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ABSTRACT

We consider a stochastic staffing problem with uncertain arrival rates. The objective is to minimize the
total cost of agents under some chance constraints, defined over the randomness of the service level in a
given time period. In the first stage, an initial staffing must be determined in advance based on imperfect
forecast of the arrival rates. At a later time, when the forecast becomes more accurate, this staffing can
be corrected with recourse actions, by adding or removing agents at the price of some penalty costs. We
present a method that combines simulation, mixed integer programming, and cut generation to solve this
problem.

1 INTRODUCTION

Call centers are important service systems that can be found practically anywhere in our society, for
example for government services, financial institutions, retail stores, airlines, emergency systems (police,
ambulances, etc.), and so on. For many organizations, the call center is the primary medium of interaction
with customers. Statistical studies have measured a positive link between customer satisfaction and customer
loyalty, which can lead to larger long-term revenue (Heskett et al. 1994). Additionally, workforce salary
accounts for roughly 60% to 70% of the operating cost of a call center (Gans, Koole, and Mandelbaum
2003). It is thus important to optimize the workforce in order to control the operating expense while
providing good customer satisfaction.

In a multi-skill call center, customers are represented by calls and are categorized by their requested type
of service. Telephone agents are divided into groups based on their skill set, where each skill corresponds
to a call type. We are only interested in inbound calls that request an interaction with an agent; that is,
we ignore calls that are served by or have abandoned in the interactive voice response (IVR) unit. Calls
are assigned to agents by a router, also called an automatic call distributor (ACD), following a chosen
routing policy; see Chan, Koole, and L’Ecuyer (2014) for some examples of routing policies. When a new
call arrives and the router cannot find any idle agent to serve it, this call is placed in a waiting queue. A
customer abandons the queue when her waiting time exceeds her patience time, which is a random variable.
Further details on call center operations can be found in Gans, Koole, and Mandelbaum (2003).

In reality, the workforce management (WFM) must optimize multiple stochastic problems that range
from days or weeks (scheduling) to months (hiring process) in advance, while facing different levels of
uncertainty. Indeed, it is known that arrival rates in call centers are uncertain and depend on multiple factors,
such as the day of the week, time of the day, level of busyness, holidays and special events, or publicity
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campaigns; see Channouf et al. (2007), Ibrahim and L’Ecuyer (2013), Ibrahim et al. (2016), Oreshkin,
Régnard, and L’Ecuyer (2016), and references therein. Most existing studies on WFM for multi-skill call
centers simplify their models by assuming that the arrival rates are known perfectly, and they do not consider
any staffing recourse. Also, these studies often consider quality-of-service (QoS) targets (constraints) with
respect to the long-term expected value, which is an average over an infinite number of days. A drawback
of such constraints on the expectations is that a QoS measure for a “particular day”, which is a random
variable, may often miss the target, even if the solution meets the long-term average target. If a manager
really wants to meet the QoS targets for a given (large) proportion of the days, then distributional (chance)
constraints have to be imposed and are appropriate for this situation. The aim of this paper is to develop
a framework and computational tools to do that.

As a primary contribution, we extend and adapt the simulation-based linear cut algorithm of Cez̧ik and
L’Ecuyer (2008) to solve a chance-constrainted two-stage staffing with recourse problem for multi-skill call
centers. This problem has been studied for single-skill call centers, for which most proposed algorithms
approximate the QoS with some analytical formulas (see Section 2 for references). However, we know of
no such analytical formula for the multi-skill case. To the best of our knowledge, this paper is the first
that studies a two-stage optimization problem for staffing with recourse in a multi-skill call center and
proposes a simulation-based solution method to solve that problem. We consider a staffing problem for
which some initial staffing decisions must be taken in advance, based on forecast with important stochastic
variability. At a later time, when more accurate demand forecast becomes available, the initial staffing
may be corrected by adding or removing agents, at the price of some penalty costs. Another difference
from the literature is that we consider chance constraints that require the QoS over a day to be satisfied
with a minimum probability threshold, instead of constraints defined on the expectations, which are never
observed in reality.

The remainder of this paper is structured as follows. A short review of the literature on WFM for call
centers is given in Section 2. Section 3 presents the model of a multi-skill call center, the chance constraints,
and the two-stage stochastic staffing problem with recourse. We present our extended simulation-based
cutting-plane algorithm to solve this stochastic staffing problem in Section 4. We compare the performance
of our algorithm with a traditional two-step (TS) approach, described in Section 5. Numerical results are
reported in Section 6, followed by a conclusion in Section 7.

2 LITERATURE REVIEW

Most of the work found in the literature focus on the optimization of single-skill call centers, where simple
analytical formulas, such as the Erlang formulas (Cooper 1981, Garnett, Mandelbaum, and Reiman 2002)
are often used. However, these formulas are not applicable to the multi-skill context in which we are
interested, and for which only simulation can provide accurate estimation of the QoS.

A few authors optimize the traditional staffing problem (single stage, without recourse) for multi-skill
call centers. For the staffing of a single period, Cez̧ik and L’Ecuyer (2008) adapt the simulation-based
cutting-plane algorithm of Atlason, Epelman, and Henderson (2008), who adapted it from the cutting-plane
method of Kelley Jr. (1960). This method is based on the fact that the service level function for a single
queue with abandonment has the shape of a sigmoid function, which is concave above a certain threshold
(see Section 4.1); in particular, the function becomes concave as the number of agents increases. This
concavity does not necessarily hold in the multi-skill case, so the cutting-plane method then becomes a
heuristic, but it nevertheless performs well empirically. Avramidis et al. (2010) extend this cutting-plane
algorithm to a scheduling problem with multiple time periods and constraints on work schedules of agents.
Neighborhood search algorithms, guided by simulation or approximation formula, are proposed by Wallace
and Whitt (2005), Pot, Bhulai, and Koole (2008), and Avramidis, Chan, and L’Ecuyer (2009) for the
single period staffing problem. Bhulai, Koole, and Pot (2008) present a two-step scheduling algorithm with
temporary group transfers to reduce over-staffing in certain periods. All the above papers assume that the
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arrival rates are known perfectly (although simulation-based methods can integrate stochastic arrival rates
in the simulation).

Two-stage stochastic staffing and scheduling problem have been considered before; see, e.g., Kim and
Mehrotra (2015) and references therein. However, previous studies generally model directly the stochastic
staffing requirements into the problem. In call center problems, the main stochastic variables are usually
the arrival rates of the calls, which determine the required staffing. Robbins and Harrison (2010) optimize
a stochastic scheduling problem (without recourse) for a single-skill call center, by replacing the non-linear
Erlang formula by a piecewise-linear function, and they solve a mixed integer problem. They minimize the
cost of the agents and the penalty cost for missing the service level target. Robbins and Harrison (2008)
propose a variable neighborhood search, combined with simulation, to solve the same problem. Gans et al.
(2015) consider a two-stage scheduling problem with recourse (add or remove agents) for single-skill call
centers. They assume that a forecast update is made available at midday, and agents can be added or
removed to correct the schedules. They consider constraints on the fraction of abandonments, and they
approximate the abandonment function of a Markovian queue by a piecewise-linear function, similar to
Robbins and Harrison (2010). These methods do not apply to multi-skill problems, because it is unclear
if the QoS functions can be linearized in this context, and it may be too time-consuming to do so with
simulation.

For the stochastic staffing of multi-skill call centers, Harrison and Zeevi (2005), and Bassamboo,
Harrison, and Zeevi (2006) optimize the schedules using a fluid model that approximates the abandonment
rate in a call center. The problem is solved as a two-stage stochastic problem where the first-stage variables
are the schedules, and the second-stage variables are the work allocations (or routing). Gurvich, Luedtke,
and Tezcan (2010) use a similar two-stage stochastic problem framework. They consider chance constraints
on the expectation of the fraction of abandonment, for stochastic arrival rates. That is, a solution is feasible
if the probability that the expected steady-state fraction of abandonment of a day is equal or greater to a
given threshold (1− δ ). The parameter δ can represent the level of risk tolerance of the manager. We
studied a two-stage stochastic staffing with recourse problem in Chan et al. (2014) using the same type
of chance constraints, but with respect to the service levels. However, the algorithm and results were not
presented in this extended abstract (for a poster). In this paper, we consider a different type of chance
constraint. In practice, some managers are interested on the probability that the observed (realized) QoS
of the day meets the constraint. A solution that meets the constraint on the expectation may still fail to
meet the target QoS on a single day because of stochastic variance. Instead of the expectation, our chance
constraint are defined with respect to the realized value of the QoS.

3 MODEL AND FORMULATION

3.1 Call Center Model

We consider a multi-skill call center with K call types (numbered from 1 to K), and I agent groups
(numbered from 1 to I). Agents in group i are assumed to be homogeneous, and they share the same skill
set Si ⊆ {1, ...,K}, where each skill correspond to a call type. Alternatively, this means a call of type k can
be served by an agent who belongs to the set of groups Gk = {i : k ∈Si}. The calls are assigned to agents
by a router. For a call of type k, we define 1/µk,i as the mean service time for an agent of group i to serve
this call, and we define 1/νk as the mean patience time of this call. The staffing vector is yyy = (y1, . . . ,yI)

T,
where yi is the number of agents in group i. In this study, we assume a day with only one period, similarly
to Wallace and Whitt (2005) and Cez̧ik and L’Ecuyer (2008).

For a “random” day, the arrival process for call type k is assumed to be time-homogeneous Poisson
with rate Λk for the entire day, where Λk is a random variable, and the Λk’s are independent across different
days. We denote by λk a realization of Λk. We suppose that several days in advance, in the first stage,
Λk has a prior distribution, which corresponds to some initial distributional forecast. At a later time (the
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second stage), the distributional forecast is updated, which means that Λk has a new (posterior) distribution.
Typically, the posterior distribution has less uncertainty (smaller variance), but this may not be always true.

To make things more concrete in this paper, we assume that the distribution of Λk is parameterized
by some parameter θk, whose initial distribution determines the prior distribution of Λk in the first stage,
and whose value is known in the second stage. Typically, knowing θk does not tell us the realization of
Λk, but it may (for example) significantly reduce its variance compared with the prior distribution. In our
numerical example, we will consider that Λk = θkβk is the product of two independent random variables,
where βk is the random busyness factor of a day with mean 1 (see Avramidis, Deslauriers, and L’Ecuyer
2004). In the first stage, both θk and βk are random variables, but in the second stage, only βk remains
random.

3.2 Service Level (SL)

In practice, call centers often measure their QoS according to the service level (SL). The SL measures
the fraction of calls that are answered within a given time τ , called the acceptable wait threshold (AWT).
When there are call abandonments, there exist multiple definitions of the SL formula with different ways
to account the abandonments. In this study, we use one of the SL formulas implemented in the simulation
library ContactCenters (Buist and L’Ecuyer 2005); alternative definitions of the SL can be found in Jouini,
Koole, and Roubos (2013). Let N be the total number of calls that arrived in a day, A(τ,yyy) be the number
of calls served after waiting at most τ , and L(τ,yyy) be the number of calls that abandoned after waiting
more than τ . Since all these variables are random, the SL of a given time period is also a random variable,
and the SL necessarily depends on the number of agents yyy. The SL formula is:

S(τ,yyy) =
A(τ,yyy)

N−L(τ,yyy)
.

Most existing studies on WFM for call centers, especially those that are based on Erlang formulas,
consider staffing constraints with respect to an SL defined as a fraction of customers with good QoS over
an infinite number of independent and identically distributed (i.i.d.) days. This type of SL is defined as
S̄(τ,yyy) = E[A(τ,yyy)]/E[N−L(τ,yyy)].

A manager usually wants to guarantee some minimum level of SL. For example, a manager may want
80% of calls to be answered within 20 seconds of wait time. Multi-skill call centers are much more difficult
to optimize under SL constraints than their single-skill counterpart, because the SL can only be estimated
reliably by simulation.

3.3 Chance Constraints on the SL

In practice, a manager observes the random variable S(τ,yyy), not the expected fraction S̄(τ,yyy). The variable
S(τ,yyy) may have significant stochastic variance, even if the arrival rate is constant. This means that the
observed SL of a day may be well below the target, even if the staffing gives an expected SL (over an
infinite number of days) above the target. If a manager is interested in satisfying the SL target most of the
days, then a distributional chance constraint on S(τ,yyy) may be appropriate.

We define the following chance constraint on the distribution of S(τ,yyy): on a random day, the SL target
must be met with probability 1−δ or higher, for a given risk level δ selected by the manager. Given the
staffing vector yyy, let Sk(τk,yyy) be the SL of call type k during the day, with AWT τk, and let S(τ,yyy) be the
aggregate SL of the day over all calls. All of these are random variables, whose distributions depend on
the staffing yyy. The chance constraints are:

P[Sk(τk,yyy)≥ lk]≥ 1−δk, 1≤ k ≤ K,

P[S(τ,yyy)≥ l]≥ 1−δ ,
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where lk and l are the SL targets, and δk and δ are the given risk thresholds in the interval (0,1). To give
an example of chance constraints, setting δk = δ = 0.05, lk = l = 0.8, and τk = τ = 20 seconds means that
80% of calls in a day must be answered within 20 seconds, with at least 95% probability.

3.4 Staffing Problem with Recourse

We now describe our two-stage staffing problem with stochastic arrival rates. In the first stage, the manager
must select an initial staffing xxx = (x1, . . . ,xI)

T, at the corresponding cost per agent of ccc = (c1, . . . ,cI)
T, based

on an initial forecast that gives only the prior distributions of the Λk’s, parametrized by a random parameter
θk. In the second stage, the manager obtains the realizations of θ1, . . . ,θk, which provides updated forecasts,
and can modify the initial staffing xxx by adding or removing agents at some penalty costs. Note that even
when knowing θk, the manager may not know the exact arrival rate λk (the realization of Λk) in the second
stage. And even if she does, she still does not know the SL for the day, so there is still uncertainty. In
the special case where we suppose perfect forecast of the arrival rate in the second stage, Λk simply has a
degenerate posterior distribution (with only one possible realization).

In the second stage, given the posterior distributions of the Λk’s, the manager can add r+i (Λ) extra agents
to group i at a greater cost of c+i > ci per agent, or remove r−i (Λ)≤ xi agents in group i and save c−i per agent,
where 0≤ c−i < ci. After the recourse, the new number of agents in group i is yi(Λ) = xi+ r+i (Λ)− r−i (Λ).
Let ccc,ccc+, ccc−, and yyy(Λ) be the vectors with components ci,c+i , c−i , and yi(Λ), respectively. We define the
recourse vectors as rrr+(Λ) = (r+1 (Λ), . . . ,r

+
I (Λ))

T, and rrr−(Λ) = (r−1 (Λ), . . . ,r
−
I (Λ))

T.
Given a staffing yyy(Λ), the SL of call type k and the aggregate SL are random variables Sk(τk,yyy(Λ)) and

S(τ,yyy(Λ)). We consider the following chance-constrained staffing problem with recourse for multi-skill
call centers with arrival rate uncertainty:

mincccTxxx+Eθ [Qθ (xxx,θ)] , subject to: xxx≥ 0 and integer, (P1a)

where Qθ (xxx,θ) is the cost of the second-stage problem, given initial staffing xxx and θ = (θ1, . . . ,θK):

Qθ (xxx,θ) = QΛ(xxx,Λ) = min(ccc+)Trrr+(Λ)− (ccc−)Trrr−(Λ)

subject to:
xxx+ rrr+(Λ)− rrr−(Λ) = yyy(Λ),

gk(yyy(Λ),Λ) := P[Sk(τk,yyy(Λ))≥ lk]≥ 1−δk, ∀k,
g(yyy(Λ),Λ) := P[S(τ,yyy(Λ))≥ l]≥ 1−δ ,

0≤ r−i (Λ)≤ xi, ∀i,
rrr+(Λ),rrr−(Λ)≥ 0 and integer.

(P1b)

The functions gk and g represent the probabilities that the SL targets of call type k and the aggregate
SL are met for a random day, given the staffing vector yyy(Λ) and forecast Λ. One particularity of our model
is that the second-stage problem (P1b) is much more difficult than the first-stage problem (P1a) because of
the SL constraints. The first stage has only non-negativity and integrality constraints on xxx. Our stochastic
problem has complete recourse, because we can add an unlimited number of agents in (P1b) for any Λ. If
we were considering a rostering problem with limited number of agents, then the constraints on the SL
should probably be relaxed and replaced by some penalty functions in the objective. However, it is not
clear how to choose the penalty factors.

3.5 Sample Average Approximation (SAA) Problem

In general, the arrival rates are continuous parameters. Therefore, Λ are continuous random variables,
and this makes the staffing problem more difficult to optimize. Instead of solving the two-stage problem
(P1a), we solve a sample average approximation (SAA) version, where we generate M scenarios of θ
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by Monte Carlo which in turn define the distributions of the Λk’s in the second-stage problem. Let
Λ̂m = (Λ̂1,m, . . . , Λ̂K,m) be the vector of K distributions of the arrival rates of scenario m with probability
pm > 0, and ∑

M
m=1 pm = 1. In our numerical examples, we will assume, without loss of generality, the same

probability pm = 1/M for all m.
Moreover, we do not know how to compute exactly the probability functions gk and g in (P1b), but

we can approximate their empirical values by simulation. Let ĝk and ĝ be the empirical values obtained
by simulating N independent and identically distributed days. Since we have a finite number of scenarios
in the second stage, we lighten the notation by using indexed variables rrr+m = rrr+(Λ̂m), rrr−m = rrr−(Λ̂m) and
yyym = (y1,m, . . . ,yI,m)

T for scenario m. We approximate (P1a) by the following SAA problem formulated in
extensive form:

mincccTxxx+
M

∑
m=1

pm
[
(ccc+)Trrr+m− (ccc−)Trrr−m

]
subject to:

xxx+ rrr+m− rrr−m = yyym, ∀m,

ĝk(yyym, Λ̂m) :=
1
N

N

∑
n=1

I[Ŝn
k(τk,yyym)≥ lk]≥ 1−δk, ∀k,∀m,

ĝ(yyym, Λ̂m) :=
1
N

N

∑
n=1

I[Ŝn(τ,yyym)≥ l]≥ 1−δ , ∀m,

0≤ rrr−m ≤ xxx, ∀m,

xxx,rrr+m ,rrr
−
m ≥ 0 and integer, ∀m,

(S1)

where I is a 0-1 indicator function, and Ŝn
k(τk,yyym) and Ŝn(τ,yyym) are the SL of call type k and aggregate

SL for the n-th simulated day, given staffing vector yyym and Λ̂m.

4 CUTTING-PLANE (CP) ALGORITHM FOR TWO-STAGE STOCHASTIC STAFFING

We present our main contribution of the paper in this section. Cez̧ik and L’Ecuyer (2008) propose a
simulation-based cutting-plane algorithm to solve the staffing problem of multi-skill call centers. We
extend their algorithm to include recourse actions and solve a two-stage stochastic staffing problem with
uncertain arrival rates.

4.1 Concavity of the SL Function

In order to use the CP algorithm, Cez̧ik and L’Ecuyer (2008) assume the hypothesis that the expected SL
functions S̄ and S̄k are concave, or at least concave around the optimal staffing solution. They observe
numerically that the functions S̄ and S̄k often display the shape of a sigmoid function (or stretched “S”),
where the functions are first convex and become concave as the number of agents increase.

In our problem with chance constraints, we are interested in the probability functions gk and g, instead
of the expected SL functions. Fortunately, our numerical observations show that the simulated functions ĝk
and ĝ also have a similar “S” shape, see Figure 1 for an example with one agent group. In this figure, we
can apply the CP algorithm if the risk level δ is in the concave region of ĝ, that is, if 1−δ is above 0.4.

4.2 CP Staffing Problem

One major difficulty in solving (S1) is that it is non-linear because of the chance constraints on the SL.
The main idea of the CP method of Cez̧ik and L’Ecuyer (2008), and Atlason, Epelman, and Henderson
(2008) is to replace the non-linear SL constraints in (S1) by a set of linear constraints, and we obtain an
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Figure 1: Example of function ĝ(y) showing an “S” shaped curve.

equivalent linear problem (S2). Unfortunately, we do not know all the constraints of (S2) beforehand, so
we use the CP algorithm to build it.

The CP method is an iterative algorithm that starts at an infeasible solution, and it adds new linear
cuts based on the subgradient of ĝk and ĝ until a feasible solution is obtained. Assuming that the cuts do
not eliminate any feasible solutions of (S1), then the first feasible solution will also be optimal for (S1).
For each scenario m, let the matrix BBBv

m and vector bbbv
m define the set of linear cut constraints that replace

the chance constraints on ĝk and ĝ, at iteration v. The constraint parameters BBB1 = bbb1 = /0 are initially
empty. To avoid starting the algorithm at a null solution (all-zero solution) or in a non-concave region,
we add heuristic linear constraints to cover a fraction αk of the arrival rate of call type k, as described in
Chan (2013). These constraints are also used in the fluid scheduling model of Bassamboo, Harrison, and
Zeevi (2006). These heuristic constraints require additional continuous variables wk,i,m ≥ 0 which define
the (fractional) number of agents of group i working on calls of type k in scenario m. The parameters αk
should be selected such that the initial solution is hopefully in a concave region of ĝk and ĝ. For example,
in Figure 1, αk should be set such that the starting solution y would be greater than 7. The parameter αk
is generally chosen around 1. The CP problem (S2) at iteration v is:

mincccTxxx+
M

∑
m=1

pm
[
(ccc+)Trrr+m− (ccc−)Trrr−m

]
subject to:

xxx+ rrr+m− rrr−m = yyyv
m, ∀m,

BBBv
myyyv

m ≥ bbbv
m, ∀m,

∑
i∈Gk

µk,iwk,i,m ≥ αkΛ̂k,m, ∀k,∀m,

∑
k∈Si

wk,i,m ≤ yi,m, ∀i,∀m,

wk,i,m ≥ 0, ∀k,∀i,∀m,

0≤ rrr−m ≤ xxx, ∀m,

xxx,rrr+m ,rrr
−
m ≥ 0 and integer, ∀m.

(S2v)

If there is a large number of scenarios, one could exploit the block angular structure of the cut constraints
BBBv

myyyv
m ≥ bbbv

m, and use the well-studied L-shaped method (Van Slyke and Wets 1969). However, the main
challenge remains that the parameters BBBv

m and bbbv
m are initially unknown, and these can only be determined

by simulation, which will generally be the most time-consuming part of the algorithm.

4.3 Subgradient-Based Linear Cuts

We explain briefly how to generate the constraint parameters BBBv
m and bbbv

m, since the procedure is identical to
Cez̧ik and L’Ecuyer (2008) with the exception that we replace the expected SL functions S̄ and S̄k by the
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chance-constraint functions ĝ and ĝk. These subgradient-based linear cuts are generated independently for
each scenario. Now consider scenario m with realization Λ̂m, and let yyyv

m be the current solution at iteration
v. We will drop Λ̂m from the notation, since it is fixed. We present the case where the chance constraint
ĝ for the aggregate SL is not satisfied, but the procedure is the same for the per call type constraint ĝk.
Let the vector qqq(yyyv

m) of size I be the subgradient of ĝ at point yyyv
m. We estimate the i-th element qi(yyyv

m) by
forward finite difference, with step size d, using simulation:

qi(yyyv
m) = [ĝ(yyyv

m +deeei)− ĝ(yyyv
m)]/d,

where eeei is a unit vector with 1 at the i-th position and 0 elsewhere. Normally, we set d = 1, but
when the simulation has a lot of noise (e.g., the number of simulated days N is small), we may set d
to 2 or 3. Assuming qqq(yyyv

m) is a subgradient of ĝ at point yyyv
m, we have the following valid inequality

ĝ(yyyv
m)+qqq(yyyv

m)(yyym− yyyv
m)≥ ĝ(yyy). Since we want to find yyym such that ĝ(yyym)≥ 1−δ , then we can add the

following cut to (S2v) without cutting the optimal solution of (S1):

qqq(yyyv
m)yyym ≥ 1−δ − ĝ(yyyv

m)+qqq(yyyv
m)yyy

v
m. (1)

Notice that all terms in the right-hand side of (1) are known at iteration v. This subgradient-based cut is
added to BBBv

m and bbbv
m, and they become BBBv+1

m and bbbv+1
m at the next iteration v+1.

4.4 CP Algorithm

We present the framework of the CP algorithm to optimize the two-stage stochastic staffing problem (S1).
The algorithm alternates between solving the problem (S2v) and generating cuts by simulation. We set a
limit of vmax on the maximum number of iterations. The algorithm finishes with a simulation-based local
search to refine the solution.

Step 0 Initialization: Set v = 1. For each scenario m, set BBB1
m = bbb1

m = /0 (empty matrix and vector).
Step 1 Solve problem (S2v).
Step 2 For each scenario m, simulate staffing solution yyyv

m. If all constraints in (S1) are satisfied, that
is, ĝk(yyyv

m, Λ̂m)≥ 1−δk for all k, and ĝ(yyyv
m, Λ̂m)≥ 1−δ , then go to Step 5, else continue.

Step 3 For each scenario m with unsatisfied constraints on ĝk or ĝ, generate one or many subgradient-
based cuts defined by (1) at point yyyv

m. Add the new cut(s) to BBBv
m and bbbv

m.
Step 4 Set v := v+1. If v = vmax, go to Step 5, else return to Step 1.
Step 5 Apply local search on the solutions xxx,rrr+ and rrr−, by using simulation. Stop the algorithm.

To reduce the execution time of the algorithm, we may want to avoid solving (S2v) during the early
iterations when the number of subgradient-based cuts is small (because the solution will likely be infeasible
anyway). Hence, we solve each of the M scenarios separately as a single staffing problem without recourse,
then we take the cuts generated in this phase to initialize BBB1

m and bbb1
m. For this phase, we can use bigger

risks δk and δ to have more conservative cuts, then we reset them to the original risk levels when starting
Step 1.

The local search helps reduce the cost, but its role is also to correct the simulation noise of approximated
functions ĝk and ĝ. A larger N is used in the local search than during the CP algorithm in order to improve
the feasibility of the solution for real functions g and gk. This local search is inspired by the simulation-based
neighborhood search of Avramidis, Chan, and L’Ecuyer (2009).

5 TWO-STEP (TS) METHOD

A traditional approach to optimize the staffing is usually to divide the main problem into smaller and simpler
problems. In general, such an approach has the advantage of executing faster, but it has the inconvenience
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to likely be suboptimal. Nevertheless, it will be interesting to compare numerically the performance of the
CP algorithm with a simpler two-step (TS) method, which we will describe here.

As its name implies, the TS method is divided into 2 separate steps. In step 1, we determine the
number of agents required in each group for each scenario m, independently from the other M−1 scenarios.
We use an adapted version of Cez̧ik and L’Ecuyer (2008) to solve each scenario m independently. Let
ȳyym = (ȳ1.m, . . . , ȳI,m)

T be the optimal solution of scenario m in step 1. Step 2 optimizes the initial staffing
xxx and recourse actions by taking ȳyy1, . . . , ȳyyM as requirement constraints:

mincccTxxx+
M

∑
m=1

pm[(ccc+)Trrr+m− (ccc−)Trrr−m ]

subject to:
xxx+ rrr+m− rrr−m ≥ ȳyym, ∀m,

0≤ rrr−m ≤ xxx, ∀m,

xxx,rrr+m ,rrr
−
m ≥ 0 and integer, ∀m.

(T1)

The principal difference with (S2v) of CP is that (T1) is more restrictive (and simpler), because it only
uses the staffing requirements found in step 1 rather than the subgradient-based cuts to delimit the feasible
region of solutions, as in (S2v).

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed algorithms using different models based on
data from a call center of a major utility company in Quebec, Canada. We consider a model with 6 call
types and 8 agent groups. We optimize the staffing for a single period (day) of 10 hours. The service times
follow log-normal distributions with average service times between 5.1 and 11.3 minutes. The patience
times are exponential variables with means between 36 and 52 minutes.

We now describe the uncertainty of the arrival rates of this example. The arrival rate λk of type k of a
day (this rate stays constant throughout the day) is a random variate (realization) of random variable Λk,
which is the product of two random variables. That is, Λk = θkβk, where βk is the busyness factor of the
day (see Avramidis, Deslauriers, and L’Ecuyer 2004) and follows a symmetric triangular distribution of
mean and mode 1, minimum 0.9, and maximum 1.1. The variable θk represents the random “mean” arrival
rate of type k. For the different k, we suppose that θk is normally distributed with mean from 0.45 to 9.15
calls per minute and 10% standard deviation. In the first stage of the staffing problem, both θk and βk are
random variables. In the second stage, θk is known, but βk remains random.

In our numerical test, we consider M = 20 and 50 scenarios of θk. We choose the parameters as follows:
the acceptable waiting times are τk = τ = 120 (seconds), the targets of SLs are lk = l = 80%, the targets
for the probabilities that the SLs are satisfied are 1−δk = 80% for all call types k, and 1−δ = 85% for
the aggregated one. The first-stage cost ci of an agent of group i is defined by

ci = 1+0.1(|Si|−1),

where |Si| is the cardinality of skill set Si. We define the recourse costs ccc+ and ccc−, for adding and
removing agents, proportionally to the initial costs ccc. In practice, there can be many types of recourse
actions with diverse penalty costs. For example, the cancellation of a training session may have a low
penalty cost, whereas asking on-call agents to come in to work may incur a higher cost. We consider three
different cost structures of ccc+ and ccc−, as shown in Table 1.

In Table 2, we report the results obtained by the CP and TS algorithms. During the optimization, we
compute ĝ and ĝk by simulating a sample size of N = 1000 days. To evaluate the quality of the obtained
solutions, we use out-of-sample simulation with sample size of 10000 days. In R1 and R2, the differences
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Table 1: Three different recourse cost structures.

ccc+ ccc−

R1 2ccc 0.5ccc
R2 1.5ccc 0.75ccc
R3 1.1ccc 0.9ccc

between ccc+, ccc− and ccc are high. For these two cases, the final costs and the averaged rrr+ and rrr− values given
by the CP algorithm are always smaller than those given by the TS. On the contrary, with R3, when ccc+, ccc−

and ccc are not significantly different, the final costs and the averaged rrr+ and rrr− are closer in value between
the two algorithms. The results show that if the recourse actions are expensive, then the CP algorithm
generally finds a lower cost solution than TS. This can be explained by the lower number of recourse
actions in the solution from CP, which also means that the initial staffing is better chosen. It is important
to note that, in the out-of-sample tests, the numbers of infeasible scenarios (i.e., the respective staffing is
infeasible) obtained by the CP algorithm are always less than those of TS, as reported under the column
“Number infeasible scenarios”. Finally, we also report the computational times which show that the CP
and TS perform quite similarly in terms of speed. We used a computer server with an Intel(R)-Xeon(R), 16
cores, 2.4GHz and running Linux, and CPLEX 12.6 with LP/IP solvers. The simulations were performed
using the Java simulation library ContactCenters (Buist and L’Ecuyer 2005).

Table 2: Results of CP and TS for different recourse costs and number of scenarios M.

Recourse
costs

M Algorithm Total cost Avg. rrr+ Avg. rrr−
Number of
infeasible
scenarios

CPU
time

(hours)

R1
20

CP 193.55 1.8 8.3 0 20.9
TS 200.60 6.0 13.8 4 23.7

50
CP 193.70 3.0 5.6 7 56.9
TS 200.32 6.9 13.9 13 54.8

R2
20

CP 190.88 0.8 7.3 1 22.0
TS 192.41 5.2 13.5 9 27.3

50
CP 189.69 1.8 7.2 5 53.9
TS 191.82 6.5 14.6 23 61.9

R3
20

CP 189.83 11.4 7.3 3 20.5
TS 187.76 12.6 6.1 5 21.1

50
CP 188.10 10.5 6.1 7 53.0
TS 186.29 12.3 6.1 13 52.6

7 CONCLUSION

We studied a two-stage stochastic staffing problem with chance constraints for multi-skill call centers with
uncertain arrival rates. To solve this problem, we proposed an extension of the simulation-based and linear
cut algorithm of Cez̧ik and L’Ecuyer (2008). We compared our algorithm with a traditional two-step method
on an example inspired by a realistic call center. Numerical results show that our algorithm generally
finds better solution than the two-step method, especially when the penalty costs for recourse actions are
expensive. We are investigating a more general problem that includes stochastic agent absenteeism.
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