs over the time period of
interest. The sample problem (P1) is solved using a cutting
plane method adapted from Atlason, Epelman, and Hender-
son (2004), combined with a number of heuristics, which
are detailed in Cez̧ik and L’Ecuyer (2008). In a nutshell, the
method relaxes the service level constraints in (P), and adds
linear constraints based on estimates on the subgradients
of the gk’s associated with service level constraints that are
violated in (P1). The aim of these constraints is to remove
unfeasible pieces from the solution space. Each subgradient
estimation actually requires simulating the system at I +1
staffing configurations. The ith coordinate of the subgra-
dient estimate has the form qi(ȳ) = [ĝ(ȳ + dei)− ĝ(ȳ)]/d,
where ȳ is the current solution, ei is the i-th unit vector, and
d ≥ 1 is an integer. The algorithm adds linear constraints
iteratively to the sample problem until its solution becomes
feasible (i.e., satisfies the service level constraints).

Because of the noise and the potential non-concavity of
the functions ĝ, these linear cuts sometimes remove feasible
solutions, including the optimal solution, in which case the
algorithm will return a suboptimal solution to (P). It also
happens that although the final solution is feasible for (P1),
it is unfeasible for (P). Increasing the number of simulation
runs by a large factor generally alleviates this problem, but

Buist, Chan, and L’Ecuyer

at a cost. Solving large staffing problems may then require
hours of simulation.

After a feasible solution y∗ is found for (P1), we refine
this solution using an expanded sample problem, say (P2),
obtained from a larger number of simulation runs. The
solution of (P1) is adjusted to a feasible solution for (P2)
by adding more agents if it is infeasible for (P2), removing
agents while keeping the solution feasible for (P2), and
moving agents to cheaper groups, if possible.

Optimizing a given sample problem implies that the
simulations are performed with well-synchronized common
random numbers across all staffing configurations. For
the detailed simulations, we use common random numbers
and synchronize them using separate streams of random
numbers for arrivals, service times, abandonments, etc. For
the simplified simulations with the uniformized DTMC, we
maintain synchronization in the estimation of any given
subgradient by using a common transition rate q for all
the simulations involved for this subgradient, as explained
earlier. Ideally, it would be best to use the same rate q and
the same indexes for all the simulations performed during
the optimization. However, to do that, we would need to
impose a maximum staffing vector and use it to define q
and the index. Choosing such a maximum staffing vector
is difficult; if we take it too large, we obtain a large value
of q and a high rate of self jumps, while if we take it too
small, we may miss some relevant staffing vectors. For the
experiments reported in this paper, we took a new q and a
new index for each subgradient estimation.

6 NUMERICAL EXAMPLES

We now compare the simulator based on the uniformized
DTMC against the detailed discrete-event simulator im-
plemented in ContactCenters (Buist and L’Ecuyer 2005),
first in terms of simulation speed, then when used in an
optimization algorithm.

6.1 Simulation

Our first example has a single call type and agent group. The
parameters are ρ1 = 1/10, ν1 = 1/1000, and µ1 = 1/100.

In the second example, we have three call types and
six agent groups. For call type k, k = 1,2,3, we have
ρk = 0.1 and νk = 1/1000. The total arrival rate is λ , and
those per call type are λ1 = λ2 = 4λ/11, and λ3 = 3λ/11.
The service rates are µ1,1 = µ2,2 = µ3,3 = 11/3600, and
µ1,4 = µ1,5 = µ2,5 = µ2,6 = µ3,6 = µ3,4 = 1/360. Table 2
gives the lists of groups and types, ik,1, . . ., and ki,1, . . . used
for the routing.

We simulate 1000 independent replications with T =
46800 seconds, for different choices of λ , i.e., of the ex-
pected total numbers of arrivals during [0,T]. For each
scenario (each λ), the number of agents is adjusted to have

Table 2: Routing Tables for Call Center Example

Type Groups
1 1 4 5
2 2 5 6
3 3 6 4

Group Types
1 1
2 2
3 3
4 1 3
5 2 1
6 3 2

approximately 80% of the calls served after less than 20
seconds of wait. Table 3 presents the simulation results for
the two examples. Each row corresponds to a scenario. The
columns give the expected total number of arrivals during
[0,T], the total number of agents in the center (staffing),
the total queue capacity H, the expected total number of
transitions E[N(T)], the CPU time taken by the DTMC
simulator, the CPU time taken by the discrete-event simu-
lator, and the ratio of the two times. The results confirm
that the DTMC simulator is faster than the general discrete-
event simulator, and the gain is higher when there are fewer
call types and when the arrival rate is higher. It is not
surprising that the gain is higher with a single call type,
because no linear search is required for the call selections
in that case. Moreover, the number of objects created by
the discrete-event simulator increases with the number of
calls simulated while the DTMC simulator does not create
objects to represent calls.

6.2 Optimization

We consider Example 2 with λ = 14300. The cost
of the six agent types are given by the vector c =
(1,1,1,1.05,1.05,1.05)t, and the service level targets are
l = lk = 80% of calls within 20 seconds of wait. We opti-
mize the staffing with the cutting-plane algorithm of Cez̧ik
and L’Ecuyer (2008), using the DTMC-based simulation
(CP1) and the discrete-event simulator (CP2). We impose a
CPU time limit of 2 minutes for the optimization process,
and use d = 2 for all the subgradient estimators. Each time
we add linear constraints, the updated problem is solved as
an integer program with CPLEX 9.0. To obtain comparable
execution times for both CP1 and CP2, the simulations use
40 replications for the DTMC and 8 for the discrete-event
simulator.

We evaluate the quality of the results produced by
these optimization algorithms as follows. First, we found
an empirical optimum by running the optimization algorithm
with a very large budget. This gave the vector (36, 35, 27,
3, 5, 4) as our best estimate of the optimal staffing, with a
cost of 110.60. We call a solution ε-feasible if its service

Buist, Chan, and L’Ecuyer

Table 3: Performance Comparison of the CTMC and the Discrete-Event Simulators

E[Num. arrivals] Staffing H E[N(T)] DTMC Time DES Time Ratio
1,660 5 30 5404 1 s 6 s 4.6

Example 1 25,000 52 80 57,292 11 s 1 min 29 s 8.2
50,000 100 130 104,756 18 s 3 min 08 s 10.0
75,000 148 170 152,220 25 s 4 min 59 s 12.0
14,300 110 100 34,554 9 s 59 s 6.6

Example 2 30,000 221 100 65,958 19 s 2 min15 s 7.1
45,000 331 150 99,041 27 s 3 min29 s 7.7
60,000 431 150 128,302 37 s 4 min 38 s 7.5

Table 4: Example 2 with λ = 14300, Performance Compari-
son of the Optimization with DTMC and the Discrete-Event
Simulators, based on 100 replications

Algo ε Min Med F O0.2 O0.5 O1
CP1 0.01 110.70 111.40 73 16 27 58
CP2 0.01 110.85 111.50 36 0 9 23
CP1 0.1 110.65 111.35 80 20 32 65
CP2 0.1 110.70 111.48 42 1 13 28

level is greater or equal to (l−ε)% for every target. Then,
we executed CP1 and CP2 100 times each, independently.
For each execution, we verify the feasibility of the final
solutions for problem (P) by simulating with 2000 runs of
a discrete-event simulation; this gives a 95% confidence
interval of width smaller than 0.4% for the service level.
Most replications of CP1 and CP2 found a feasible solution
after 60 seconds; only a few needed about 90 seconds. The
remaining time was devoted to the local search. Table 4
compares the costs of the minimum and median solutions
conditional to ε-feasibility (for ε = 0.01 and 0.1), the number
of ε-feasible solutions (F), and the number of these solutions
that are within p% of the optimal cost (Op). Although the
minimum and median costs are comparable, the results show
that there is a much higher probability of finding low-cost
feasible solutions when optimizing with DTMC.

7 CONCLUSION

We have constructed a simulator for multiskill call centers
based on the discrete-time conversion of a uniformized
CTMC. This simulator executes faster than a fully-detailed
discrete-event simulator of the CTMC. We have shown
that there is a potential gain in using this simulator in an
optimization algorithm, instead of a discrete-event simulator,

when the call center can be modeled reasonably well as a
continuous-time Markov process. If the original model is
not a CTMC, then we can still use the DTMC simulator
as an approximation, to save time in the (expensive) first
stages of an optimization algorithm.

Future work includes the generalization of the DTMC-
based simulator to time-varying parameters (arrival rates,
staffing, etc.), and its use in a scheduling optimization
algorithm over multiple time periods.

ACKNOWLEDGMENTS

This research has been supported by Grants OGP-0110050
and CRDPJ-320308 from NSERC-Canada, and a grant from
Bell Canada via the Bell University Laboratories, and a
Canada Research Chair to the third author. The first au-
thor benefited from an Industrial Scholarship from NSERC-
Canada and the Bell University Laboratories. The second
author benefited from an Industrial Innovation Scholarship
from NSERC-Canada, FQRNT-Québec, and the Bell Uni-
versity Laboratories. Part of this paper was inspired by
Grassmann’s section in (Grassmann, Puterman, L’Ecuyer,
and Ingolfsson 2008).

REFERENCES

Akşin, O. Z., M. Armony, and V. Mehrotra. 2007. The
modern call center: A multi-disciplinary perspective
on operations management research. Production and
Operations Management 16 (6). Forthcoming.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004.
Call center staffing with simulation and cutting plane
methods. Annals of Operations Research 127:333–358.

Avramidis, A. N., W. Chan, and P. L’Ecuyer. 2008. Staffing
multi-skill call centers via search methods and a per-
formance approximation. IIE Transactions. to appear.

Avramidis, A. N., M. Gendreau, P. L’Ecuyer, and
O. Pisacane. 2007a. Optimizing daily agent scheduling
in a multiskill call centers.

Buist, Chan, and L’Ecuyer

Avramidis, A. N., M. Gendreau, P. L’Ecuyer, and
O. Pisacane. 2007b. Simulation-based optimization of
agent scheduling in multiskill call centers. In Proceed-
ings of the 2007 Industrial Simulation Conference, 255–
263: Eurosis.

Bhulai, S., G. Koole, and G. Pot. 2005. Simple methods for
shift scheduling in multi-skill call centers. Technical
report, Technical Report WS 2005-10, Free University,
Amsterdam.

Buist, E., and P. L’Ecuyer. 2005. A Java library for simulating
contact centers. In Proceedings of the 2005 Winter
Simulation Conference, 556–565: IEEE Press.

Cez̧ik, M. T., and P. L’Ecuyer. 2008. Staffing multiskill
call centers via linear programming and simulation.
Management Science 54 (2): 310–323.

David, H. A. 1981. Order statistics. Second ed. Wiley.
Fox, B. L. 1990. Generating Markov-chain transitions

quickly: I. ORSA Journal on Computing 2:126–135.
Fox, B. L., and P. W. Glynn. 1990. Discrete-time conversion

for simulating finite-horizon Markov processes. SIAM
Journal on Applied Mathematics 50:1457–1473.

Fox, B. L., and A. R. Young. 1991. Generating Markov-
chain transitions quickly: II. ORSA Journal on Com-
puting 3:3–11.

Franx, G. J., G. Koole, and A. Pot. 2006. Approximat-
ing multi-skill blocking systems by hyper-exponential
decomposition. Performance Evaluation 63:799–824.

Gans, N., G. Koole, and A. Mandelbaum. 2003. Tele-
phone call centers: Tutorial, review, and research
prospects. Manufacturing and Service Operations Man-
agement 5:79–141.

Grassmann, W. K. 1989. Numerical solutions for Marko-
vian event systems. In Quantitative Methoden in
den Wirtschaftswissenschaften, ed. P. Kall, J. Kohlas,
W. Popp, and C. A. Zehnder, 73–87. Springer-Verlag.

Grassmann, W. K. 1991. Finding transient solutions in
Markovian event systems through randomization. In Nu-
merical Solutions of Markov Chains, ed. W. J. Stewart,
357–371.

Grassmann, W. K., M. L. Puterman, P. L’Ecuyer, and A. In-
golfsson. 2008. Four canadian contributions to stochas-
tic modeling. INFOR. to appear.

Gross, D., and D. R. Miller. 1984. The randomization tech-
nique as a modeling tool and solution procedure for
transient Markov processes. Operations Research 32
(2): 343–361.

Koole, G., A. Pot, and J. Talim. 2003. Routing heuristics
for multi-skill call centers. In Proceedings of the 2003
Winter Simulation Conference, 1813–1816: IEEE Press.

Pot, A., S. Bhulai, and G. Koole. 2007. A simple
staffing method for multi-skill call centers. Manuscript,
available at http://www.cs.vu.nl/˜koole/
research.

Rajasekaran, S., and K. W. Ross. 1993. Fast algorithms
for generating discrete random variates with changing
distributions. Modeling and Computer Simulation 3 (1):
1–19.

Taylor, H. M., and S. Karlin. 1998. An introduction to
stochastic modeling. third ed. San Diego: Academic
Press.

Wallace, R. B., and W. Whitt. 2005. A staffing algorithm
for call centers with skill-based routing. Manufacturing
and Service Operations Management 7 (4): 276–294.

AUTHOR BIOGRAPHIES

ERIC BUIST is a PhD Student at the Université de
Montréal. His main interests are software engineering,
object-oriented programming, and simulation. He is cur-
rently working on the development of flexible and efficient
tools for the simulation of contact centers. His e-mail
address is <buisteri@IRO.UMontreal.CA>.

WYEAN CHAN is a PhD Student at the Université de
Montréal. His main interests are applied mathematics and
optimization. He is currently working on the development
of workforce management tools for call centers. His e-mail
address is <chanwyea@IRO.UMontreal.CA>.

PIERRE L’ECUYER is Professor in the Département
d’Informatique et de Recherche Opérationnelle, at the Uni-
versité de Montréal, Canada. He holds the Canada Research
Chair in Stochastic Simulation and Optimization. His main
research interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete-
event stochastic systems, and discrete-event simulation in
general. He is currently Associate/Area Editor for ACM
Transactions on Modeling and Computer Simulation, ACM
Transactions on Mathematical Software, Statistical Com-
puting, International Transactions in Operational Research,
The Open Applied Mathematics Journal, and Cryptography
and Communications. He obtained the E. W. R. Steacie
fellowship in 1995-97, a Killam fellowship in 2001-03,
and became an INFORMS Fellow in 2006. His recent
research articles are available on-line from his web page:
<http://www.iro.umontreal.ca/∼lecuyer>.

http://www.cs.vu.nl/~koole/research
http://www.cs.vu.nl/~koole/research
mailto:buisteri@IRO.UMontreal.CA
mailto:chanwyea@IRO.UMontreal.CA
http://www.iro.umontreal.ca/~lecuyer

	INTRODUCTION
	A MULTISKILL CALL CENTER
	DISCRETE-TIME SIMULATION OF CTMC MODELS
	A CTMC Model Over a Finite Horizon
	Uniformization
	Discrete-time Conversion for Simulation

	CTMC MODEL OF A CALL CENTER
	Call Center Model
	Uniformization
	Simulation by Indexed Search
	Reducing the Self-jumps
	Estimating the service level from the uniformized DTMC

	APPLICATION TO OPTIMIZATION
	NUMERICAL EXAMPLES
	Simulation
	Optimization

	CONCLUSION

