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ABSTRACT

We study the behavior of a splitting method for sampling from a given distribution conditional on the
occurrence of a rare event. The method returns a random-sized sample of points such that unconditionally
on the sample size, each point is distributed exactly according to the original distribution conditional on the
rare event. For a cost function which is nonzero only when the rare event occurs, the method provides an
unbiased estimator of the expected cost, but if we select at random one of the returned points, its distribution
differs in general from the exact conditional distribution given the rare event. However, we prove that if
we repeat the algorithm n times and select one of the returned points at random, the distribution of the
selected point converges to the exact one in total variation when n increases.

1 INTRODUCTION

We consider the problem of estimating a conditional expectation when the conditioning is on the occurrence
of a rare event, and more generally, how to draw a sample from the corresponding conditional distribution.
This has many applications in various areas. For example, in finance, the expected shortfall, defined as the
expected loss given that the loss exceeds a given quantile of its distribution (Yamai and Yoshiba 2005), has
this form. As another example, for bridge regression in a Bayesian setting (Polson et al. 2014), there is a
constraint (upper bound) on the norm of the vector β of regression coefficients, and the estimation of β

requires resampling it repeatedly from a distribution truncated to the area where β satisfies the constraint.
A naive rejection method for sampling from the conditional distribution is to repeatedly draw independent

samples from the original distribution until the rare event occurs, and return the realizations where this
happens, until a sufficiently large sample has been obtained. But when the event is very rare, for example
smaller than 10−10, this simple method would be too inefficient.

We study an alternative approach based on the generalized splitting (GS) algorithm introduced in Botev
and Kroese (2012), which is itself a modification of the classical multilevel splitting methodology for
rare-event simulation (Kahn and Harris 1951; Ermakov and Melas 1995; Glasserman et al. 1999; Garvels
et al. 2002; L’Ecuyer et al. 2006; L’Ecuyer et al. 2007; L’Ecuyer et al. 2009; Bréhier et al. 2016). The
general idea of GS is to define a discrete-time Markov chain whose state (at any given step) represents
a realization of all the random variables involved in the simulation. This chain evolves by resampling
these random variables (at each step) under a conditional distribution that pushes the chain toward a state
that corresponds to the rare event of interest. In contrast to most classical splitting methods, which start
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with a large population of interacting chains and their number is kept constant by killing some chains and
duplicating others, in GS we start with a single chain, duplicate each copy if it reaches the next level in
a given number of steps and kill it otherwise. Thus, the number of chains alive at any level is random.
This scheme is replicated n times independently. Thus, the analysis differs from the classical splitting.
This GS algorithm has been seen empirically to be very effective to estimate extremely small rare-event
probabilities by simulation, for various applications; see for example Botev and Kroese (2012), Botev et al.
(2013a), Botev et al. (2016), Botev et al. (2018). This includes certain large problems for which no other
effective method is known; for example reliability estimation in very large networks. A good understanding
of its properties is therefore warranted and important. Our aim here is not to study the efficiency of GS
on applications, but to study some of its theoretical properties.

It was suggested in Botev and Kroese (2012) that the final states of the set of trajectories that reach the
rare event in the GS algorithm are “approximately” (and not exactly) distributed according to the distribution
conditional on the rare event, but no proof or counterexample was provided, and it was also stated that GS
provides an unbiased estimator of the rare-event probability. The prime purpose of the present paper is to
explain this apparent contradiction and study more formally the behavior of the GS algorithm.

Most theoretical studies of splitting algorithms are concerned with proving unbiasness of the resulting
estimator of a probability or mathematical expectation of interest (Bréhier et al. 2016). In this paper, we
are primarily concerned with generating a sample from the conditional distribution of the state given that
the rare event occurs, and we want to study how well GS can (or cannot) generate a sample approximately
from this distribution.

In a nutshell, what goes on is that for each run of GS there is a random number M of trajectories that
reach the rare event, and the distribution of the terminal states of these trajectories depends on M. As a
result, if we pick at random one of those M terminal states from a given run of GS, assuming that M > 1,
in general this state does not obey the conditional distribution of the state given the rare event. On the
other hand, if we run GS n times, independently, and collect the terminal states of all the trajectories that
have reached the rare event over the n runs, their empirical distribution converges at an O(n−1/2) rate to
the conditional distribution given the rare event. Sampling approximately from the conditional distribution
can have many applications. One of them is to provide a consistent estimator for an expectation conditional
on the rare event, based on the GS algorithm. This conditional expectation can be written as a ratio of
expectations, and a confidence interval for this ratio can be obtained based on GS combined with standard
technology for estimating ratios of expectations. Another application is to construct an importance sampling
density defined as a kernel density based on a sample from the conditional distribution given the rare event,
as explained in Botev et al. (2013b).

The remainder is organized as follows. In Section 2 we define the problem considered in this paper
and recall the GS algorithm. In Section 3 we prove various properties of the algorithm. Section 4 gives
a small numerical illustration whose aim is to provide insight into the (sometimes surprising) behavior of
the algorithm. Conclusions and directions for future research are given in Section 5.

2 THE GENERALIZED SPLITTING METHOD

We recall the GS method and explain how it applies to our problem of sampling from a distribution
conditional on a rare event. We consider a random vector Y defined on some probability space (Ω,F ,P)
and taking values in some measurable space. For concreteness we assume that this measurable space is
(Rd ,E ), where E is the Borel σ -algebra, and that Y has an absolutely continuous distribution with respect
to the Lebesgue measure, with density f , from which we can easily sample independent realizations of Y.
Adaptation to discrete (or other kinds of) distributions is straightforward.

Suppose we are given a measurable set B ∈ E for which p = P[Y ∈ B] is unknown and can be very
small. Our goal is to sample Y from its distribution conditional on Y ∈ B. This could be for the purpose
of estimating the expectation E[h(Y)I(Y ∈ B)] or the conditional expectation E[h(Y) | Y ∈ B], for some
real-valued cost function h, or for another reason.
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A naive way of doing this is to sample Y from its unconditional distribution repeatedly and independently,
and return the first realization of Y that belongs to B. This standard rejection method returns a Y that
obeys exactly the desired conditional distribution, but it becomes impractical (much too inefficient) when
p is very small, because the expected number of trials is 1/p.

As an alternative approach, we consider here the GS algorithm introduced in Botev and Kroese (2012),
which we recall with some simplifications. To apply the GS algorithm, we first need to choose:

1. an importance function S : Rd → (0,∞) for which {y ∈ Rd : S(y)> γ∗}= B for some γ∗ > 0,
2. an integer s≥ 2, called the splitting factor, and
3. an integer τ > 0 and real numbers 0 = γ0 < γ1 < · · ·< γτ = γ∗ for which

ρt
def
= P[S(Y)> γt | S(Y)> γt−1]≈ 1/s (1)

for t = 1, . . . ,τ (except for ρτ , which can be larger than 1/s). These γt’s represent the τ levels of
the splitting algorithm.

For each level γt we construct a Markov chain whose stationary density is equal to the density of Y
conditional on S(Y)> γt (a truncated density), given by

ft(y)
def
= f (y)

I(S(y)> γt)

P[S(Y)> γt ]
. (2)

We denote by κt(y | x) the density of the transition kernel of this Markov chain; that is, the density of the
next state Y conditional on the current state x. There are many ways of constructing this Markov chain
and κt .

At the first stage (or level), generating Y conditional on S(Y)> γ0 means that we generate it from its
original (unconditional) density, so f0 = f . When a generated state Y at the first level satisfies S(Y)> γ1,
then its density is obviously that of Y conditional on S(Y)> γ1, which is f1. At the t-th stage, if a Markov
chain starts from a state having density ft−1 and evolves according to the kernel κt−1, then each visited
state also has density ft−1, which is the stationary density for the Markov chain with this kernel.

Algorithm 1 describes this procedure with a single starting point. In the algorithm, Yt denotes the set
of states that have reached the level γt at step t. These are the states Y j visited by Markov chain trajectories
that start from some state Y0 ∈Yt−1 and for which S(Y j)> γt . Indentation delimits the scope of the if, else,
and for statements. This GS algorithm returns a list Yτ of states that belong to B (this list is a multiset, in
the sense that it may contain the same state more than once) as well as the size of this list. Note that Yt and
M are random and their distributions depend on the choice of importance function S and transition kernel
densities κt . We will sometimes use the notation PGS and EGS to denote probabilities and expectations
in which those random objects are involved. Sometimes, for simplicity, we just use the generic P and E,
assuming implicitly that these random objects are defined on the same probability space as Y .

In many applications there is a natural choice for the importance function S. Good values for s, τ ,
and the levels {γt} can typically be found via an (independent) adaptive pilot algorithm, as explained in
Botev and Kroese (2012). Based on empirical investigations reported in our earlier papers, taking s = 2 is
usually the best choice and this is what we recommend.
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Algorithm 1 Generalized splitting

Require: s,τ,γ1, . . . ,γτ

Generate a vector Y from its unconditional density f
if S(Y)≤ γ1 then

return Yτ = /0 and M = 0 // no state has reached the rare event, we return an empty list
else

Y1←{Y} // this state Y has reached at least the first level
for t = 2 to τ do

Yt ← /0 // list of states that have reached the level γt

for all Y ∈ Yt−1 do
set Y0 = Y // we will simulate this chain for s steps
for j = 1 to s do

sample Y j from the density κt−1(· | Y j−1)
if S(Y j)> γt then

add Y j to Yt // this state has reached the next level
return the list Yτ and its cardinality M = |Yτ |. // list of states that have reached the rare event

3 PROPERTIES OF THE GS METHOD

In this section, we prove some properties of the GS algorithm, examine in what sense it approximates the
distribution of the state conditional on B, and show how it can be used to estimate conditional expectations.

3.1 Unbiased Sampling at Each Level

The collection of all Markov chain trajectories in the GS algorithm forms a branching tree, with τ − 1
levels of branching, and where the branching (or splitting) of each chain at each level (when it occurs) is
by the factor s. There is a total of st−1 potential trajectories up to level t, for each t. In Algorithm 1, only
|Yt | of these st−1 trajectories are actually kept alive up to level t; they are those trajectories for which the
state at step t is placed in Yt . The other ones are discarded, either at step t or earlier. But for the purpose
of studying unbiasedness properties, we can imagine a modified version of Algorithm 1 that keeps all the
trajectories at all levels. In this imaginary modified version, we remove the statement “if S(Y j)> γt” from
Algorithm 1, and we replace everywhere Yt by Y t . That is, we always add Y j to Y t , so Y t will eventually
contain st−1 states, which correspond to the st−1 (potential) trajectories up to level t. Thus, Y 1 always has
1 element (drawn from f ), and Y t has st−1 elements, for t = 2, . . . ,τ . To each of these st−1 trajectories
we assign an index (1, j2, . . . , jt), where for each t ≥ 2, jt ∈ {1, . . . ,s} is the value of j that corresponds to
this trajectory in the inner loop of the modified algorithm when the outer loop counter is at value t. Let us
denote by Y(1, j2, . . . , jt) the state at step t for the trajectory with index (1, j2, . . . , jt). The set Y t contains
all these st−1 states. The trajectories that are kept alive up to level t in the original algorithm are those for
which the event

Et := Et(1, j2, . . . , jt) := {Y(1)> γ1, . . . ,Y(1, j2, . . . , jt)> γt}
occurs. Proposition 1 tells us that the states for which this event occurs, which are those retained in Yt by
Algorithm 1, have exactly the correct conditional density. This means that the GS sampling at each level
is unbiased.
Proposition 1 For any fixed level t and index (1, j2, . . . , jt), conditional on Et(1, j2, . . . , jt), the state
Y(1, j2, . . . , jt) has density ft (exactly). For t = τ , this is the density of Y conditional on {Y ∈ B}.

Proof. The proof is by induction on t. At the first stage we generate Y = Y(1) from its original density
f . Conditional on E1(1), Y(1) satisfies S(Y(1)) > γ1, and thus Y(1) ∈ Y1. Its density is obviously that
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of Y conditional on S(Y)> γ1, so the result holds for t = 1. Let us now assume that the result holds for
t− 1, which means that conditional on Et−1(1, j2, . . . , jt−1), the state Y(1, j2, . . . , jt−1) has density ft−1.
The states Y(1, j2, . . . , jt−1),Y(1, j1, . . . , jt−1,1), . . . ,Y(1, j1, . . . , jt−1,s) are the successive states visited by
a Markov chain with kernel κt−1 and stationary density ft−1, and whose initial state Y(1, j2, . . . , jt−1) has
already the stationary density ft−1. Therefore, conditional on Et−1(1, j2, . . . , jt−1), all these states also
have the same density ft−1. This implies that for any j ∈ {1, . . . ,s}, conditional on Et(1, j2, . . . , jt−1, j),
the density of Y(1, j2, . . . , jt−1, j) is the density ft−1 for Y, conditional on S(Y) > γt , which is ft . This
completes the induction.

Proposition 2 For any measurable function h : Rd → R and any measurable subset A⊆ B, we have

EGS

[
∑

Y∈Yτ

h(Y)I(Y ∈ A)

]
= sτ−1E[h(Y)I(Y ∈ A)], (3)

where the first expectation is with respect to Yτ defined in Algorithm 1 and the second expectation is with
respect to Y having its original density f .

Proof. We can write

EGS

[
∑

Y∈Yτ

h(Y)I(Y ∈ A)

]
= EGS

 ∑
Y=Y(1, j2,..., jτ )∈Y τ

h(Y)I(Y ∈ A)I(Eτ(1, j2, . . . , jτ))


= sτ−1EGS [h(Y(1, j2, . . . , jτ))I(Y(1, j2, . . . , jτ) ∈ A)I(Eτ(1, j2, . . . , jτ))]
= sτ−1E[h(Y)I(Y ∈ A)],

in which the sum in the second expectation is over all sτ−1 terminal states Y(1, j2, . . . , jτ) in the modified
algorithm, and the second and third equalities follow from Proposition 1 with t = τ , which tells us that
the density of Y(1, j2, . . . , jτ) conditional on Y(1, j2, . . . , jτ) ∈ A and Eτ(1, j2, . . . , jτ) does not depend on
the index (1, j2, . . . , jτ) and is equal to fτ conditional on Y(1, j2, . . . , jτ) ∈ A. Since A⊆ B, the latter is the
original density f of Y conditional on Y ∈ A.

Let H(A) = |Yτ ∩A|, the number of states Y ∈ Yτ returned by the GS algorithm that belong to A. By
taking h as the identity function in (3), we obtain

EGS[H(A)] = EGS

[
∑

Y∈Yτ

I(Y ∈ A)

]
= sτ−1P[Y ∈ A]. (4)

That is, the expected number of states Y ∈ Yτ that belong to A is proportional to P[Y ∈ A], and therefore
proportional to the conditional probability P[Y∈ A |Y∈ B] = P[Y∈ A]/P[Y∈ B], with a known proportion-
ality constant. In particular EGS[M] = sτ−1P[Y ∈ B]. We thus have EGS[H(A)]/EGS[M] = P[Y ∈ A |Y ∈ B].
On the other hand, under the empirical distribution determined by the set Yτ , the probability of A given B
is H(A)/M, and EGS[H(A)/M] 6= P[Y ∈ A | Y ∈ B] in general.

3.2 Estimating the Conditional Expectation

Each run of the GS algorithm returns a sample of random size, Y1, . . . ,YM, that satisfies the previous
propositions. One might be tempted to conclude that to generate a single realization of Y from its distribution
conditional on Y ∈ B, it suffices to pick Y at random uniformly from Y1, . . . ,YM, conditional on M ≥ 1
(if M = 0 we just retry), and that this could be used in particular to produce an unbiased estimator h(Y)
of the conditional expectation E[h(Y) | Y ∈ B]. But with this scheme, in general, the returned Y does not
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have the correct distribution (with pdf f (y)/P(Y ∈ B) for all y ∈ B), because the Y j’s and M are generally
dependent. In fact, if we define H = ∑Y∈Yτ

h(Y), we can write (in what follows, we just use E for EGS,
for simplicity):

E[h(Y) | Y ∈ B] =
E[h(Y)I(Y ∈ B)]

P[Y ∈ B]
=

E[h(Y)I(Y ∈ B)]sτ−1

E[M]
=

1
E[M]

E

[
∑

Y∈Yτ

h(Y)

]
=

E[H]

E[M]

def
= ν ,

in which the 4-th equality comes from (4) with A = B. This is a ratio of expectations. If we pick Y∗
uniformly from Yτ = {Y1, . . . ,YM} and compute h(Y∗) (if M = 0 we try again independently until M > 0),
the expectation is

E[h(Y∗)] = E

[
1
M ∑

Y∗∈Yτ

h(Y∗)

]
= E[H/M].

This is the expectation of a ratio.
To estimate E[h(Y) |Y∈ B], we can use standard techniques for the estimation of a ratio of expectations.

Such techniques are widely used. For example, for regenerative simulation (Asmussen and Glynn 2007).
A standard approach is to generate n independent replicates of the GS estimator, let Yτ,1, . . . ,Yτ,n be the
n sets Yτ obtained from these realizations, and let Mi = |Yτ,i| and Hi = ∑Y∈Yτ,i h(Y) be the realizations of
M and H for replicate i, for i = 1, . . . ,n. The classical estimator of the conditional expectation is

ν̂n =
H1 + · · ·+Hn

M1 + · · ·+Mn
=

H̄n

M̄n
, (5)

where H̄n and M̄n are the averages of the n realizations of H and M, respectively, and when M̄n = 0 we
can either define ν̂n = 0 or increase the sample size until Mi > 0 for some i (asymptotically, this makes no
difference).

Let us assume that Var[H] < ∞. Then, ν̂n→ ν with probability 1 when n→ ∞ (strong law of large
numbers) and the estimator ν̂n also obeys a central limit theorem as follows. Define the empirical variances
and covariances

σ̂
2
H =

1
n−1

n

∑
i=1

(Hi− H̄n)
2,

σ̂
2
M =

1
n−1

n

∑
i=1

(M j− M̄n)
2,

σ̂HM =
1

n−1

n

∑
i=1

(Hi− H̄n)(Mi− M̄n),

and let
σ̂

2
ν ,n = (σ̂2

H + σ̂
2
Mν̂

2
n −2σ̂HMν̂n)/(M̄n)

2. (6)

By applying the delta method and Slutsky’s theorem, one has that

√
n(ν̂n−ν)

σ̂ν ,n

d−→ N(0,1) as n→ ∞, (7)

where N(0,1) means a standard normal random variable. This central limit theorem permits one to compute
a consistent confidence interval for the ratio of expectations, based on n replicates of GS. Alternative (often
more accurate) confidence intervals can also be computed via bootstrap methods; see Choquet et al. (1999).
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3.3 Sampling from the Conditional Distribution

To generate independent realizations of Y approximately from its conditional distribution given B, we
can pick the realizations at random with replacement from Y∪ = Yτ,1∪ ·· ·∪Yτ,n, assuming that this set
is nonempty. If it is empty, we try again with n fresh runs of GS, until Y∪ is nonempty. Let Q̂n be
the (empirical) distribution of Y obtained in this way, defined by Q̂n[A] = |Y∪ ∩A|/|Y∪|, let Qn be the
distribution defined by Qn[A] = E[Q̂n[A]], and let Q[·] = P[· | B] denote the true conditional distribution. If
Y∗ is defined as in Section 3.2, Qn[A] represents the prior probability that Y∗ ∈ A before we run GS, while
Q̂n[A] is the posterior probability that Y∗ ∈ A after we have run GS. We are interested in the convergence
of Q̂n and Qn to Q when n→ ∞.

For any measurable set A⊆ B, by taking h(Y) = I[Y ∈ A], we obtain

Hi = Hi(A) = ∑
Y∈Yτ,i

I(Y ∈ A) = |Yτ,i∩A|,

the number of samples returned by run i of GS and that belong to A. We also have p=P[A], m=E[M] = psτ−1,
ν =Q[A] = P[A | B], and we define h̄(A) = mQ[A] = E[Hi(A)]. When we generate an observation Y from
Q̂n, it belongs to A with probability H̄n(A)/M̄n (assuming that M̄n > 0). Note that h̄(A)≤ m and m≈ 1 in
the context of GS. However, Mi and Hi take their values in {0,1, . . . ,sτ−1}. We show that the empirical
distribution Q̂n converges to Q in the following large-deviation sense:
Proposition 3 For any ε ∈ (0, p/2], we have

sup
A⊆B

P
[
|Q̂n[A]−Q[A]|> 2ε/p

]
≤ 4e−2nε2

. (8)

Proof. If we divide Mi and Hi by sτ−1 and apply Hoeffding’s inequality (Hoeffding 1963), we obtain
that for all ε > 0 and any measurable A⊆ B,

P
[
|M̄n−m|> ε

′] ≤ 2e−2nε2
and

P
[
|H̄n(A)− h̄(A)|> ε

′] ≤ 2e−2nε2
,

where ε ′ = εsτ−1 = mε/p. Therefore, with probability at least 1−4e−2nε2
, we have that both |M̄n−m| ≤ ε ′

and |H̄n(A)− h̄(A)| ≤ ε ′. When these two inequalities hold, for ε ′ ≤ m/2, we have

H̄n(A)
M̄n

−Q[A] ≤ h̄(A)+ ε ′

m− ε ′
− h̄(A)

m
=

m(h̄(A)+ ε ′)− h̄(A)(m− ε ′)

m(m− ε ′)

=
(m− h̄(A))ε ′

m(m− ε ′)
≤ ε ′

m− ε ′
≤ 2ε ′

m
=

2ε

p

and

Q[A]− H̄n(A)
M̄n

≤ h̄(A)
m
− h̄(A)− ε ′

m+ ε ′
=

h̄(A)(m+ ε ′)−m(h̄(A)− ε ′)

m(m+ ε ′)

=
(h̄(A)+m)ε ′)

m(m+ ε ′)
≤ 2ε ′

m
=

2ε

p
.

This completes the proof.

Based on this bound, in the next proposition we prove converge in total variation of Qn to Q. Note
that total variation convergence of Q̂n to Q cannot hold, because once Q̂n is known, one can always select
a set A of measure zero that contains all the data points, and therefore supA⊆B |Q̂n[A]−Q[A]| is always 1.
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Proposition 4
lim
n→∞

sup
A⊆B
|Qn[A]−Q[A]|= 0. (9)

Proof. We have

|Qn[A]−Q[A]| =
∣∣∣E[Q̂n[A]−Q[A]

]∣∣∣
≤ E

[
|Q̂n[A]−Q[A]|

]
≤

∫
∞

0
P
[
|Q̂n[A]−Q[A]|> x

]
dx

≤
∫

∞

0
P
[
|Q̂n[A]−Q[A]|> ε

]
(2/p)dε (by taking x = 2ε/p)

≤ 8
p

∫
∞

0
e−2nε2

dε =
2
√

2π

p
√

n
.

3.4 Discussion on the Bounds

We emphasize that Proposition 3 holds regardless of the choice of importance function S and transition
kernels κt for the Markov chains. It is a worst-case result, and for this reason it is rather weak in the
situation where B is a rare event. Indeed, when p is very small, for ε/p to be small one must take ε� p,
and then n must be huge for the exponential upper bound in (8) to be small. That is, the rare event problem
remains. But this is for the worst possible implementation of GS. To get a better bound, we need stronger
assumptions on the effectiveness of the GS algorithm.

In fact, we may consider n independent trials with the naive rejection method mentioned at the beginning
of Section 2, define Mi = I[Yi ∈ B] and Hi(A) = I[Yi ∈ A] where Yi is the replicate of Y on the ith trial,
and then estimate Q[A] by H̄n(A)/M̄n for each A. This is the same as approximating Q by the empirical
distribution of the Yi that belong to B. By applying Hoeffding’s inequality to the binary variables Mi and
Hi(A), and mimicking the above argument for the ratio, we find exactly the same inequality as in (8). This
naive rejection method with n trials corresponds (in terms of distribution) to a worst-case GS that would
always give either Mi = 0 or Mi = sτ−1. In this case, observing Mi > 0 remains a rare event. This would
be an extreme situation in which the ingredients of the GS method have been chosen in the worst possible
way. Even then, GS cannot do worst than the naive rejection method (if we do not account for the different
amount of work per sample).

In the worst case we just examined, there is a maximum amount of dependence between the chains. At
the other (most optimistic) extreme, there is the situation in which M and all the states in Yτ are assumed to
be independent. In this situation, Yτ turns out to be an independent sample drawn exactly from distribution
Q. In practical applications, we are usually far from these two extremes, and somewhere in between.

4 A SIMPLE BIVARIATE UNIFORM EXAMPLE

The purpose of this small example is to illustrate the main ideas in a simple setting where we know exactly
the conditional distribution and how to generate from it, so we can compare the approximate distributions
with the exact ones. Our goal here is not to study the efficiency and generality of GS.

Suppose that Y = (Y1,Y2) has the uniform distribution over the two-dimensional unit square Y = [0,1]2.
(We could easily handle a more general bivariate distribution for Y provided that we can resample one
coordinate given the other one, but there is no point in making this example more complicated; we want to
keep it as simple as possible.) Define S(y) = S(y1,y2) = max(y1,y2) and let B = {y ∈ Y : S(y)≥ 1−δ},
where δ > 0 is a small constant. The density of Y conditional on Y ∈ B is obviously uniform over B,
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Figure 1: Sampling (approximately) conditionally on max(Y1,Y2) > γ2 via GS when (Y1,Y2) is uniform
over the unit square. The picture is drawn for s = 2 and τ = 2. Here B = D2 ∪D3 ∪ E2 ∪ E3 ∪ F2,
γ1 =

√
1/2≈ 0.70710678 and γ2 =

√
3/4≈ 0.86602540.

whose surface is 2δ −δ 2 = δ (2−δ ), so the conditional density is 1/(δ (2−δ )) over B, and it is easy to
generate Y directly from it. We want to compare the conditional density for a sample returned by GS with
this uniform density.

For the GS algorithm we take S as the importance function, we select integers s ≥ 2 and τ ≥ 2, and
we select the levels γt so that γ2

t = 1− s−t for t = 1, . . . ,τ , and 1−δ = γτ . With these choices, we have
P[S(Y)> γt | S(Y)> γt−1] = 1/s and P[S(Y)> 1−δ ] = s−τ = δ (2−δ ) exactly.

For the Markov chain kernel κt , we shall consider two cases. The first is a symmetric Gibbs resampling
scheme, which always resamples the two coordinates one after the other, in random order, conditional on
S(Y)> γt−1. That is, when resampling a coordinate Yi of Y, we erase and forget its current value resample
it from its distribution conditional on S(Y)> γt−1, given the other coordinates of Y, so the chain will never
again go below the level γt−1 that we have already reached. In our case, whenever Y1 is resampled, if
Y2 > γt−1 we resample Y1 uniformly over (0,1), otherwise we resample Y1 uniformly over (γt−1,1). The
procedure is symmetrical when we resample Y2. Our second sampling scheme, to be described later, will
be asymmetric.

We use Figure 1 to illustrate and discuss the behavior of GS for this example. The figure is for s = 2
and τ = 2, but the discussion is for general s. GS first generates Y uniformly in the square. With probability
(s−1)/s, Y falls in the white square and no point is returned, otherwise Y falls in the colored areas and
then Y is resampled s times (each resample starts from the previous one) with coordinates resampled in
random order and conditional on S(Y)> γ1 as described earlier. This produces a Markov chain trajectory
over s steps, in this colored region. Out of these s resampled states, we retain those that fall in the set
B = S(Y)> γ2 and they form the multiset Y2. This GS procedure is repeated n times independently and
the n realizations of Y2 (in case τ = 2) are merged in a single multiset Y∪, as in Section 3.3. One random
point Y∗ selected uniformly from Y∪ has distribution Q̂n. And the prior distribution of Y∗ before applying
GS is Qn, which is the expectation of Q̂n. Two questions of interest here are how close is Qn to Q when
n is not too large, and what is the impact of the resampling strategy on the difference? Note that Q here
is uniform with density sτ over B.

In this simple example, given the initial distribution of Y and the resampling scheme, it is easy to see
that Q̂n and Qn are uniform over each of the five colored regions in Figure 1 that comprise B. We will
estimate the density of Qn over each of these regions by a simulation experiment, with various values of n,
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and compare with the uniform density over B. We will replicate the following experiment r = 107 times,
independently. For each replicate, we perform n independent runs of GS and construct the random multiset
Y∪. If Y∪ is empty, this replicate has no contribution and we move to the next replicate. Otherwise, we
compute the proportion of states in Y∪ that fall in each of the five regions D2, E2, D3, E3, and F2, and
divide each proportion by the area of the corresponding region, to obtain a conditional density given Y∪. To
estimate the exact densities d(D2), d(E2), d(D3), d(E3), and d(F2) over the five regions for the distribution
of the retained state under in this setting, we simulated this process r times and averaged the conditional
densities over the R0 replications for which Y∪ was nonempty. We did this with n = 1, 10, 100, 1000.
Table 1 reports the results for s = 2 and s = 10 (the given digits are roughly the significant digits of the
density estimates). The exact density of Y conditional on B is s2 over B, so it is 4 for s = 2 and 100 for
s = 10. The results show that Qn converges to Q very quickly with n and is already quite close even with
n = 1.

Table 1: Density estimates in each region with r = 107 independent replicates, with n independent runs of
GS per replicate, for s = 2 and 10.

s n R0 D2 E2 D3 E3 F2

2 1 3756298 3.98 3.98 4.06 4.06 4.05
2 10 9909982 3.994 3.995 4.016 4.019 4.017
2 100 10000000 4.000 3.999 4.001 4.002 4.001
2 1000 10000000 4.000 4.000 4.000 4.000 4.000

10 1 651966 99.8 100.1 101.2 100.5 99.2
10 10 4902162 100.0 100.0 99.8 100.3 100.0
10 100 9987952 100.0 100.0 100.0 100.0 100.0
10 1000 10000000 100.0 100.0 100.0 100.0 99.9

The symmetric resampling of Y just examined works nicely. We now try our second resampling scheme
(a different way to define κt) deliberately chosen to be bad. Instead of resampling the two coordinates of
Y, we resample only the first coordinate Y1 conditional on S(Y)> γ1, and do not resample Y2. We call this
one-way resampling. In this case, all points Y ∈ Yτ returned by GS on a given run have the same value
of Y2. We repeated the same simulation experiment with this poor resampling scheme, still with r = 107.
The results are in Table 2 The bias in Qn is now much larger than for the symmetric resampling case, and
is larger for s = 10 than for s = 2. A larger s amplifies the bias because it creates more dependence. We
can observe the convergence to the uniform density when n increases and this convergence is also slower
when s is larger.

Table 2: Density estimates in each region, with r = 107 independent replicates and n independent runs of
GS per replicate, for the one-way resampling, for s = 2 and 10.

s n R0 D2 E2 D3 E3 F2

2 1 3199391 4.82 3.12 5.84 3.13 3.13
2 10 9788291 4.30 3.68 4.67 3.68 3.68
2 100 10000000 4.022 3.977 4.049 3.978 3.978
2 1000 10000000 4.002 3.998 4.005 3.998 3.998

10 1 385940 170.5 25.9 254 25.9 26.4
10 10 3251227 167.8 28.9 244 28.9 29.2
10 100 9803488 140.8 58.1 166.7 58.1 57.9
10 1000 10000000 104.3 95.7 105.2 95.7 95.6
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5 CONCLUSION

We have analyzed the convergence of a GS method for sampling from a conditional distribution, conditional
on a rare event. This method has several applications in simulation and statistics. We proved convergence
in total variation to the exact conditional distribution when the number n of replicates goes to infinity. The
convergence was illustrated numerically. We also proved that the method provides an unbiased estimator
of the corresponding conditional expectation, for any measurable cost function. In further work, we are
interested in designing versions that achieve improved convergence rates for the total variation distance
between the sampling conditional distribution and the exact one.
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