Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. adinen eds.

DEPENDENT FAILURESIN HIGHLY RELIABLE STATIC NETWORKS

Zdravko |. Botev Pierre L'Ecuyer
School of Mathematics and Statistics DIRO, Universié de Montreal
The University of New South Wales C.P. 6128, Succ. Centre-Ville
Sydney, NSW 2052, Australia Montréal (Qebec), H3C 3J7, CANADA
Bruno Tuffin

INRIA Rennes Bretagne Atlantique
Campus Universitaire de Beaulieu
35042 Rennes Cedex, FRANCE

ABSTRACT

Static network reliability models typically assume that the failures of their comperaa independent.
This assumption allows for the design of efficient Monte Carlo algorithms gnatestimate the network
reliability in settings where it is a rare-event probability. Despite this computatiereefit, independent
component failures is frequently not a realistic modeling assumption fotifealetworks. In this article
we show how the splitting methods for rare-event simulation can be used to testimareliability of a
network model that incorporates a realistic dependence structure viaarshd-Olkin copula.

INTRODUCTION

The problem of static network reliability modeling and estimation has a wide rdggpbcations in commu-
nication and transportatiorCéncela, ElI Khadiri, and Rubino 200&ertsbhakh and Shpungin 2010The
static reliability of a network (or graph) is a quantitative measure of the network’s abilityadaige service.
Itis defined as the probability that a given set of nodes in the graploarected by operational links, where
each link of the graph is operational with a given probability, called the iiétiabf the link. Equivalently,
network designers are interested in threeliability, defined as the complementary probability.

The exact calculation of network reliability is a #P-complete computationalgmo@@all and Provan 1982
Colbourn 1987. This is why for large networks Monte Carlo techniques are indispéasalso it is well
known Gertsbakh and Shpungin 201that in highly reliable networks the Crude Monte Carlo (CMC)
method is impractical, because the probability of network failure is a rangt-gvebability. The search for
efficient Monte Carlo algorithms for such graphs has resulted in a nunfib@riance reduction methods.
Among the most prominent ones are conditional Monte Carlo approaClaesé¢la and El Khadiri 2003
(Cancela et al. 20Q€&lperin et al. 199}, (Gertsbakh and Shpungin 201®monosov and Shpungin 1909
approximate zero-variance importance samplib@quyer et al. 201}, and combinations of these, see
(Cancela et al. 2000For a survey of some of these methods €&gncela, El Khadiri, and Rubino 2009

A salient feature of all of the above Monte Carlo methods is that they ass@anhthéhcomponents of
the network fail independently. In this paper we consider the important situatiere the link failures
are dependent.

While there are good algorithms designed for special types of dependergonent failures, these
can only cope with small networks. These algorithms are typically deterministjzalide of generat-
ing a symbolic reliability expression) and inefficient for large highly reliabddworks, because they
rely on cutsets/pathsetBdrd and Lee 199%Netes and Filin 1998\ahman 1992Lin and Yang 201} or
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graph factorizationsTheologou and Carlier 199XKuo, Yeh, and Lin 2007 Biegel 1977 Ahmad 1990
Chen and Yuang 19965hosh and Singh 1993vhose numbers grow exponentially with the size of the
network.

Our paper contributes to the alleviation of this computational problem by shjomow the splitting
method for rare-event simulation can estimate efficiently the reliability of largdynigliable networks with
realistic copula dependence. The aim is to both use one of the most reteyatd models to account for
real-life component failures and at the same time provide an efficient algdiotireliability estimation in net-
works driven by such copula models. While there are other possiblesshdichis paper we model the depen-
dencies among network components using the realistic Marshal-Olkin shoei.mbe Marshall-Olkin cop-
ula has been used in risk management in finakeel(rechts, Lindskog, and McNeil 2003Note that other
types of realistic dependence includascading failuresnodels (yer et al. 2009 Buldyrev et al. 201§
which we do not consider here in the rare-event setting.

Modeling dependence in static networks has been considered preylmutghe existing proposals either
do not offer a viable algorithm to estimate the reliability in the rare-event settirip 0ot capture the depen-
denceinarealistic wayjngpurwalla 2002Ram and Singh 20Q9Walter et al. 2009(Botev et al. 2012
For those proposals that consider the rare-event setting, the degeridaypically modeled using a Gaus-
sian, Pareto, or Weibull copula, which do not easily account for raoelsevents that can knock out a
multitude of network components simultaneously. As a result, such simple capnth® overestimate the
real-life reliability of a network. In contrast, it is well known that the more cterpMarshall-Olkin copula
meets a number of desirable criteria that make it a good candidate for modetinggseous component
failures due to a shock event.

The rest of the paper is organized as follows. In Sectioh we introduce the the graph evo-
lution approach to modeling static networks as advocated by Elperin, Gdntstvel Lomonosov, see
(Lomonosov and Shpungin 199@nd Elperin, Gertsbakh, and Lomonosov 1991This is followed by
Sectionl1.2 in which we explain how we combine the Marshall-Olkin copula with the gramiugen
approach. Once we have selected a satisfactory copula model, we estimatargsponding reliability
using a modified version of the splitting method of Kahn and Hakahf and Harris 1951 In Section2
we review the splitting method for rare-event probability estimation and prawmigdéementation details.
Finally, in Section3 we give a numerical example and an application of the copula model to netivork
which the nodes as well as the links fail. This is followed by a concluding sediggussing possible
directions for future research.

1 STATIC NETWORK MODEL

We begin by defining the prototypical mathematical model for a static netwantpd®e we are given the
graph¥ = (7, &) with a set of nodes/vertice$” and edges/linkgf’. Associated with each eddes a
Bernoulli random variabl¥; denoting whether the edge is operation@kf 1) or failed (<, = 0). If we label
all edges from 1 tan= |&|, thenX = (Xy,...,Xm) represents the configuration of the network, showing
which edges are operational and which are failed. Typically, it is assuinaX,, ..., X, are independent
andP(X, =0) =u;, i =1,....,m, wherey; is the unreliability of edge. A subset of nodesy C ¥ is
selected a priori and the network (or graph) is said taperationalif all nodes in#y are connected to
each other by at least one path or tree comprising of operational ddefe#(x) = 1 when the network is
operational, andV(x) = 0 otherwise. This functio® is referred to as thetructure functiorof the graph
(Barlow and Proschan 19Y.5An important special case is th&o-terminal network reliabilityproblem,
where %y contains only two nodes/y = {vo,v1}, andW(x) =1 if and only if there is a path betweeg
andv;. For example, in the dodecahedron graph on Fiduvee have”p = {1,20} and it is operational
when nodes 1 and 20 are connected by a path of working edges. Amspthaial case of interest is the
all-terminal network reliabilityproblem, where/p = 7', so¥(x) = 1 if and only if all nodes are connected.
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The unreliability of the network/ is defined as the probability that the nodesfinare disconnected,
that is,
u=PW(X)=0).
In the next section we give a different formulation of the reliability estimatiaybfgm, which views the
static network as a snapshot of a dynamic one at a given point in time.

Figure 1: A dodecahedron graph with 20 nodes and 30 links (all labelé® destination nodes (1 and
20) are shaded.

1.1 Graph evolution approach

In our approach we follow the graph evolution formulationgerin, Gertsbakh, and Lomonosov 1991
(Elperin, Gertsbakh, and Lomonosov 1992 omonosov and Shpungin 199@and assume that thieth
link is operational fory; units of time before it finally fails. In other wordg; is the lifetime of thei-th
component of the network. For the time being we assume that the nodesrfaet pad do not fail. The
configuration of the network is thus described by the lifetirges (y1,...,Ym), wherem is the number
of edges. We can signify whether tlwth edge is still alive at time/ by keeping track of the binary
variablex;(y) = I{y; > y}, wherel is the indicator function. I;(y) = 1, then thei-th link is still alive
or operational at timey, and if x;(y) = 0, then thei-th link has failed at timey. We let¥(x(y)) with
X(y) = (x1(y),...,xm(y)) denote the subgraph &f that contains only the edgesvhich are still alive at
time y, that is, the edges for which > y or x(y) = 1. The network is said to beperationalat timey if
W(x(y)) =1.

The lifetime of linki is modelled as a random variabfewith a lifetime distributionF (y) = P(Y; <vy)
such thatF(0) = 0 and, in the case of independent failuregl) = u;. In other words, the probability
that thei-th edge is not alive at time 1 ig, and the relationship between the Bernoulli indicatpand
the lifetimeY; is P(Y; < 1) = P(X; = 0) = u;, whereu; is the unreliability of edge. In this case, the
system’s lifetime configuration is described ¥y= (Vi,...,Ym). The natural interpretation is that at time O
all the links are in perfect working condition, then they start to age, ated afworking life ofY; units of
time, thei-th edge fails. Gradually, more and more edges fail, until finally there is ttoqumnecting the
destination nodes and the network has failed. Elperin, Gertstbak, andnosmw call this thalestruction
process In the destruction process the operational state of each link atyiime random binary vector
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X(y) = (Xa(y),-..,Xm(y)) with X(1) = X. Thus, the network unreliability can be written as:
u=PW¥(X(1) =0 =PEY) <1),
whereS(Y) is the last time the network is operational, that is,
S(Y) =suply=>0:W(X(y)) =1}.

We evaluateS(Y) for a givenY using the following straightforward depth first search algorithm.

Algorithm 1 : EvaluatingS(Y)
Require: lifetimesY
Let m= (rm,..., ) be the permutation of the edges 1, m such that

Yrg <Y <0 <Y, .

Letb=1 and conside® (X(Yy)), in which edgess, ..., %, are failed and.1,.. ., Tty are working.
while W(X(Yy,)) = 1 (verified using depth first search, for example)

b+~b+1
return S(Y) =Yy , as the time at which the network fails for the first time.

Crude Monte Carlo estimatesby generating independent realizations of, and taking the average
of then replicates of S(Y) < 1} as an estimator af, or equivalently taking the average of theeplicates
of W(X(1)) as an estimator of the reliability= 1 —u. The square relative error (the relative variance) of
this estimator ol is

Var(f s I{S(Yi) <1}) _ Var([{S(Yi)<1}) u-u?
u? - N T n#  nu

which increases to infinity whem— 0. For highly reliable networks is very small so we have a rare-event
probability, andn must be very large to get a meaningful estimator. For example=ifl0~1°, we need
n> 10'? to obtain a relative error below 10%. This inefficiency is the reason whyethectic variance
reduction methods surveyed in the introduction have been proposed.

1.2 Lifetime shock model

One of the reasons for working within the graph evolution framework alisvhat since each link is
assigned a lifetime, we will be able to use lifetime shock models, which can cajgpesmdencies amongst
random lifetimes $ingpurwalla 2006 An example of such a suitable model is the Marshal-Olkin copula.

For example, the bivariate Marshal-Olkin copula with exponential marginateeisonly bivariate
distribution satisfying the desirable bivariate lack of memory property; HndY, denote the exponential
lifetimes of the two interdependent components, then these lifetimes can beddefiterms of three
independent exponential random variatdgsZ,, Z; »:

Y= min{Zl,lez}, Y, = min{ZZ,Z]_’z}
with intensitiesA; = —In(1—uy), A2 = —In(1—uy), and A2 = —In(1—uy ), respectively. Here the

parameterA;» captures the intensity of the interdependence between components 1 anth& she
probability of occurrence of the common shock everiP(g; > < 1) = u; 2. The joint survival function is

P(Yl >V1,Yo > yz) = P(Zl > y]_)ED(Zz > yz)IP)(ZLz > max{yl,yz}) = e_)\lyl_/\zyz_)\l'2 max{yL,y2} ,
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from where we can conclude that the joint densityyadindY- is discontinuous, and the marginal distributions
of the lifetimesY; andY, are exponential and satisfy the memoryless property:

PM>yi+aYs>y+alYi>aY,>a) =PV >y, Y2 > yo) .

For a network withm lifetimesYi, ..., Yy the copula model generalizes as follows. %tbe the set of all
subsets of1,...,m}. Thus, without any restrictions the size.gfis 2" — 1. Each subsetec . represents a
collection of components that can be knocked out simultaneously due tola sitagk event. For example,
in the bivariate case there are three subsets {1}, s, = {2}, andsz = {1,2}, giving . = {s1, %, S}
The lifetimes of the network can be expressed in terms#findependent exponential random variables:

Y=minZs, i=1,...,m,
BAISS)

whereZs are independent with densitidse *sZ,z> 0 for all s€ .. Given the set? and the lifetime
intensitiesAs = —In(1—us), s€ ., the crude Monte Carlo estimator afconsists of the average of
replications of the indicator:

I{S(Y) < 1}, Yi =minZs, foralli=1,...,m,

where the&Zs are independent and exponentially distributed suchtfiat< 1) = 1—e s = 1—d"1-%) = g,
Before continuing with the splitting method for the estimatiomiofve switch to working with normally
distributed lifetimes, instead of exponentially distributed ones. We do this to makapiblication of the
hit-and-run Markov chain algorithm in Sectidheasier. The hit-and-run sampler is most suitable when
sampling from spherically symmetric distributions on a restricted Ghe and Schmeiser 1998f the
Yis are expressed in terms of normally distributed (as opposed to exponedisatiguted) lifetimes:
Y; = minZs, Zs~N(Us,1), Us defy ®(us), independently for allse . | 1)

sies
se.s

where @1 is the inverse of the cdf of the normal distribution, then the distributional etims of
Xi(1) =I{Yi < 1}, i =1,...,m do not change compared with the exponentially distributed case. For
example, the probability of occurrence of each of the shock events remadihangedP(Zs < 1) = us for
all se ..

Finally, if vectorZ = (Zs, Zs,, . . .) collects all the variable§Zs, se .’} andY is completely determined
from Z via (1), then we can introduce the shorthand nota®(Z) = S(Y) and simply write the crude
Monte Carlo estimator as

kﬁ {S(Z) <1}, Z1,.. . Zn S N(U, 1),
=1

Sl

where U d:ef(usl,uSZ,...) collects all the parameters of the shock random variables,| aadhe n x n
identity covariance matrix.

2 GENERALIZED SPLITTING FOR RELIABILITY ESTIMATION

To estimate the reliability of a network under the Marshall-Olkin copula we us&#meralized Splitting
(GS) method described iB6tev et al. 2012 (which is an adaptation of the splitting method of Kahn and
Harris). Here we use the splitting procedure with the following importantrdiffee. In Botev et al. 201
we use the construction process, in which all components are initially failédlas a vector of repair
times indicating the time at which each component of the network is repairedesminies operational.
The network is thus gradually “constructed” over time and we wish to estimat®(S(Y) > 1), where
S(Y) is interpreted as the first time the network becomes operational, given thie tiegesY . In contrast,
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in this article we use the destruction process, in which all components are indfaational andy is
a vector of lifetimes indicating the time at which each component of the netwidsk fehe network is
hence gradually “destroyed” over time and we wish to estinnateP(S(Y) < 1), where, as mentioned
previously,S(Y) is the last time the network is operational, given the destruction over time. B&lsermre
for using the destruction process instead of the creation process istdbheheetwork model fits the joint
failures from the Marshal-Olkin copula.

With this modification, the GS algorithm will read as follows. We select an integeR, called the
splitting factorand another integar> 0. Then we selectintermediate levels=yp >y > v > - >y =1,
for which

o ETP(WX (1)) = 0| W(X(p_1)) = 0) = P(S(Y) < % | S(Y) < p_1)

—B(S(2) < ¥|S'(2) < k1) ~ 1/s

(2)

fort=1,...,1, except forp;, which can be larger than/& Thesey represent the levels of the splitting
algorithm andr is the number of levels. Good values foand{y} can be estimated by an (independent)
adaptive pilot algorithm, as explained in the Appendix. Botev et al. 2012 we argue thas=2 is a
good choice that yields satisfactory empirical results. Thus, we willsus@ for the rest of the paper.

For each levely, we run a hit-and-runKroese, Taimre, and Botev 201Page 240) Markov chain
{Z:, j > 0} having a stationary density equal to the density afonditional onS*(Z) < . We can write
this stationary density as

fi(2) < I{S'(2) < ¥} [ e 2= H’  t—0,... 1, (3)
s/
where by conventiorfy is the unconditional density &. The transition kernel density of the hit-and-run
Markov chain, which is the density of the next stdtg conditional on the current staig j_1, is denoted
by ki(-|Zt,j—1) and defined implicitly via the following algorithm.

Algorithm 2 : Transition density;(-|z ;1) defined via hit-and-run sampling
Require: Initial stateZ; j_1 such thatS*(Z; j—1) <  and a positive integeB.
Zo < Zt.jfl
fori=1,...,8 do
generate a vectat uniformly distributed over then-dimensional unit sphere
generate a random scale~ N((M —Zi_1)-d,1)  // here- denotes the vector dot product
if S*(Zj—1+Ad) < ¢ then
Zi+—Zi_1+Nd
else
Zi — Zi,1
return Zij <« Zg.

The indentation in the algorithm above demarcates the scope @f, thee, andfor statements. Note
that to evaluateS*(Z) we simply determine’ from Z and use Algorithml to computeS(Y) = S*(2).
In the algorithm above8 is a positive integer that can be 1. However, a higher valug3foeduces the
Markov chain dependence between the input sfate; and the output staté; ;. In our simulations we
usef = 30. Note that while there are many possibilities for constructing a Markow ehigh stationary
density @), here we use the hit-and-run Markov chain, because it yields simpkingdules, regardless
of the Marshall-Olkin dependence structure.

GeneratingZ conditional onS*(Z) < y is the same as generating it vid) ( If a generated statg
satisfiesS*(Z) < y1, then its distribution is obviously the distribution @f conditional onS*(Z) < y1, so
that the underlyingZ has densityf;. At the t-th stage, if the Markov chain starts from a state having
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density fi_; and evolves according to the kernel(- | Zi_1 1), then each visited state also has density
fi_1 — the stationary density for the kerngl 1. With this in mind, the GS algorithm reads as follows.

Algorithm 3 : generalized splitting algorithm; returig, an unbiased estimate af
Require: s, T, %,...,%, ", 1 /I use the adaptive algorithm in Appendix to get splitting levels
2 +0
for j=1...,sdo
LetZ; = (Zs,,Zs,,...), WhereZs ~ N(ps, 1) for all s€ . independently.
if S'(Zj) < y1 then
addZ;to 21 I/ Set of state& that have reached level
fort=2,...,T1do
Z <+ 0 [/l set of state that have reached the lewgl initially empty
for all Zg e Z{_1 do
for j=1,...,sdo
sampleZ; from the densityk;_1(- | Zj_1)
if S'(Zj) <y then
addZ; to Z
return W« |Z;|/s" as an unbiased estimate of the unreliability

In the script aboveZ; stands for the collection of vectoZs which yield lifetimesY that have reached
the levely. Note that Algorithn states the procedure with a single starting chain (trajectory) and gives the
unbiased estimatd¥ of the unreliabilityu. In practice, we rum times Algorithm3 to obtainnindependent
realizationa\V, ..., W, and deliver the estimator

U=

Sl
=]

W, 4)

with estimated relative erras,/(U+/n), wheregZ = 2 5", (W — 0)2. In the Appendix we show that under
two idealizing assumptions, this estimator is logarithmically efficient as the unreliabifiyes to zero.

3 NUMERICAL EXPERIMENTS

Now that we have a computational tool for estimating the reliability under the M&RIkin copula, we
can consider the types of dependencies that we wish to model. First noté t#ais unrestricted and
we consider all possible interactions among the component failures, thewitiiger of parameters in the
Marshal-Olkin copula grows exponentially with the number of componentsa Felatively small network
with a mere 100 components the number of possible interactions is already 28bv 1 ~ 10°°, and thus
computationally unmanageable. Thus, to make the model scalable, one hagitd tiee size of and
consider only subsets of possible dependencies. Which subsets drauitedsdle depends on the particular
modeling requirements and will in practice be determined on a case by céseWasow give an example
of such specific modeling.

One of the common assumptions in static network models is that the nodes dbarat feence all failures
are (independent) link failuresA@ggarwal, Gupta, and Misra 197% 'Ecuyer, Saggadi, and Tuffin 2011
L'Ecuyer and Tuffin 2011 In reality nodes also fail, exacerbating the reliability of the network, and
we must take their fallibility into account. Node failure can be elegantly accduiaieby observing
that the failure of a node is equivalent to the simultaneous failure of the lmddent to that node
(Aggarwal, Gupta, and Misra 197bard and Lee 199Nahman 199

For example, consider the dodecahedron network, a popular bericipndriem, in Figurel. The
failure of node 1 has the same effect as the simultaneous (due to a sletk fiure of links 12,3.
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Thus, by making the links incident to each node dependent on a commadkelerd, we can account for
the node failures and avoid overestimating the reliability of the network.

As a numerical example consider the dodecahedron network with falliblesn&@Iince the degree of
connectivity of this network is 3 (meaning that there are 3 links emanating &ach of the 20 nodes),
the copula model has 20 parameters describing the joint failure of all triflesngponents incident to a
node. For example, some of these triplets in Figuese (2,7,6), (6,12 14),(22,14,23), corresponding to
nodes 37, and 13, respectively. Taking into account the failure of each of @&Bs individually, we get
that the size of? is 20+ 30=50. Thus in this setting the number of parameters in the copula is always
under control. Tabld shows the reliability of the dodecahedron network under the perfecingperfect
nodes assumption.

Table 1: Reliability of dodecahedron network with and without node failuidere ¥ = {1,20} and
n=10%

imperfect nodes perfect nodes
Us 1] estimated rel. error CPU time min. a estimated rel. error
101 0.15 1.1% 5 0.0028 1.3%
102 0.0014 2.1% 25 2.05%x 1076 1.9%
103 | 5.40%x 10°° 3.1% 41 2.02x 1079 2.4%
104 | 4.72x10°° 3.6% 47 2.01x 1012 2.8%
10°° | 452%x 1077 4% 64 1.98x 10°1° 3.1%
106 | 459%x10°8 3.5% 65 1.96x 1018 3.5%

While in the imperfect node case”’| = 50, in the perfect node cas€ = {1,2,3,...,30} (the copula
reduces to the independent component failure case). In bothweasé¥Zs < 1) is the same for abe .7,
(which means that the node failure probability is the same as the link failuralpifity) and G and its
estimated relative error are obtained v# (ith n= 10*. Note that the relative error grows slowly when
the network becomes more and more reliable.

As expected from Tablé we can see that the reliability of the network is much lower when the nodes
are considered imperfect and having the same reliability as a link. This exahnples that node failures
are a special case of the more general Marshall-Olkin copula for deperomponent failures.

CONCLUSIONS

Network reliability computation requires smart time-saving Monte Carlo simulatiategfies even under the
simplifying assumption of independent component failures. When the indepee assumption is relaxed
the complexity of reliability estimation becomes more challenging. In this article we $taawn how the
(rare-event) probability of failure of highly reliable static binary netwogkserned by a Marshall-Olkin
copula model can be estimated via the GS algorithm — the static version of the spiigihgd of Kahn
and Harris.

As future research we intend to consider the Network Planning ProbldP®)NThe objective of
the NPP is to optimally purchase a collection of links, subject to a fixed budgets $0 maximize the
network reliability. We intend to consider this NP-hard integer optimization pnohlader the additional
complication of dependent link failures.

The dependence model considered here also makes analysis of stdthasetworks with rare-event
effects more challenging. In stochastic flow networks one is interested (retteeevent) probability that the
network capacity exceeds a given network demand, where insteadinfjlihei-th link assigned a random
lifetime, each link has a (discrete or continuous) random flow capacity.sphiging approach presented
here may also allow practitioners to handle stochastic flow networks with depehnk capacities.
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APPENDI X

Here we briefly present the pilot splitting algorithm used to determia@d 4, ..., y;. This algorithm is
an modification of the one given ilB6tev et al. 2012 We have tailored the algorithm to the destruction
process, instead of the construction process.

Suppose we are given the splitting factee 2. Initially, we generaten x s independent states from
N(U,1), and determine a threshold paramateso that exactlyn of them haveS*(Z) < y1. Then at each
stept, fort =2,3,..., we run fors steps the hit-and-run Markov chain in Algorithenwith stationary
density @) from each of thosen statesZ for which S*(Z) < y%_1. This gives anothem x s states and we
select a parametsf so that exactlyn of them haveS*(Z) < y. This is done untily < 1 for somet. Then
T is set to thig and we puty; = 1. This iterative procedure is summarized in the following algorithm.

Algorithm 4 Adaptive splitting sampler.
Require: ., U and splitting factois= 2
A +0
fori=1tomxsdo
generate a vecta ~ N(U,l) and add it toZ;
sort the elements of; by decreasing order &' (Z) = S(Y), sayZy),---,Z(mxs)
< [S(Zm) +S(Z(mi1)]/2
t«1
while ¥ > 1 do
t—t+1
L {Zw - Zm} /I retain only the best performing elements from%;_1
ZKH+0
for all Zge Z{_1 do
for j=1tosdo
sampleZ; from the hit-and-run sampler in Algorithiaand add it toZ;
sort the elements ot by decreasing order &'(Z), sayZy),...,Z(mxs)
¥+ max{[S'(Zm) + S (Z(mi1)]/2, 1}
T+t
return T,%,..., ¥

In this algorithm,Z; denotes a set of vectogsfor which S*(Z) < %_1. When this set contain® x s
elements, we sort it to retain the vectors having the smallest value $f(Z), and we remove the other
vectors from this set. The threshold paramsateis placed midway between the-th and the(m+ 1)-th
smallest values o8 (Z).

Ideal Case Analysis of GS Algorithm

We present an analysis of the asymptotic performance of the GS algoritihentwo idealizing assumptions,
which hold only approximately in practice. The first assumption is that the kitram Markov chain in
Algorithm 2 mixes perfectly. In other word&; ; andZ; j_, are independent of each other ahd follows

the conditional density3) exactly. In practiceZ;; and Z;j_1 are dependent and this dependence is
attenuated ag is increased. Note that this simplifying assumption is standard in analyzing sipliting
algorithms Guyader et al. 2001 The second assumption is that the pilot algorithm selects the Ieyéls
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so that the conditional probabilitigs in (2) are exactly (as opposed to approximately) equal/®far all
t.

Let N: = | Z| be the random number of points or states that have reachedy{estethet-th iteration
of the GS Algorithm3. Initially we haveNp = 1, because Algorithn3 runs a single trajectory. In this
setting and under the above assumptions, each &{atan either yields offspring points or zero points
and all states yield offspring with the same probability. If we denote the number of offspringtafe |
in thet-th iteration byQ;, then we have the branching process recursion:

Nep1 = Qe+ Q2+ + Qn it

where P(Qjy =) =p =1/s, P(Qjt =0) =1—p. Thus, E[Qj:] =sp =1, Var(Q;t) =s—1,and we
have via standard branching process argumeiasris 1989 Page 6) thaE[N;] =1, Var(N;) =t(s—1).
Hence, for the unbiased estimatét = N;/s’ in Algorithm 3 we obtain VafW) = t(s— 1)/ with
T =|—Ing(u)| = —Ing(u) from Assumption 2.

Recall that an estimatarof u is logarithmically efficien{Kroese et al. 201,1Page 382) if the following
condition holds:
In(Var(Q))
— | 2

In(u2)

For the logarithmic efficiency criterion we thus obtain

limsup

In(t(s—1)) —2tIn(s)
—21In(s)

In(t(s—1)) —2tIn(s)|
—21In(s) N

= =lim
ul0

Tfo0

In(Var(W))
o |

ul0

Therefore, under the two idealized assumptions the estinvdt@and hencel in (4) is logarithmically
efficient. Next, note that the total simulation effort (proportional to compuiimg) in Algorithm 3 is the
random variables(Np + - - - + N;_1) with expected valuest. Hence, the expectelative time variance
productis given by

VaL(ZW) x (ST) = T(s—1) x (sT) = 128(5— 1) = [Ins(u)]?s(s— 1) = [In(u)]*s(s—1)

(n(s)]>

which is minimized as a function affor s> 1 ats=1.9036969.. (s= 2 when constrained on the integers).
This theoretical finding agrees with empirical results that the best perfmenaf the GS occurs when the
splitting factors= 2.
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