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ABSTRACT

We consider a multivariate distribution with both discrete and continuous marginals, for which the dependence is modeled
by a normal copula (sometimes called the NORTA method), and provide an algorithm for fitting the copula in that situation.
The fitting is done by matching (approximately) either the rank correlations or the product moment correlations for all pairs
of marginals. Numerical illustrations are provided.

1 INTRODUCTION

Random vectors are essential to capture the dependence between various quantities in stochastic models. Capturing this
dependence is often even more important than picking the correct marginal distributions. The usual way of defining a
multivariate distribution is to first specify the marginal distributions, and then select a copula that determines the dependence
structure between these marginals (Joe 1997, Nelsen 1999, Hörmann, Leydold, and Derflinger 2004).

A popular and convenient type of copula, especially when the dimension is large, is the normal copula, which depends
only on the pairwise rank correlations between the marginals when these marginal are continuous (Mardia 1970). Modeling
dependence by a normal copula is also known as the NORTA (normal to anything) method (Cario and Nelson 1997, Ghosh
and Henderson 2003). It consists in specifying a multinormal distribution with given correlation matrix, where each marginal
is standard normal (with mean 0 and variance 1). To generate a random vector with arbitrary marginal distributions, one
generate a vector from this multinormal distribution, then transform each coordinate by applying first the standard normal
distribution function, and then the inverse distribution function of the desired marginal. All the dependence is determined
by the correlation matrix of the multinormal.

This correlation matrix is usually specified by specifying a target rank correlation for each pair of marginals (e.g., to
match the sample rank correlation observed in some data set), and then finding the correlation between the corresponding
pair of standard normals that would produce that target rank correlation for the marginals. We refer to the latter as the
pairwise correlation matching problem. Solving this problem for each pair of marginals provides a proposal correlation
matrix for the standard normal distribution. It often happens, particularly when the dimension is large, that this proposal
matrix is not positive semi-definite (Ghosh and Henderson 2003), but in that case one can compute the “closest” positive
semidefinite matrix (for a given norm on matrices) by solving an optimization problem that minimizes the distance to the
proposal (Ghosh and Henderson 2003, Lurie and Goldberg 1998). Typically, this distance turns out to be small.

Our concern in this paper is to solve the pairwise correlation matching problem. When the two marginals are continuous,
the solution is straightforward, because a simple analytic formula gives directly the correlation ρ between the standard
normals as a function of the desired rank correlation r. We have ρ = 2sin(πr/6). But no direct formula is available if
one (or both) marginal is discrete. The case where both marginals are discrete was studied by Avramidis, Channouf, and
L’Ecuyer (2009), who proposed efficient approximation algorithms to match either the rank or the linear correlations. But
their methods do not cover the case where one marginal is discrete and the other one is continuous. The aim of the present
paper is to fill this gap.

Our proposed method builds on similar ideas as in Avramidis, Channouf, and L’Ecuyer (2009), with adaptations, and
we end up with a different and simpler algorithm. In particular, the method involves the computation of the bivariate normal



distribution, which requires a double integration in Avramidis, Channouf, and L’Ecuyer (2009). But here we transform the
two-dimensional integral to a one-dimensional one before solving it numerically. Moreover, whereas Avramidis, Channouf,
and L’Ecuyer (2009) have double infinite sums to approximate, here we only have simple sums to handle.

Instead of specifying target rank correlations, one can alternatively specify the usual linear (product-moment) correlations
between the marginals. These correlations do depend on the marginals and have other drawbacks discussed in Hörmann,
Leydold, and Derflinger (2004) and Avramidis, Channouf, and L’Ecuyer (2009). Our recommendation is to use the rank
correlations, which are generally preferable and easier to handle. But our methodology nevertheless covers the product-moment
correlations as well.

The remainder is organized as follow. In Section 2, we recall basic facts and definitions on normal copulas and the
correlation matching problem, for both the rank and linear correlations. In Section 3 we present our method for the mixed
case. We give numerical examples in Section 4 and we conclude in Section 5.

2 THE NORMAL COPULA

2.1 Definition and the Matching Problem

We want to specify the probability distribution of a random vector X = (X1, . . . ,Xd)t (we use column vectors and “t” means
“transposed”) by specifying (i) the marginal distribution of each X j and (ii) the dependence structure between them. There
is an extremely rich variety of copulas that can be used to determine this dependence structure (Joe 1997, Nelsen 1999).
In this paper, we restrict ourselves to the normal copula, whose main advantage is its simplicity and its ability to match
(exactly or approximately) the pairwise correlations.

Let Fj be the distribution function of X j, defined by Fj(x) = P[X j ≤ x]. Recall that Fj(X j) has the uniform distribution
over (0,1) when X j has a continuous distribution (Fj is continuous), but not necessarily when X j is discrete. For 1≤ i, j≤ d,
the product moment (linear) correlation coefficient between Xi and X j is defined by

ρ
X
i, j = Corr(Xi,X j) =

E[XiX j]−E[Xi]E[X j]
(Var[Xi]Var[X j])1/2

and the rank correlation (also called the Spearman’s ρ) is

rX
i, j = Corr(Fi(Xi),Fj(X j)).

A normal copula is defined by specifying a correlation matrix RZ
ρ with elements ρZ

i, j = Corr(Zi,Z j), 1≤ i, j ≤ d, for a
multinormal vector Z = (Z1, . . . ,Zd)t with standard normal marginals. We then define

Xi = F−1
i (Φ(Zi)), i = 1, . . . ,d, (1)

where Φ is the standard normal cumulative distribution function and F−1
i (u) = inf{x : Fi(x)≥ u}. To generate a realization

of X, it suffices to generate a realization of Z and to compute X via (1). The multinormal vector Z can be generated in the
standard way: decompose RZ

ρ as LLt for some matrix L, generate a vector W of d independent standard normal random
variables, and put Z = LW. The correlation matrix RZ

ρ must be symmetric and its diagonal elements must be ones, so there
are d(d− 1)/2 elements to specify. The pairwise correlation matching problem studied in this paper consists in finding,
for each pair 1 ≤ i < j ≤ d, the value of ρZ

i, j that produces a given target rank correlation rX
i, j or a given product-moment

correlation ρX
i, j.

In the case where Xi has a continuous distribution, Fi(Xi) = Φ(Zi) has the uniform distribution over (0,1). If both Xi and
X j have continuous distributions, then rX

i, j is the same as the rank correlation between Zi and Z j, and the matching problem
is solved by the simple formula ρZ

i, j = 2sin(πrX
i, j/6). In the remainder, we focus on the case where some Xi has a discrete

distribution, in which case Fi(F−1
i ) is not the identity function. We consider a single pair (i, j) at a time. When d > 2, this

pairwise correlation matching problem must be solved for all d(d−1)/2 pairs (i, j) with i < j.



2.2 Matching the Rank or the Product-Moment Correlations

The rank correlation rX
i, j satisfies

rX
i, j = Corr(Fi(Xi),Fj(X j)) = Corr(Fi(F−1

i (Φ(Zi))) ,Fj(F−1
j (Φ(Z j))))

=
E
[
Fi(F−1

i (Φ(Zi)))Fj(F−1
j (Φ(Z j)))

]
−µFi µFj

σFiσFj

=
gr(ρZ

i, j)−µFi µFj

σFiσFj

, (2)

where

gr(ρZ
i, j) =

∫
∞

−∞

∫
∞

−∞

Fi(F−1
i (Φ(zi)))Fj(F−1

j (Φ(z j)))φ(zi,z j,ρ
Z
i, j)dzidz j, (3)

for 1 ≤ i < j ≤ d, µFi and σ2
Fi

are the mean and variance of Fi(Xi), and φ(·, ·,ρ) is the density of the bivariate standard
normal distribution with correlation ρ . Rearranging (2), we see that the correlation matching problem amounts to finding a
root ρ = ρZ

i, j of the equation:

gr(ρ)−µFi µFj − rX
i, jσFiσFj = 0, (4)

for 1≤ i < j ≤ d.
For the product-moment correlation ρX

i, j, we have

ρ
X
i, j = Corr(Xi,X j) = Corr(F−1

i (Φ(Zi)) ,F−1
j (Φ(Z j)))

=
E
[
F−1

i (Φ(Zi))F−1
j (Φ(Z j))

]
−µiµ j

σiσ j
=

gl(ρZ
i, j)−µiµ j

σiσ j
, (5)

where

gl(ρZ
i, j) =

∫
∞

−∞

∫
∞

−∞

F−1
i (Φ(zi))F−1

j (Φ(z j))φ(zi,z j,ρ
Z
i, j)dzidz j, (6)

where µi and σ2
i are the mean and variance of Xi. The corresponding correlation matching problem amounts to finding a

root ρ = ρZ
i, j of

gl(ρ)−µiµ j−ρ
X
i, jσiσ j = 0, (7)

for 1≤ i < j ≤ d.
Avramidis, Channouf, and L’Ecuyer (2009) provide efficient algorithms for the root-finding problems (4) and (7) when

both marginal are discrete. In the next section, we provide an algorithm for the situation where one marginal is discrete and
the other is continuous.

3 FITTING IN THE CASE OF DISCRETE AND CONTINUOUS MARGINALS

Here we assume that Xi has a continuous distribution over the real line and that X j has a discrete distribution over the
integers. We develop algorithms for solving (4) and (7) for this case. The method differs from that of Avramidis, Channouf,
and L’Ecuyer (2009), although it is based on similar ideas.

Using the fact that

φ(zi,z j,ρ
Z
i, j) = φ(zi)φ

(
z j−ρZ

i, jzi

1− (ρZ
i, j)2

)(
1− (ρZ

i, j)
2)−1/2



where φ is the density of the standard normal, we can write (3) as

gr(ρZ
i, j) =

∫
∞

−∞

∫
∞

−∞

Fi(F−1
i (Φ(zi)))Fj(F−1

j (Φ(z j)))φ(zi,z j,ρ
Z
i, j)dzidz j

=
∫

∞

−∞

∫
∞

−∞

Φ(zi)Fj(F−1
j (Φ(z j)))φ(zi)φ

 z j−ρZ
i, jzi√

1− (ρZ
i, j)2

(1− (ρZ
i, j)

2)−1/2
dzidz j

=
∫

∞

−∞

Φ(zi)φ(zi)√
1− (ρZ

i, j)2

∫ ∞

−∞

Fj(F−1
j (Φ(z j)))φ

 z j−ρZ
i, jzi√

1− (ρZ
i, j)2

dz j

dzi

=
∫

∞

−∞

Φ(zi)φ(zi)√
1− (ρZ

i, j)2

 ∞

∑
l=−∞

f j,l

∫ z j,l

z j,l−1

φ

 z j−ρZ
i, jzi√

1− (ρZ
i, j)2

dzi

=
∞

∑
l=−∞

f j,l

∫ ∞

−∞

Φ(zi)φ(zi)

Φ

 z j,l−ρZ
i, jzi√

1− (ρZ
i, j)2

−Φ

 z j,l−1−ρZ
i, jzi√

1− (ρZ
i, j)2

dzi

 , (8)

where f j,l = Fj(l) and z j,l = Φ−1( f j,l). Here we have transformed the integral involving the discrete distribution of X j to
a sum of terms where each term is a constant multiplied by an area under the normal density. Note that in Avramidis,
Channouf, and L’Ecuyer (2009), we had to apply the same transformation with a bivariate normal density, because both
marginals were discrete. We now apply the change of variable ui = Φ(zi) to obtain an integral over the interval (0,1):

gr(ρZ
i, j) =

∞

∑
l=−∞

f j,l

∫ 1

0
ui

Φ

 z j,l−ρZ
i, jΦ

−1(ui)√
1− (ρZ

i, j)2

−Φ

 z j,l−1−ρZ
i, jΦ

−1(ui)√
1− (ρZ

i, j)2

dui

 . (9)

To find a root of (4) with gr given in (9), as in the algorithm NI1 of Avramidis, Channouf, and L’Ecuyer (2009), we
use the procedure zero of Brent (1971), also described in Press, Teukolsky, Vetterling, and Flannery (1992), and called
Brent’s method. It combines root bracketing, bisection, and inverse quadratic interpolation. To find the root of a function
f , at each step of the algorithm, we have an interval [a,b] that contains the root, so f (a) and f (b) have opposite signs. The
algorithm then selects another point c in the interval, either by bisection, or by inverse quadratic interpolation at steps where
this is safe. In our case, we are looking for a root of the function

f (ρ) = gr(ρ)−µFi µFj − rX
i, jσFiσFj , (10)

with gr given in (9). We know that the solution is in the interval [−1,0] when the target correlation is negative, and in [0,1]
when it is positive, so we start with one of those intervals. The algorithm stops when it finds a number that is guaranteed
to be at a distance smaller than ε from the true root, for a given (selected) tolerance ε > 0. We compute the integral in (9)
numerically, which is not problematic because the integrand is fairly smooth as a function of ui. In our implementation, we
took the Gauss-Legendre quadrature, using the numerical integration classes from the Java library of Flanagan (2007). The
sum in (9) is truncated to some index `0 such that P[|X j|> `0] < ε1. In our implementation, we took ε1 = 10−6. The usual
discrete distributions are over the non-negative integers; then we only need to truncate on the right. The correlation-matching
procedure for an arbitrary pair (i, j) is summarized in Algorithm 1.

Algorithm 1 Pairwise correlation-matching algorithm.
// This algorithm takes as input the marginal distributions Fi and Fj of Xi and X j where Fi is continuous and Fj is discrete,

their rank correlation rX
i, j, the maximum number of iterations Nmax, and the desired tolerance ε .

It returns the product moment correlation ρ = ρZ
i, j that solves (approximately) (10).

1. Initialize the search interval: [a,b] = [0,1] if rX
i, j > 0, and [a,b] = [−1,0] otherwise;

2. Apply Brent’s method to find a root of (10), as described in Press, Teukolsky, Vetterling, and Flannery (1992);
3. Return ρZ

i, j.



Table 1: Results for the rank correlations.

ε rX
1,2 ρZ

1,2 CPU (s) N1 rX
1,2(ρ

Z
1,2) Rel. error (%)

X1 Exponential 10−2 -0.50 -0.5189 0.0033 4 -0.4995 0.106
λ1 = 25 0.05 0.0503 0.0023 3 0.0479 4.293
X2 Binomial 0.20 0.2099 0.0032 4 0.1999 0.025
n2 = 100 0.90 0.9110 0.0023 3 0.9010 0.109
p2 = 0.65 0.98 0.9866 0.0023 3 0.9827 0.275

10−4 -0.50 -0.5194 0.0042 5 -0.5000 < 0.001
0.05 0.0526 0.0032 4 0.0500 < 0.001
0.20 0.2099 0.0041 5 0.2000 < 0.001
0.90 0.9101 0.0041 5 0.9000 < 0.001
0.98 0.9841 0.0041 5 0.9800 < 0.001

X1 Gamma 10−2 -0.50 -0.5183 0.0036 4 -0.4997 0.053
α1 = 20 0.05 0.0513 0.0026 3 0.0489 2.300
β1 = 30 0.20 0.2102 0.0026 3 0.2006 0.280
X2 Negative bin. 0.90 0.9088 0.0047 5 0.9000 < 0.001
s2 = 60.21 0.96 0.9633 0.0047 5 0.9587 0.135
p2 = 0.611 10−4 -0.50 -0.5186 0.0046 5 -0.5000 < 0.001

0.05 0.0525 0.0036 4 0.0500 < 0.001
0.20 0.2096 0.0036 4 0.2000 < 0.001
0.90 0.9088 0.0047 5 0.9000 < 0.001
0.96 0.9644 0.0058 6 0.9600 < 0.001

X1 Normal 10−2 -0.50 -0.5185 0.0024 4 -0.4992 0..163
µ1 = 25 0.05 0.0507 0.0017 3 0.0482 3.657
σ1 = 10 0.20 0.2098 0.0024 4 0.2000 < 0.001
X2 Poisson 0.90 0.9118 0.0018 3 0.9018 0.201
λ = 25 0.98 0.9836 0.0024 4 0.9794 0.058

10−4 -0.50 -0.5193 0.0030 5 -0.5000 < 0.001
0.05 0.0526 0.0024 4 0.0500 < 0.001
0.20 0.2099 0.0024 4 0.2000 < 0.001
0.90 0.9101 0.0031 5 0.9000 < 0.001
0.98 0.9841 0.0039 6 0.9800 < 0.001

For the product moment correlations ρX
i, j, 1≤ i < j ≤ d, we obtain a similar formula by transforming Equation (6):

gl(ρZ
i, j) =

∞

∑
l=−∞

y j,l

∫ ∞

−∞

F−1
i (Φ(zi))φ(zi)

Φ

 z j,l−ρZ
i, jzi√

1− (ρZ
i, j)2

−Φ

 z j,l−1−ρZ
i, jzi√

1− (ρZ
i, j)2

dzi


=

∞

∑
l=−∞

y j,l

∫ 1

0
F−1

i (ui)

Φ

 z j,l−ρZ
i, jΦ

−1(ui)√
1− (ρZ

i, j)2

−Φ

 z j,l−1−ρZ
i, jΦ

−1(ui)√
1− (ρZ

i, j)2

dui

 , (11)

where y j,l = P[X j = l]. To find a root of (7), with gl given in (11), we use a similar algorithm as for (4).

4 NUMERICAL EXAMPLES

We report the performance of our algorithm for some numerical examples. We consider three pairs of distributions (three
cases), as follows:

1. X1 is exponential with mean λ1 = 25 and X2 is binomial with parameters n2 = 100 and p2 = 0.5.



Table 2: Results for the product moment correlations.

ε ρX
1,2 ρZ

1,2 CPU (s) N1 rX
1,2(ρ

Z
1,2) Rel. error (%)

X1 Exponential 10−2 -0.50 -0.5365 0.0038 4 -0.5002 0.044
λ1 = 25 0.05 0.0824 0.0049 5 0.0500 < 0.001
X2 Binomial 0.20 0.2531 0.0038 4 0.2018 0.886
n2 = 100 0.50 0.5884 0.0038 4 0.5000 < 0.001
p2 = 0.5 0.80 0.9277 0.0028 3 0.8017 0.211

10−4 -0.50 -0.5362 0.0049 5 -0.5000 < 0.001
0.05 0.0824 0.0049 5 0.0500 < 0.001
0.20 0.2511 0.0049 5 0.2000 < 0.001
0.50 0.5885 0.0038 4 0.5000 < 0.001
0.80 0.9258 0.0039 4 0.8000 < 0.001

X1 Gamma 10−2 -0.50 -0.5067 0.0343 4 -0.4998 0.044
α1 = 20 0.05 0.0528 0.0253 3 0.0489 2.264
β1 = 30 0.20 0.2062 0.0255 3 0.1998 0.101
X2 Negative bin. 0.50 0.5098 0.0341 4 0.4992 0.167
s2 = 60.21 0.90 0.9149 0.0430 5 0.9000 < 0.001
p2 = 0.611 10−4 -0.50 -0.5070 0.0424 5 -0.5000 < 0.001

0.05 0.0540 0.0342 4 0.0500 < 0.001
0.20 0.2064 0.0428 5 0.2000 < 0.001
0.50 0.5106 0.0428 5 0.5000 < 0.001
0.90 0.9149 0.0428 5 0.9000 < 0.001

X1 Normal 10−2 -0.50 -0.5080 0.0019 3 -0.5024 0..487
µ1 = 25 0.05 0.0502 0.0019 3 0.0496 0.724
σ1 = 10 0.20 0.2009 0.0019 3 0.1986 0.704
X2 Poisson 0.90 0.9104 0.0027 4 0.8995 0.053
λ = 25 0.98 0.9896 0.0027 4 0.9777 0.236

10−4 -0.50 -0.5055 0.0026 4 -0.5000 < 0.001
0.05 0.0506 0.0027 4 0.0500 < 0.001
0.20 0.2024 0.0026 4 0.2000 < 0.001
0.90 0.9109 0.0034 5 0.9000 < 0.001
0.98 0.9919 0.0041 6 0.9800 < 0.001

2. X1 is gamma with shape parameter α1 = 20 and scale parameter β1 = 30 (so the mean is α1β1), and X2 is negative
binomial with parameters s2 = 60.21 and p2 = 0.611.

3. X1 is normal with mean µ1 = 25 and variance σ2
1 = 100, and X2 is Poisson with parameter (mean) λ2 = 25.

We tested the algorithm for both the rank and the product moment correlations, with several target values of rX
1,2 and

ρX
1,2, in the interval (−1,1), that provide a reasonable coverage of the different situations that might occur. We considered

two choices of tolerances for the root-finding algorithm based on Brent’s method: ε = 10−2 and ε = 10−4. In each case, we
also computed the average CPU time over 104 replications, the number N1 of iterations (that is, the number of evaluations
of the function gr or gl), and the relative error. The results are in Tables 1 and 2.

The computing time is less than 5 milliseconds in almost all cases, except for the combination of gamma and negative
binomial distributions when we specify the product moment correlations, which is about 10 times slower with the smallest
tolerance. These times are faster than those reported by Avramidis, Channouf, and L’Ecuyer (2009) for the NI1 algorithm, by
a factor of 10 or more for the similar examples.. When the tolerance is reduced from ε = 10−2 to ε = 10−4, N1 increases by
only 1 or 2, and the CPU times increase only marginally. The largest relative error is observed with a target rank correlation
of 0.05 and ε = 10−2; in this case the target rank correlation is close to zero, so the “large” relative error corresponds to a
small absolute error.



5 CONCLUSION

We proposed an efficient correlation matching algorithm for a normal copula in the case of a mixture of discrete and
continuous marginal distributions. The method is faster than the algorithms proposed in Avramidis, Channouf, and L’Ecuyer
(2009) for the case where both marginals are discrete.
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