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ABSTRACT

Monte Carlo simulation applies to a wide range of estimation
problems, but converges rather slowly in general. Variance
reduction techniques can lower the estimation error, some-
times by a large factor, but rarely change the convergence
rate of the estimation error. This error usually decreases
as the inverse square root of the computational effort, as
dictated by the central limit theorem. In theory, there exist
simulation estimators with zero variance, i.e., that always
provide the exact value. The catch is that these estimators
are usually much too difficult (or virtually impossible) to
implement. However, there are situations, especially in the
context of rare-event simulation, where the zero-variance
simulation can be approximated well enough to provide
huge efficiency gains. Adaptive versions can even yield a
faster convergence rate, including exponential convergence
in some cases. This paper gives a brief overview of these
methods and discuss their practicality.

1 INTRODUCTION

1.1 Monte Carlo Estimation

Monte Carlo (MC) is the method of choice to estimate
a mathematical expectation defined as a high-dimensional
integral (Fishman 1996, Asmussen and Glynn 2007). To
recall how it works, suppose we want to estimate µ0 = E[X ]
for some random variable X . In its basic form, MC would
generate n independent copies of X , say X1, . . . ,Xn, and
estimate µ0 by the sample average

X̄n =
1
n

n

∑
i=1

Xi.

The strong law of large numbers guarantees the almost sure
convergence X̄n → µ0 when n→ ∞, and the accuracy of
the MC method is described by the central limit theorem,

which tells us that the interval(
X̄n−

z1−α/2Sn√
n

, X̄n +
z1−α/2Sn√

n

)
is an asymptotically valid confidence interval for µ0 with con-
fidence level 1−α , where z1−α/2 is the (1−α/2)-quantile
of the standard normal distribution; that is, Φ(z1−α/2) =
1−α/2 where Φ is the standard normal distribution func-
tion, and

S2
n =

1
n−1

n

∑
i=1

(Xi− X̄n)
2

is the sample variance, which is an unbiased estimator of
σ2 = Var[X ], assumed to be finite. The half-width of the
confidence interval represents (in a probabilistic way) the
estimation error. It converges to zero as n−1/2 when n→∞.

1.2 Markov Chain Model

A finite-horizon discrete-event simulation model can in gen-
eral be viewed as a discrete-time Markov chain (DTMC)
{Yj, j ≥ 0} that evolves in some general state space Y
until reaching a stopping time τ . By putting enough in-
formation in the state Yj, we can obtain that {Yj, j ≥ 0}
is indeed a Markov chain and also that τ is defined as
the first time when the chain hits a given set of states,
∆. That is, τ = inf{ j ≥ 0 : Yj ∈ ∆}. The Markov chain is
assumed to have a transition kernel {P[· | y], y ∈ Y } and
initial distribution π0, where P[B | y] = P[Yj ∈ B |Yj−1 = y]
and π0(B) = P[Y0 ∈ B] for any measurable B⊂Y . Suppose
that each time we move from state y ∈ Y to state z ∈ Y ,
we incur a non-negative cost c(y,z). The total cost is then
the random variable

X =
τ

∑
j=1

c(Yj−1,Yj).
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Let µ(y) = Ey[X ] denote the expected value of X when
Y0 = y. We assume that µ(y) < ∞ for all y∈Y . We want to
estimate µ0 = E[X ] =

∫
y∈Y µ(y)π0(dy), the expected value

of X for the initial distribution π0.
We will exploit the fact that the function µ : Y → R

satisfies the recurrence equation (or Poisson equation)

µ(y) = Ey[c(y,Y1)+ µ(Y1)]

=
∫

Y
[c(y,z)+ µ(z)]dP[dz | y] (1)

for y 6∈ ∆, and µ(y) = 0 for y ∈ ∆. This is a simplified form
of the standard dynamic programming recurrence equation,
without the minimization.

1.3 Variance Reduction

The usual way of improving accuracy is to change the es-
timator X to another estimator with the same expectation
and smaller variance σ2. Note that the bias (if any) and the
computational cost are also important factors for the quality
of an estimator. The computational cost is usually taken
into account via a notion of efficiency, or work-normalized
variance (Glynn and Whitt 1992, Glasserman 2004, As-
mussen and Glynn 2007). In this paper, we concentrate on
the variance only, and we assume that X has no bias.

We focus primarily on two families of variance reduc-
tion techniques, namely importance sampling and control
variates. For each of them, we explain how zero-variance
can be reached in principle, and we discuss situations where
large gains can be obtained by approximating a zero-variance
sampling scheme, in the DTMC setting discussed earlier.
With adaptive schemes, it is possible to beat the O(n−1/2)
convergence rate implied by the central limit theorem. There
are even cases where one can obtain convergence at an ex-
ponential rate. We also discuss how convergence at a faster
rate than O(n−1/2) can be achieved via generalized an-
tithetic variates, or equivalently randomized quasi-Monte
Carlo (L’Ecuyer 2008).

1.4 Rare Events

In the context of rare-event simulation, the system is often
parameterized by a rarity parameter ε so that the important
rare events become rarer (and accurate estimation becomes
more difficult under naive simulation) when ε → 0. In
this type of setting, asymptotic approximations of µ0, valid
when ε → 0, can often be used to approximate a zero-
variance sampling scheme. The quality and robustness
of the estimators thus obtained can be characterized by
asymptotic properties such as logarithmic efficiency (also
called asymptotic optimality), bounded relative error (or
relative variance), and vanishing relative error (L’Ecuyer

et al. 2008). We will briefly survey these properties and
give examples.

1.5 Outline

The remainder of the paper is organized as follows. Some of
the main asymptotic robustness properties of estimators in a
rare event setting are summarized in Section 2. In Section 3,
we recall how to simulate a Markov chain with importance
sampling, define a zero-variance estimator in that context,
and give examples where this zero-variance estimator can
be well approximated. In Section 4, we provide a similar
discussion on how zero-variance can be approximated via
control variates. Section 5 discusses adaptive learning algo-
rithms to approach the zero-variance estimator, for the two
families of variance reduction techniques discussed earlier.
Difficulties and potential remedies are highlighted. General-
ized antithetic variates are discussed in Section 6. Section 7
summarizes the important facts concerning zero-variance
estimation and discusses some directions of research we
believe are worthy to push forward.

2 ASYMPTOTICS FOR RARE-EVENT
SIMULATION

In rare-event simulation, asymptotic analysis of estimators
is usually done under the following type of framework. The
quantity µ0 = µ0(ε) > 0 to be estimated is parameterized by
a rarity parameter ε > 0, in a way that limε→0+ µ0(ε) = 0.
We have a family of estimators X = X(ε) taking their values
in [0,∞), such that E[X(ε)] = µ0(ε) and Var[X(ε)] = σ2

0 (ε)
for each ε > 0. For a given model, different parameteri-
zations may specify different asymptotic regimes (Heidel-
berger 1995, Juneja and Shahabuddin 2006). For example,
in a queueing system with buffer size B and s servers, we
can take ε = 1/B if we are interested in very large values of
B, and ε = 1/s if we are interested in what happens when
there is a large number of servers. In reliability models,
some of the failure rates are often taken as polynomial
functions of ε (Shahabuddin 1994, Nakayama 1996).

In this type of setting, we would like to be able to
estimate µ0(ε) to a given relative accuracy with a computing
budget that does not increase with ε . This corresponds to the
notion of an estimator with bounded relative error (BRE),
defined below. There are situations, however, where the
best available estimators do not have BRE, but require a
computing budget that increases only very slowly with ε

for a given relative accuracy. These estimators often enjoy
the slightly weaker property of logarithmic efficiency (LE),
also known as asymptotic optimality. Importance sampling
estimators constructed via the theory of large deviations
often have this property (Heidelberger 1995, Juneja and
Shahabuddin 2006, Asmussen and Glynn 2007). A third
property, also defined below, is that of vanishing relative
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error (VRE). It means that the relative error converges to
zero when ε → 0, for a given computing budget.

Definition 1 (a) The estimator X(ε) has bounded
relative error (BRE) (Heidelberger 1995), or equivalently
bounded relative variance, if

limsup
ε→0

σ0(ε)
µ0(ε)

< ∞. (2)

(b) It is logarithmically efficient (LE) (Heidelberger
1995, Asmussen and Glynn 2007) if

lim
ε→0

lnE[X2(ε)]
2ln µ0(ε)

= 1. (3)

(c) It has vanishing relative error (VRE) (L’Ecuyer
et al. 2008) if

limsup
ε→0

σ0(ε)
µ0(ε)

= 0, (4)

or equivalently if

limsup
ε→0

E[X2(ε)]
µ2

0 (ε)
= 1. (5)

The VRE property is obviously stronger than BRE,
which is itself stronger than LE. VRE is strongly related to
zero-variance simulation in the sense that VRE implies that
X(ε) is generated from a probability law that converges in
the L∞ norm to a zero-variance measure (L’Ecuyer et al.
2008). We will see examples where this property holds.

Dupuis and Wang (2004) give a Lyapunov (sufficient)
condition for LE, interpreting the Lyapunov function as a
subsolution to the recurrence equation of a stochastic game
in which we select a change of measure for importance
sampling, and then an adversary selects a set of sample
paths with the worst possible variance contribution. Other
sets of Lyapunov conditions for the BRE, LE, and VRE
properties can be found in Blanchet and Glynn (2007)
and L’Ecuyer et al. (2008). These conditions are often
convenient to verify the BRE, LE, and VRE properties, and
can also be used to design importance sampling schemes
that satisfy these properties.

3 ZERO VARIANCE VIA IMPORTANCE
SAMPLING

Suppose that the estimator X of interest can be written as
X = h(ω) for some (measurable) function h : Ω→R, where
ω obeys a probability measure P defined over a measurable
space (Ω,F ), where Ω is the sample space and F is a
σ -field. In importance sampling (IS), we replace P by
another probability measure P̃ over the same measurable
space and for which dP̃(ω) 6= 0 whenever h(ω)dP(ω) 6= 0.

Under this condition, we have

E[X ] =
∫

h(ω)dP(ω)

=
∫

h(ω)
dP(ω)
dP̃(ω)

dP̃(ω)

= Ẽ [h(ω)L(ω)] ,

where L = dP/dP̃ is the likelihood ratio (or Radon-Nikodým
derivative) between the two measures and Ẽ is the expecta-
tion associated with P̃. Then we can generate n independent
realizations of ω from P̃, say ω1, . . . ,ωn, and use the average

X̄is,n =
1
n

n

∑
i=1

h(ωi)L(ωi)

as an unbiased estimator of µ0. The aim is to select P̃ so
that

Ṽar[h(ω)L(ω)] def= Ẽ[(h(ω)L(ω))2]−µ
2
0

is as small as possible, and preferably much smaller than
Var[X ] = E[h(ω)]−µ2

0 . If h is non-negative, one can check
that dP̃(ω) = (h(ω)/E[h(ω)])dP(ω) yields variance zero.
In the case where P and P̃ are (possibly multivariate) con-
tinuous probability distributions with densities with respect
to the Lebesgue measure, L is the ratio of these densities.
If they are discrete distributions, then L is the ratio of
probabilities.

We shall concentrate on the case where the system is
modeled by a DTMC {Yj, j ≥ 0} as in Section 1.2. Here,
ω represents the sample path Y0,Y1, . . . ,Yτ and we have
X = h(Y0, . . . ,Yτ) = ∑

τ
j=1 c(Yj−1,Yj). To estimate µ0 = E[X ]

by IS, we restrict ourselves to changes of measure that replace
P and π0 by a different kernel and (possibly) a modified
initial distribution, so the model remains a Markov chain
under IS. It turns out that a zero-variance change of measure
can be found within this class.

We replace the transition kernel {P[· | y], y ∈ Y } by a
new kernel {P̃[· | y], y ∈ Y }, and the initial distribution π0
by π̃0, chosen so that for all B ∈F , P̃[B | y] > 0 whenever∫

B µ(y′)P[dy′ | y] > 0, π̃[B] > 0 whenever
∫

B µ(y′)π[dy′] > 0,
and

Ẽ[τ] < ∞. (6)

We should emphasize that the latter is a nontrivial condition.
We then have µ0 = Ẽ[Xis] where

Xis =
τ

∑
j=1

c(Yj−1,Yj)L(Y0, . . . ,Yj) (7)
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and

L(Y0, . . . ,Yj) =
dπ0

dπ̃0
(Y0)

j

∏
i=1

dP
dP̃

(Yi | Yi−1)

is the likelihood ratio associated with the choice of initial
state and the first j transitions.

For more concreteness and simplicity, suppose that
the state space Y is discrete, so the transition kernel is
determined by a matrix of transition probabilities p(y,z) =
P[Yj = z | Yj−1 = y] for x,z ∈ Y , and initial probabilities
π0(y) = P[Y0 = y] for y ∈ Y . We replace the probabilities
p(y,z) and π0(y) by new probabilities p̃(y,z) and π̃0(y).
Then,

P[τ = n, (Y0, . . . ,Yτ) = (y0, . . . ,yn)] = π0(y0)
n

∏
j=1

p(y j−1,y j)

and the likelihood ratio for the initial state and the first j
transitions becomes

L(Y0, . . . ,Yj) =
π0(Y0)
π̃0(Y0)

j

∏
i=1

p(Yi−1,Yi)
p̃(Yi−1,Yi)

.

In the case of a continuous state space, the transition prob-
abilities are replaced by densities and the likelihood ratio
has the same form.

Suppose now that we change the probabilities so that

π̃(y) = π(y)µ(y)/µ0, (8)
p̃(y,z) = p(y,z)[c(y,z)+ µ(z)]/µ(y) if µ(y) > 0, (9)
p̃(y,z) = p(y,z) if µ(y) = 0, (10)

where p represents a probability in the discrete case and a
density in the continuous case. Suppose also that condition
(6) holds under these new probabilities. Then, one can verify
that the IS estimator Xis in (7) equals µ0 with probability
one under P̃, so it has zero variance (Booth 1987, Kuruganti
and Strickland 1996, Kollman et al. 1999, L’Ecuyer and
Tuffin 2007). Indeed, we have

Xis =
τ

∑
j=1

c(Yj−1,Yj)L(Y0, . . . ,Yj)

=
τ

∑
j=1

c(Yj−1,Yj)
π0(Y0)
π̃0(Y0)

j

∏
i=1

p(Yi−1,Yi)
p̃(Yi−1,Yi)

=
τ

∑
j=1

c(Yj−1,Yj)
µ0

µ(Y0)

j

∏
i=1

µ(Yi−1)
c(Yi−1,Yi)+ µ(Yi)

= µ0,

where the last equality is obtained by induction on the
value taken by τ , using the fact that µ(Yτ) = 0. These
zero-variance modified probabilities are also unique in the

sense that no other probabilities π̃(y) and p̃(y,z) give a
Markov chain whose IS estimator has zero variance.

It is important to recognize that condition (6) may fail to
hold under the zero-variance probabilities, as illustrated by
the next example where τ becomes infinite with probability 1.

Example 1 Consider a DTMC with Y = {0,1,2},
∆ = {2}, π0(0) = 1, p(0,0) = p(0,1) = 1/2, and p(1,0) =
p(1,1) = p(1,2) = 1/3. We define µ(y) as the expected
number of transitions before reaching state 2, given that we
are in state y. We then have µ(2) = 0, c(y,2) = 0 for any
y, and c(y,z) = 1 for z 6= 2. Then, (9) gives p̃(y,2) = 0 for
y = 0,1, which implies that the chain will never reach the
stopping time τ under these new probabilities! 2

This example unveils the fact that whenever all the
transitions leading directly to ∆ have zero cost, these tran-
sitions will be assigned zero probability and we will never
reach ∆ under the new probabilities. Fortunately, there is a
simple trick to resolve this difficulty: Just add a cost δ to
any transition that enters ∆, where δ > 0 is a constant, and
run the simulation with the zero-variance probabilities thus
obtained. With this trick, under the additional assumptions
that supy∈Y ,z∈∆ c(y,z) < ∞ and infy∈Y P[τ ≤m |Y0 = y] > 0
for some constant m, one can show that (6) is satisfied under
the probabilities (9) (Baggerly, Cox, and Picard 2000). Af-
terward, we subtract δ to the final (zero-variance) estimator.

Of course, we cannot implement (9) and (8) exactly,
because the function µ : Y → R is unknown, but we can
approximate this zero-variance change of measure if we
can replace µ in these equations by a good proxy (or
good approximation) chosen so that it is not too difficult to
generate variates from the corresponding IS distributions.

Example 2 We give a simple academic exam-
ple where zero variance can be reached exactly. Of
course, simulation is not needed in this case; this is just
an illustrative example. Consider a DTMC with state-
space Y = {0,1, . . . ,B}, for which p(y,y + 1) = py and
p(y,y−1) = 1− py, for y = 1, . . . ,B−1, and take ∆ = {0,B}
(so the probabilities from 0 and from B are irrelevant). We
want to compute the probability of reaching B before reach-
ing 0, starting from a given y, i.e., µ(y) = P[Yτ = B |Y0 = y].
This is a stylized version of a problem that arises in telecom-
munications, where one is interested in how frequently a
router becomes congested. Here, the recurrence equation
(1) becomes

µ(y) = pyµ(y+1)+(1− py)µ(y−1)

for y = 1, . . . ,B−1, with the boundary conditions µ(0) = 0
and µ(B) = 1. Assuming that we start from a fixed state
Y0 = y0, the zero-variance change of measure is defined by

p̃y =
pyµ(y+1)

µ(y)
.
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Because µ(0) = 0, we see that p̃1 = 1 and that no sample
path will ever return to 0 under zero-variance IS.

When py = p < 1 for y = 1, . . . ,B− 1, this problem
is known as the gambler’s ruin problem. Its solution is
µ(y) = (1−ρ−y)/(1−ρ−B) if ρ = p/(1− p) 6= 1/2, and
µ(y) = y/B if ρ = 1/2. This gives

p̃y =
1−ρ−y−1

1−ρ−y p.

Note that the new probabilities p̃y do not depend on B,
but they depend on the distance from 0. Moreover, one
can verify that (py−1/p̃y−1)(1− py)/(1− p̃y) = 1, which
means that any cycle (subpath going from one state to the
same state) in a sample path does not contribute to the
likelihood ratio. In other words, all paths leading to B are
essentially the same path and have the same likelihood ratio.
If p < 1/2, we have ρ < 1 and p̃y > 1/2 for all y, so the
system is attracted toward B under IS. If p > 1/2, we also
have p̃y > p > 1/2.

For large B, we can use the approximation µ(y) =
(ρB−y− ρB)/(1− ρB) ≈ ρB−y, which corresponds to the
probability of the sample path that goes directly from y
to B. This path is the dominating path when ρ is small,
in the sense that it has a much larger probability than
the other paths leading to B, and it is easy to see that
using this approximation in (9) leads to an estimator with
VRE for p→ 0, or B→ ∞ with p < 1/2, because then
ρB−y/µ(y)→ 1. 2

In the previous example, there is essentially a single path
leading to B. For more complex Markov chains, the number
of distinct paths to the target set can be much larger, and this
can greatly complicate the computation of the zero-variance
IS. Yet, good approximations are sometimes possible, based
on asymptotic analysis, as shown by the next example, taken
from L’Ecuyer et al. (2008).

Example 3 Suppose that our Markov chain has fi-
nite state space Y = {0, . . . ,M−1}, a fixed initial state y0,
and that we want to estimate the probability µ0 that the
chain hits a given set B ⊂ Y before returning to y0. We
have ∆ = B∪{y0}. Suppose that the transition probabilities
are parameterized as

p(y,z) = p(y,z,ε) = P[Yj = z | Yj−1 = y] = a(y,z)εb(y,z),

where a(y,z) and b(y,z) are non-negative constants for each
pair (y,z). We can then write µ0 = µ0(ε).

Models of highly reliable Markovian systems consid-
ered in Shahabuddin (1994), Nakayama (1996), L’Ecuyer
and Tuffin (2007), for example, fit this framework. In these
models, B represents the set of state where the system is
failed and y0 is the state of a new system. Each transition
corresponds either to a failure of one or more components
(it brings the system closer to B) or to a repair (it brings

the system farther from B). Typically, b(y,z) > 0 for the
failure transitions and b(y,z) = 0 for the repair transitions,
so µ0(ε)→ 0 when ε → 0.

For y 6∈ ∆, let ΠB(y) be the set of all sample paths
π = (y,y1, . . . ,yτ) where yτ ∈ B and y j 6∈ ∆ for j < τ . Let
ΠB = ΠB(y0). Suppose that there is a set Π1 ⊂ ΠB such
that

p(π,ε) =
τ

∏
j=1

p(y j−1,y j,ε) = a(π)εb +o(εb)

for all π ∈Π1, for some constants a(π) > 0 and b > 0, and
p(π,ε) = o(εb) for all π 6∈ Π1. We also assume that all
cycles that belong to some path π ∈ ΠB have probability
O(εδ ), for some constant δ > 0. This implies that Π1 must
be finite, because it cannot contain paths having a cycle.
When ε→ 0, Π1 is the set of dominant paths of ΠB, in the
sense that

lim
ε→0

1
µ0(ε) ∑

π∈Π1

p(π,ε) = 1.

We now apply IS with modified probabilities for which

p̃(π,ε) =
τ

∏
j=1

p̃(y j−1,y j,ε) =
a(π)

a
+o(1) (11)

when ε → 0, for all π ∈ Π1, where a = ∑π∈Π1
a(π). We

assume that for each path π ∈ΠB \Π1 for which p(π,ε) =
Θ(εb(π)) for b(π) > b, we have p̃(π,ε) = Θ(εc(π)) for some
constant c(π) that satisfies

2[b(π)−b] > c(π) > 0. (12)

We also assume that for any state y 6∈ ∆ that belongs to a
path π ∈ΠB, the probability of returning to y before hitting
∆ under IS is strictly less than 1, and the likelihood ratio
associated with any such cycle does not exceed 1 if ε is
small enough.

Under these conditions, the IS estimator is Xis(ε) =
p(π,ε)/ p̃(π,ε) = aεb + o(εb) if we reach B via a path
π ∈ Π1, which happens with probability 1 + o(1), and all
other paths have o(1) contribution (L’Ecuyer et al. 2008).

L’Ecuyer and Tuffin (2007) propose heuristic methods
to approximate zero-variance IS in this setting and illustrate
the effectiveness of their proposals by numerical examples
of highly reliable Markovian systems. After observing that

µ(y) = ∑
π∈ΠB(y)

p(π,ε),



L’Ecuyer and Tuffin

they start with the simple idea of replacing µ(y) in (9) by
its crude lower bound

v0(y) = max
π∈ΠB(y)

p(π,ε),

which is usually easy to compute from any state y by solving
a shortest path problem. This estimate is fine when a single
path dominates the sum, but otherwise it may underestimate
µ(y) significantly. Typically, this underestimation becomes
worse when we are farther away from B. L’Ecuyer and Tuffin
(2007) suggest refinements to this crude lower bound. A
first improvement is to sum the probabilities of a set of
disjoint dominant paths leading to B instead of just a single
one. This gives a tighter lower bound, ṽ0(y). In another
refinement, they estimate µ(y0) in preliminary runs with a
crude IS strategy, then approximate µ(y) by a function v1(·)
that interpolates this estimate of µ0 at y0 and on the set
B (where µ(y) = 1) by raising v1(·) to some power. They
also propose further refinements.

In their numerical experiments, IS with these types
of approximations performs much better than the popular
heuristics such as simple failure biasing (SFB), balanced
failure biasing (BFB), and balanced likelihood ratios, pro-
posed earlier for these types of models (L’Ecuyer and Tuffin
2007). L’Ecuyer et al. (2008) show that if µ(y) in (9) is
replaced by v(y) where v(y) is the sum of probabilities of all
the dominant paths from y (those with the smallest power of
ε), then we have VRE. In this sense, the method performs
increasingly better when ε gets smaller. If we just take v(y)
as the probability of the most probable path to failure from
y, then we have BRE but not VRE in general. With SFB or
BFB, one can achieve BRE (under some conditions), but
never VRE. 2

In the previous examples, we have a DTMC model with
a stopping time naturally defined by a subset of states. In
other situations, the model might have to be reformulated
appropriately so it fits our DTMC framework. This can
always be done by including enough information in the
state. For example, if we consider a continuous time Markov
chain (CTMC) in which the cost depends on the holding
time at each step, or for which the time horizon is fixed
(instead of being the time when the CTMC hits a given set
of states), then it suffices to include the current time (or the
time that remains before reaching the horizon) in the state
of the DTMC. Likewise, if we have a DTMC model with
a fixed number of steps, then we must include the current
step number (or the number of steps that remain) in the
state.

Example 4 This example is adapted from De Boer
et al. (2007). In Example 3, suppose that we have a CTMC
{X(t), t ≥ 0} with state space X and that the transition
probabilities are transition rates instead. Thus, the time
until the next transition is always an exponential random
variable with state-dependent rate. There is a fixed time

horizon t∗ and we want to estimate the probability µ0 of
reaching the set of states B̃ before time t∗, from a given
initial state y0.

Let {X j, j≥ 0} be the embedded DTMC (the sequence
of visited states). We can easily reformulate this process as
a DTMC by redefining the state at step j (just after the jth
transition) as Yj = (X j,R j), where R j is the remaining clock
time before reaching t∗, B = {(X j,R j) : X j ∈ B̃ and R j > 0}
and ∆ = B∪{(X j,R j) : R j ≤ 0}. The zero-variance change of
measure is defined as usual, based on Yj. Let µ(y) = µ(x, t)
be the probability of reaching B̃ before the time limit if the
DTMC is in state y = (x, t). We have

µ(x, t) =


1 if x ∈ B̃ and t > 0,
0 if t ≤ 0,
E(x,t)[µ(X1,R1)] otherwise.

In the latter case, we have

E(x,t)[µ(X1,R1)]

=
∫ t

0
∑

x′∈X
µ(x′, t−δ )p(x,x′)λx exp[−λxδ ]dδ ,

where λx is the total jump rate when the CTMC is in state
x, and p(x,x′) is the probability that this jump is to state x′.
Here, p(x′, t−δ | x, t) = p(x,x′)λx exp[−λxδ ], for δ > 0, is
the density of the next state at (x′, t−δ ) when the current
state is (x, t) for the DTMC.

To obtain a zero-variance IS estimator, we change the
density p to a density p̃ defined by

p̃(x′, t−δ | x, t) =
µ(x′, t−δ )

µ(x, t)
π(x′, t−δ | x, t)

for x′ ∈X and 0 < δ < t, and 0 elsewhere, if µ(x, t) > 0
(De Boer et al. 2007). Under this new density, the time
until the next jump is no longer exponential, so we no
longer have a CTMC. This time is nonzero only over the
interval (0, t), and it is not a truncated exponential either;
in fact, since µ(x′, t − δ ) is decreasing in δ , the right
“tail” of the new distribution of the time to the next jump
(before truncation) decreases faster than for the exponential
distribution. When µ(x, t) = 0, the density is unchanged:
p̃(x′, t−δ | x, t) = p(x′, t−δ | x, t).

De Boer et al. (2007) observe that sampling from
this zero-variance IS is unpractical and propose a simple
approximation, similar to those of the previous example,
valid for the case where the expected number of transitions
within the time horizon t∗ is small. The idea is to approximate
µ(y) by the sum of probabilities of a few dominant paths
(those having the largest probability) among those leading
to the rare set B. They give numerical examples where this
approach performs well. In these examples, they consider
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a single dominant path, namely the “shortest path” leading
to B. They also perform an asymptotic analysis in which
the jump rates are parameterized by ε in the same way
as the transition rates in Example 3. They show that their
approach provides an IS estimator with BRE in general,
and VRE under additional conditions similar to the VRE
conditions in Example 3. 2

4 ZERO VARIANCE VIA CONTROL VARIATES

A zero-variance estimator can also be defined via control
variates (CV), as follows (Henderson and Glynn 2002,
Henderson and Simon 2004, Kim and Henderson 2006).
We again assume the same DTMC model as in Section 1.2.
The idea is to replace the estimator X = ∑

τ
j=1 c(Yj−1,Yj) by

Xcv = X−Mτ

where

Mτ =
τ

∑
j=1

(
c(Yj−1,Yj)+ µ(Yj)−µ(Yj−1)

)
=

τ

∑
j=1

(
c(Yj−1,Yj)+ µ(Yj)

−E[c(Yj−1,Yj)+ µ(Yj) | Yj−1]
)
.

One can easily verify that E[Mτ ] = 0, so E[Xcv] = E[X ]
(unbiasedness), and that Xcv = µ(y0), a constant, because
µ(Yτ) = 0. Thus, we have a zero-variance estimator.

Of course, the function µ is unknown, but we still have
E[Mτ ] = 0 if we define

Mτ =
τ

∑
j=1

(
c(Yj−1,Yj)+ v(Yj)−E[c(Yj−1,Yj)+ v(Yj) | Yj−1]

)
,

(13)
where v is an approximation of the function µ such that
v(y) = 0 for y ∈ ∆. This Mτ is a martingale, regardless of
the choice of v. With a reasonably good approximation, the
variance can sometimes be reduced significantly. Adaptive
learning methods to find a good v are discussed in Section 5.
Note that this methodology is usually not appropriate for
rare-event simulation, because it does not make the rare
events occur more frequently.

Kim and Henderson (2007) extends the method to re-
generative simulation for the estimation of steady-state per-
formance measure. Henderson and Glynn (2002) consider
applications to infinite-horizon models with discounting and
to stochastic differential equations.

5 APPROXIMATIONS AND ADAPTIVE
LEARNING

For both IS and CV, the zero-variance schemes described
earlier require the knowledge or a good approximation of
the function µ . In previous examples, such approximations
were obtained a priori by the sum of probabilities of a
few dominating sample paths. More generally, in the rare
event setting of Section 2, one can do well in some cases
by replacing µ by an approximation obtained from a priori
knowledge of the asymptotic behavior of the system, e.g.,
from large deviation’s theory (Dupuis and Wang 2004, Juneja
and Shahabuddin 2006, Asmussen and Glynn 2007, Blanchet
and Glynn 2007).

Most practical approaches to approximate µ work by
first selecting a parametric class of functions V = {v(·;θ) :
Y →R, θ ∈Θ}, where Θ⊆Rm, and θ = (θ1, . . . ,θm) is a
vector of parameters that we try to optimize so that v = v(·;θ)
is close to µ in some sense.

One natural and convenient way of doing this is to
select a fixed set of basis functions v1, . . . ,vm, independent
over R, and define V as the space of all linear combinations
of these functions, i.e., the linear space

V =

{
v = v(·;θ) =

m

∑
i=1

θivi(·)

}
(14)

where θ = (θ1, . . . ,θm)∈Rm. In this setting, the vector θ is
usually found by least-squares approximation: an estimate
µ̂(y) of µ(y) is obtained at a finite number of initial states
y, say y1, . . . ,yr ∈ Y , and then we compute

θ = argmin
θ∈Θ

r

∑
`=1
|v(y`;θ)− µ̂(y`)|2

via standard least-squares linear regression, assuming that
the design points y1, . . . ,yr have been selected so that the
regression coefficients are identifiable.

More generally, the parameterization can be nonlinear,
in which case the optimal θ can be much more difficult to
find. It can be approximated by statistical adaptive learn-
ing (Juneja and Shahabuddin 2006), using techniques such
as stochastic approximation and (iterative) sample average
approximation, for example (Kim and Henderson 2006).
This can work even if no explicit characterization of µ is
available a priori.

All these methods can converge to the zero-variance
sampling only if the parameterized class V contains the
function µ . Otherwise, the distance between µ and its
closest approximation in V imposes a positive lower bound
on the variance per simulation run. This means that if V is
fixed and µ 6∈ V , the central-limit theorem will eventually
kick in when the computing budget increases toward ∞,
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so the convergence rate is asymptotically O(n−1/2) (in the
probabilistic sense) in terms of the number n of simulation
runs. But if µ ∈V , we can do better. One simple case where
µ ∈V is if the state space Y is finite, say Y = {y1, . . . ,ym},
and we take the vector θ equal to the vector µ; that is,
θi = µ(yi) for i = 1, . . . ,m. Kollman et al. (1999) and
Baggerly et al. (2000) consider a slightly more general case
where V is a linear space of the form (14) that contains µ .

In general, the most difficult task is to select a good
parameterized space V , so that µ can be well approximated
by at least one function from that space. In the linear case,
this means a good set of basis functions v1, . . . ,vm. In the
case of IS, another key issue is that an efficient method
must be available to generate random variates from the
transformed probabilities or densities. If we replace µ in (9)
by an arbitrary approximation v, this would typically give a
probability distribution for which no efficient random variate
generation is available. This is an important limitation.

For IS, instead of parameterizing v, we can directly
parameterize the IS distribution, and then minimize the
variance of Xis with respect to these IS parameters. This
type of approach has been the most popular in the past
(Rubinstein and Shapiro 1993, Rubinstein 1999). It includes
the cross-entropy method, for example. A major advantage
is that we can restrict ourselves a priori to a parameterized
class of distributions from which random variate generation
is easy.

5.1 Adaptive Learning of Zero-Variance IS

Several algorithms have been proposed to approximate zero-
variance IS by statistical learning of the function µ , or of
the IS distribution (or Markov chain transition kernel) that
minimizes the variance within some class of distributions
(Juneja and Shahabuddin 2006). Under certain conditions,
the function µ and the zero-variance transition kernel can be
learned adaptively at an exponential rate and this provides
an estimator with exponential convergence, in the sense that
the error converges as O(e−κn) for some constant κ > 0
instead of the usual O(n−1/2) (Booth 1985, Booth 1987,
Kollman et al. 1999, Baggerly et al. 2000).

Kollman et al. (1999) have proposed an adaptive impor-
tance sampling method, also called adaptive Monte Carlo
(AMC), which proceeds iteratively as follows. At step i, it
uses an approximation µ(i) of µ (or a guess of µ , at the first
step), and performs ri independent simulation replications
using the probabilities (in the case of a discrete state space)

P̃(i)(y,z) =
P(y,z)(c(y,z)+ µ(i)(z))

∑w∈Y P(y,w)(c(y,w)+ µ(i)(w))
, (15)

obtained by replacing µ by µ(i) in the zero-variance ex-
pression (9). For µ(i+1), these authors use a linear model,
which they fit to the simulation data at step i by least-squares

regression. Under the assumptions that the linear model is
exact (which is typically not quite realistic unless the model
contains as many parameters as the number of states), and
that the ri’s are large enough, they prove that µ(i) converges
to µ at an exponential rate when i→ ∞. This result also
applies to variants of their algorithm, including one in which
µ(i+1) is defined as a convex combination of µ(i) and the
least-squares fit. Baggerly, Cox, and Picard (2000) extend
these results to general (continuous) state spaces. Note that
this algorithm can be represented by a large Markov chain,
whose state contains the current vector µ(i). Desai and
Glynn (2001) show that proving convergence to the zero-
variance IS cannot be done in general with the standard
techniques for analyzing geometric convergence of Harris-
recurrent Markov chains, and requires specific methods of
proof.

Ahamed, Borkar, and Juneja (2006) proposed another
iterative learning algorithm that approximates µ by adaptive
stochastic approximation (ASA), in the case where Y is
finite. It starts with a given distribution of the initial state
Y0, an initial transition matrix P̃(0), and an initial guess µ(0)

of the function µ . The ASA algorithm runs a single sample
path. At step j of the path, if the current state is y j 6∈ ∆, the
current transition matrix P̃( j) is used to generate the next
state y j+1. From this new state, we update the estimate of
µ(y j) by the look-ahead rule:

µ
( j+1)(y j) = (1−a j(y j))µ

( j)(y j)

+a j(y j)
[

c(y j,y j+1)+ µ
( j)(y j+1)

P(y j,y j+1)
P̃( j)(y j,y j+1)

]
,

where {a j(y), j≥ 0}, is a sequence of step sizes that satisfies
∑

∞
j=1 a j(y) = ∞ and ∑

∞
j=1 a2

j(y) < ∞ for each state y. The
probability matrix is then updated as

P̃( j+1)(y j,y j+1) = max

(
δ ,

P(y j,y j+1)
c(y j,y j+1)+ µ( j+1)(y j+1)

µ( j+1)(y j)

)

where δ > 0 is a constant whose role is to ensure that the
likelihood ratio remains bounded (to rule out the possibility
that it takes huge values). For the other states, we leave
µ( j+1)(y) = µ( j)(y) and P̃( j+1)(y,z) = P̃( j)(y,z). We then
normalize via

P̃( j+1)(y j,y) =
P̃( j+1)(y j,y)

∑z∈Y P̃( j+1)(y j,z)

for all y ∈ Y . When y j ∈ ∆, i.e., if the stopping time is
reached at step j, y j+1 is generated again from the initial
distribution, and the current probability matrix and estimate
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of µ are left unchanged. This method makes sense only if
the state space is finite and not too large, because of the
need to store the vector µ( j) explicitly.

For larger state spaces, we can restrict ourselves a priori
to a linear space as in (14), and use adaptive learning to
optimize the parameter vector θ instead of learning µ(y)
directly for each state y.

Example 5 Bolia, Juneja, and Glasserman (2004)
use least-squares regression with a given set of basis func-
tions to approximate the value function in the context of
pricing an American option, as in the least-square Monte
Carlo method (Glasserman 2004), and also approximate the
zero-variance IS by plugging in (9) a least-squares approx-
imation of the continuation value function (the value of the
option conditional on not exercising it at the current step).
In a first-stage, they learn good vectors of weights θ for each
of these two value functions, and use them to approximate
both the zero-variance IS and the optimal stopping rule.
In a second stage, they use these approximations to esti-
mate the value function more accurately. A key ingredient
of their proposal is their choice of basis functions of the
form vi(y) = exp[ai log2 y+bi logy], where the ai and bi are
constants. With this particular choice, the IS densities at
each step turn out to be mixtures of lognormal distributions,
from which random variates are easy to generate. In their
numerical illustrations, the variance is reduced by factors
ranging from about 5 to 15, which is far from spectacu-
lar but still significant. The main factor limiting further
variance reduction seems to be the lack of fit between the
true value function and the best approximation with their
selected basis functions. 2

5.2 Adaptive Learning for Control Variates

For control variates, it is also natural to approximate µ via
(14) and least-squares regression. If we denote the control
variate (13) by Mτ(v), this gives

Mτ(v(·;θ)) =
m

∑
i=1

θiMτ(vi).

In other words, we have a linear combination of m control
variates Mτ(vi), so the optimal θi can be estimated via the
standard least-squares regression procedure used for linear
control variates (Glasserman 2004, Asmussen and Glynn
2007). Of course, the key issue again is the choice of basis
functions v1, . . . ,vm. This is highly problem-dependent.

In the case where the parameterization of v(y;θ) is
nonlinear, optimizing θ is more complicated. Kim and
Henderson (2006) study and compare two stochastic opti-
mization methods for that context, one based on stochastic
approximation and the other based on sample average ap-
proximation. They demonstrate the feasibility of these meth-
ods by a numerical experiment with the pricing of barrier

options. In their experiment, sample average approximation
is the best performer.

6 ZERO VARIANCE VIA GENERALIZED
ANTITHETIC VARIATES AND QUASI-MONTE
CARLO

With generalized antithetic variates (GAV), we estimate
µ0 = E[X ] by the average of k dependent realizations of X ,
say X (1), . . . ,X (k):

Xa =
1
k

k

∑
i=1

X (i)

(Wilson 1979, Ben-Ameur et al. 2004, L’Ecuyer 2008).
The variance of Xa is

Var[Xa] =
1
k2

k

∑
j=1

k

∑
`=1

Cov[X ( j),X (`)]

=
Var[X ]

k
+

2
k2 ∑

j<`

Cov[X ( j),X (`)].

We have Var[Xa] < Var[X ]/k if and only if the sum of
covariances is negative. It does not seem obvious a priori
how zero variance can be achieved with the GAV scheme.

The classical antithetic variates (AV) scheme takes
k = 2, X (1) = f (U), and X (2) = f (1−U), assuming that
X = f (U) where U ∼U(0,1). A very simple case is when
X = f (U) = aU + b where U ∼U(0,1) (so f is an affine
function). Then, AV gives Xa = a/2+b, a constant, so we
have zero variance. This also works for a linear function
of several variables. If f is monotone, AV always reduces
the variance, but not to zero unless f is linear.

Zero variance (or faster convergence than O(n−1/2)) can
also be obtained for certain spaces of nonlinear functions by
more refined GAV schemes which are better known under
the name of randomized quasi-Monte Carlo (RQMC). The
usual RQMC framework is as follows. Suppose X can be
written as X = f (U) where U is a vector of s independent
U(0,1) random variables. Any expectation that admits an
unbiased estimator by simulation can be written in this form,
sometimes with d = ∞ (to cover the case where the required
number of uniforms is random). An RQMC estimator has
the form

µ̂n,rqmc =
1
n

n−1

∑
i=0

f (Ui), (16)

where {U0, . . . ,Un−1} is a set of n random points that cover
the unit hypercube [0,1)s very evenly (or uniformly, as a
set) and such that each individual point is a random vector
with the uniform distribution over (0,1)s.
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Two examples of such an RQMC point sets are a lattice
rule with a random shift modulo 1 and a digital net with
a random digital shift; see Niederreiter (1992), Sloan and
Joe (1994), Owen (2003), L’Ecuyer and Lemieux (2002),
L’Ecuyer (2008) for their definitions. The uniformity of
these point sets is often measured by a figure of merit that
provides a bound on the worst-case variance over a given
Hilbert space of functions. For example, for the Sobolev
space of functions f : [0,1)s → R with square integrable
mixed partial derivatives up to order α , for any δ > 0, it
is known that there exist RQMC rules giving O(n−2α−1+δ )
worst-case variance (Hickernell 2003) and it is not difficult
to find (by computer search) RQMC rules that achieve
O(n−2α+δ ) worst-case variance (Dick et al. 2004, Dick
et al. 2006).

In the case of a randomly-shifted lattice rule, the vari-
ance can be written exactly as

Var[µ̂n,rqmc] = ∑
06=h∈L∗s

| f̂ (h)|2, (17)

where the f̂ (h) are the coefficients of the Fourier expansion
of the function f and L∗s is the dual lattice, defined as
the set of vectors h ∈ Zs whose scalar product modulo 1
with any point of the integration lattice is zero. If we can
construct a lattice rule whose dual lattice contains none of
the vectors h for which f̂ (h) 6= 0, this gives a zero variance
RQMC estimator. In particular, this is always possible (with
a large enough n) if f has a Fourier expansion with a finite
number of nonzero Fourier coefficients. For an arbitrary
f , (17) indicates that we should try to select the lattice in
order to minimize this expression. This can be achieved
(in principle) by making sure that the dual of the selected
lattice does not contain the vectors h associated with the
largest square Fourier coefficients. This idea is discussed
in L’Ecuyer and Lemieux (2000) and L’Ecuyer (2008), for
example. However, much research work is still needed for
its practical implementation, which should involve adaptive
algorithms.

Similar properties hold for digital nets with a random
digital shift, with the coefficients of the Fourier expansion
replaced by those of the Walsh coefficients (Dick 2008).

7 CONCLUSION

In theory, both IS and CV can achieve zero-variance for the
simulation of a Markov chain. In practice, zero-variance
sampling can only be approximated, usually by approxi-
mating the value function µ , and good approximations can
be difficult to find in general. Least-squares approxima-
tion by a linear combination of a small (fixed) set of basis
functions seems to be the natural solution in the case of
continuous or very large state spaces. The main difficulty
then is the choice of those basis functions. In the case

of IS, another hurdle is that the approximation must be
selected in a way that random variate generation from the
modified distribution is not too hard. This problem does
not appear with CV. Despite these difficulties, there are
situations where approximate zero-variance sampling can
provide very significant gains in efficiency, as exemplified
by the numerical experiments reported in recent articles
listed in our bibliography. More applications could benefit
from this technology. This offers a fertile and exciting area
for further research.
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