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ABSTRACT

Consider a stochastic model for which the perfor-

mance measure is defined as a mathematical expec-

tation which depends on a parameter 8. By using a

likelihood ratio (i.e., a change of measure), it is often

possible to construct an estimator of the performance

measure in functional form, i.e., given as a function

of 8, and computed from a single simulation run. It is

also possible to obtain in functional form an estinla-

tor of the gradient with respect to 0. On way of doing

that is to combine the likelihood ratio technique with

a score function gradient estimator; another way is

to combine it with a perturbation analysis gradient

estimator. We compare and illustrate those two ap-

proaches.

1. LIKELIHOOD RATIOS AND ESTIMA-

TORS IN “FUNCTIONAL” FORM

Consider a stochastic model defined over a probabil-

ity space (0, X, P6), where the probability law P@ is

parameterized by 6 E ~, and @ is some bounded sub-

set of lR~. Let the random variable h (0, u) represent

the (finite-horizon) sample “cost” at parameter level

L9 for a sample point w E Cl. The expected cost at

parameter level O is then

a(o) =
J

h(6, w)czP@(u).
cl

We want to estimate the gradient a’(d) = da(0)/dO,

which is assumed to exist. More specifically, we

are seeking an “functional” estimator @(., w) of a’(.)

which can be obtained from a single simulation run.

Here and throughout the paper, the prime denotes

the gradient with respect to 8.

Under appropriate conditions, such an estimator

can be obtained as follows (see Glynn 1990, L’Ecuyer

1990, Rubinstein and Shapiro 1993). Select a proba-

bility measure G that dominates all the Pe ‘s, Then,

a can be rewritten as

a(o) =
/

h(o, w)dP@(d)
n
,.

—— 1h(O, w) L(G, O,w)dG(w),
$-l

where L(G, 0, u) = (dPo/dG) (w) is a likelihood ra-

tio. Further, under appropriate regularity (uniform

integrability) conditions (see L’Ecuyer 1993 or Ru-

binstein and Shapiro 1993):

(1)

where

7J(6, W)

= -L(G,6, w)h’(8, w) + h(d, w) L’(G, O,w)

= [h’(6, W) + h(O, w) S(O, w)] L(G, O,w) (2)

and

L’(G, O,W)
~ln L(G, O,u)S(o, w) = L(G, @,w) = 86

is called the score ftmctzon (SF).

If h (0, w ) ~ h(w) does not depend explicitly on O

and Pe and G have densities fe and g, then

and

Fr-

L(G, O,W) = fog,

S(e, w) = $jlnf~(~),

2) becomes

+( L9,w) = h(w) -~lnf~(w), (3)

m a simulation using the density g, one can es-

timate a and cr’ all over @ using (3): w is generated

from g, h(w) is computed (during the simulation),

and then 4(0, w) can be computed by computing the
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remaining factor at any value of O of interest. This

technique is analyzed in great detail in Rubinstein

and Shapiro (1993), where many examples are also

given. These authors call the problem of estimating

a and a’ all over @ the “What-if” problem.

Note that the score function is what permits one

to estimate the gradient a’(0) instead of the perfor-

mance measure a(~) itself, while the likelihood ratio

is what permits one to estimate a and a’ all over

@ (i.e., to solve the “what-i~ problem) by a single

simulation. For that reason, we shall call this tech-

nique the likelihood ratio (LR) method. Estimating

expectations in a functional form using a likelihood

ratio is also discussed in Glynn and Iglehart (1989),

Reiman and Weiss (1989), Rubinstein (1991), and

several other papers about importance sampling and

change of measure.

Of course, in practice, multiple independent repli-

cations of the simulation must be performed to reduce

the variance of the estimator and compute confidence

intervals. One then uses the gradient estimator

JN(O, LJ) = +fw’,w)! (4)

j=l

where q!q(O, w), . . . , 4~(0, u) are i.ild. replicates of

@(O, w). Confidence intervals can be computed as

usual, using the central-limit theorem.

One important application of the LR method is op-

timization (Rubinstein and Shapiro 1993). Suppose

one wishes to minimize a(0) with respect to 0. One

way of doing that is (roughly) to obtain an estimation

of a in a functional form, say from N i.i.d. replica-

tions, and then take the optimizer ~N of the aver-

age sample performance measure as an estimator of

the optimizer 19* of the expectation. Under appropri-

ate conditions, it can be shown that 8N converges

towards 0. at rate O(N - 1/2) (see Rubinstein and

Shapiro 1993). This optimization approach is called

the stochastic counterpart (SC) method. A variant

of it (which is equivalent if the sample gradient esti-

mator is unimodal) is to estimate the gradient in a

functional form, find a zero of that gradient estima-

tor, and use it as an estimator of O*.

Another approach for gradient estimation is in-

jinzteszmal perturbation analysis (IPA); see Glasser-

man (1991). The idea is to define the probability

space (fl, X, Po) and the random variable h(f?, w) in

such a way that only h depends on 8, i.e., the prob-

ability measure P. z P is independent of 0. In that

case, one can take G = P and the gradient estimator

(2) becomes the sample derivative

+(0, W) = h’(6, w). (5)

In several situations, for a given model, it is possible

to formulate the problem either in the IPA context

(P8 independent of 19) or in the SF-LR context (with

h(., w) independent of 6’) by selecting the meaning

of w and defining the probability space appropriately

(L’Ecuyer 1990). We will examine an example of that

in the next section.

Typically, gradient estimators based on IPA have

less variance than those based on SF as in (3). How-

ever, (5) contains no likelihood ratio and does not

permit (in general) to estimate the gradient in a func-

tional form, because for a given u, h (f?, w) is typically

a very complicated function of O and the best way

to evaluate it at different values of O is usually to re-

run the simulation at each of those different values.

Therefore, (5) does not appear very convenient, at

first sight, for the SC optimization method.

To combine the IPA estimator (5) with LR, one

must change the interpret ation of w after (!5) has been

defined. More specifically, when the estimator (5) is

derived, the probability space is defined in such a way

that PO ❑ P is independent of 0. Afterwards, the ran-

dom variable O(O, w) can be redefined over a different

probability space (i.e., using a different representa-

tion), for which Pe now depends on $. Assuming

that this can be done in such a way that @(., u) it-

self can now be computed in a functional form from

a single simulation, one then obtains a gradient es-

timator in a functional form by multiplying @(@,u)

by the appropriate likelihood ratio. In practice, this

can be achieved if V(8, w) (under the redefined prob-

ability space) depends on O in a way that is not too

complicated. We shall call this functional estimator

the IPA-LR gradient estimator and the estimator (3)

the SF-LR gradient estimator.

In the next section, we will illustrate the con-

struction of IPA-LR and SF-LR estimatc)rs through

a G1/Ll/l queueing example. We shall compare the

variance properties of both estimators for that ex-

ample, give numerical illustrations, and discuss the

generalization of those properties to other situations

in the following section and in the conclusion.

2. EXAMPLE: A G1/J!f/l QUEUE

Let h(~, o) be the average sojourn time for the first

t customers in a GI/M/l queue, initially empty, with

mean service time 0. For each i, let S’i, W~ and .Yi =

Wi + S, represent the service time, waiting time, and

sojourn time of customer i, respectively, and Ai be

the inter-arrival time between customers i and i + 1,

whose distribution is assumed independent of 6. The
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sample performance measure is

and we want to estimate a’(0), the derivative of the

expectation of h (0, u), with respect to 6.

2.1. The SF-LR Derivative Estimator

Suppose that w represents (S1, AI,. . . . At-1, St), so
that dP@ (w)/dw corresponds to the joint density of

Sl, Al, . . .. At_l. St. In that case, for a fixed w,

h(~, w) = h(w) does not depend on O (only its distri-

bution does). Let G = PeO for some fixed parameter

value 6’0 > 0. Then, in the actual simulation, the

service times are generated from the exponential dis-

tribution with mean 00, the likelihood ratio and score

function become

‘(GoU)=(atex((i-i)$y’)“)
and

t
s(o, ti)=-; +;~si,

inl

respectively, and the SF-LR estimator of a’ (0) is (3).

To estimate the derivative in a functional form, one

simulates at 00 and memorizes h(w) and ~~=1 S~.

From that, $(0, w) can then be evaluated at any other

value of O of interest. To do that, if N replications are

performed, then the values of h(w) and ~~=1 Si for

each replication must be memorized. It is important

to note that the computational work involved in eval-

uating ~~ (0, w) at each value of O of interest is not

negligible, especially if N is large. However, it is less

than re-running the simulation at all those different

values of 0.

One might wonder about the variability of such an

est imat ion scheme, especially when O is far away from

60. For that particular example, it can be shown (see

L’Ecuyer 1993) that the kth moment of the derivative

estimator +(0, w) is finite if and only if (k– 1)0 <,40..

In particular, for a given 00 > 0, @(O, w) has finite

expectation for all O > 0, but finite variance only for

6<200. One can easily derive the following more pre-

cise expression for the variance from a development

similar to that outlined in Section 2.3 of Rubinstein

and Shapiro (1993):

Var [~(6, w)]

- [a’(e)]’, (7)

where j = 00./(200 – 0). When 19 = O., one has

j = 0, the expectation in (7) increases linearly in t,

and the factor multiplying the expectation is equal to

1; therefore the variance is in O(t). For O # 190, the

expectation is in 0(t2), and so the variance increases

(
as O [Of/( fl(200 – O))]t t’) as a function oft, that is,

exponentially fast. Furthermore, for fixed t, the vari-

ance increases to infinity when 6 approaches either O

or 260.

2.2. The IPA-LR Estimator

To derive the IPA estimator of c-J(O), we now rein-

terpret w as representing the sequence of i.i.d. uni-

forms that are used to drive the simulation. If the

service times are generated by inversion, one has

Sj = 19Zi = –d ln( 1 – Uj), where Uj is the uniform

variate used to generate S’j, and Zj is an exponential

random variable with mean 1. Then,

h’(o, w) = +$2% (8)
2=1j=u,

., %=1j=v,

(9)

is an unbiased estimator of cr’(d), where vi is the num-

ber (or index) of the first customer who is in the same

busy period as customer i.

Now, to estimate the derivative everywhere by sim-

ulating at 6’0, we will reinterpret w as representing the

sequence of interarrival and service times. For that,

h’ (0, w) must be expressed as a function of this “new”

w; that is, we must use the expression (9), not (8).

With this new interpretation of w, the likelihood ra-

tio becomes (6), the same as for the SF-LR method.

Then, the IPA-LR derivative estimator at O when the

simulation is performed at 6’0 is

*(e, w)

= (+j>,sj)($)tex-;)~si).
If N replications are, performed, then the values of

~~al Si and ~~=1 ~j=v, S3 for each replication must
be memorized in order to make possible the subse-

quent evaluation of ~N (., w).

In this case, the variance of the derivative estimator

is given by

Var [+(0, w)]

= (o(2$-e))tE~[(i$
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- [a’(e)]2, (lo)

where ~ = 00./(200—0). One can see that this expres-

(
sion is in O (0~/(0(200 – 0))) t t–l) as a function of

t. So, the variance increases exponentially fast w.r.t.

t for O # 6’0, and decreases linearly in t for L9 = 00.

As a result, for 8 close to 190, this IPA-LR estimator

should be much better than its SF-LR counterpart for

moderate or large t,since its variance decreases w.r.t.

t instead of increasing. The variance also increases to

infinity when O approaches either O or 200, as was the

case with SF-LR.

SF-LR method when 8 becomes too large, and have

advocated selecting 00 equal (or slightly larger than)

the largest value of 6 at which one is interested in esti-

mating the gradient. It turns out that the same kind

of variance explosion occurs with the IPA-LR estima-

tors. The figures also illustrate the fact that for both

methods, there is a (perhaps more sneaky) problem

when O gets too small: the empirical variance is close

to zero with very high probability, despite the fact

2.3. Numerical illustrations

For numerical illustrations, consider an M/M/1

queue with arrival rate A = 1 and mean service time 0.

We have performed experiments with different values

of t and 00, each time doing N = 10, 000 replications

to estimate a’ all over the interval @ = [0.1, 0.9], us-

ing both the SF-LR and IPA-LR methods described

in the previous subsections. Figures 1–6 show some

of the results.

In the upper part of each figure, the solid line gives

the exact value of o?(O) as a function of 0, while the

two dotted lines show the boundaries of a 95% confi-

dence interval for cd(6) computed from our N simu-

lation replications. The dashed line (the center of the

confidence interval) indicates the value of the deriva-

tive estimator ~~ ( ~,u).

In the lower part of each figure, the solid line is an

estimation of the variance of V(O, w) computed using

(7) and [10), i.e., the expectation Ej[.] was estimated

by the simulation and the other terms were computed

exactly. The dashed line, on the other hand, repre-

sents the standard empirical variance, given by

.,

The latter is in fact much less reliable as a variance

estimator; indeed, it can be shown that its variance

is finite only for O < 40./3 and increases to infinity

as 0 approaches either O or 40./3 (the variance of the

variance estimator has to do with the fourth moment

of lj(e, u)).

Figures 1–4 show the behavior of the two types

of estimators for t = 10, and 60 = 0.5 and 0.8.

It can be seen that the IPA-LR method has much

lower variance, and that both methods are reliable

only in a restricted region around (and mostly to the

left of) 00. Asmussen and Rubinstein (1991), Rubin-

stein (1991), and Rubinstein and Shapiro (1993) have

already pointed out the variance explosion with the
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that the true variance is huge. So, using the empiri-

cal variance to compute confidence intervals becomes

misleading. This is what happens, for example, when

00 = 0.8 and $<0.3.

Figures 5-6 show what happens with 60 = O.5 and

t = 100. They show that as t increases, the estimators

can be useful only in a very narrow area. Roughly,

in that case, the SF-LR estimators are useful only

for 6’ E (0.45, 0.55), while the IPA-LR estimators are

useful only for O E (O .4, 0 .6). This, despite the fact

that 10,000 replications are performed.

3. OTHER EXAMPLES AND APPLICA-
TIONS

the latter IPA estimator is called smoothed perturba-

tion anazysis (see Glasserman 1991). The SF-LR es-

timator is the same as in the previous example, with

the only exception that h must be replaced by one of

the two expressions (11) and (12).
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3.1. Fraction of Zero-Wait Customers in a
GI/.Vf/ 1 Queue

VVe consider again the GI/M/ 1 example, but we will

now redefine h as the fraction of customers whose

waiting time is zero, among the first t customers.

That is,

h(o,w) = + ~1[1’’T’j=O]
i=l

= + ~ IIA, 2 Xi.,] (11)

where I denotes the indicator function. Let F be the

interarrival-times distribution, with density f. If we

differentiate the estimator (11 ) with respect to 19, we

obtain zero with probability one, and so the sample

derivative is not a useful estimator of a’ (0). However,

by conditioning on xl-i– 1 for each term in the sum, we

obtain the conditional Monte Carlo estimator

= :$(1 - F’(.Yi-~)), (12)

2=1

whose expectation is also cr(0). Then,

h’(o, u) = -+ ~ f(.Y,-,).Y[_,
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Figure 7: SF-LR Estimator, t= 10, t90 = 0.8
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Figure 8: IPA-LR Estimator, t = 10, 00 = 0.8

which can be multiplied by the likelihood ratio as in

the previous example to get the IPA-LR derivative

estimator. The technique that we just used to obtain



344 L’Ecuyer

Figures 7–8 show the results of some numerical ex-

periments made with this example., with t = 10 and

00 = 0.8. For the results shown for SF-LR, we used

the expression (11) for h, but there was very little

difference in the results when we used (12) instead.

It could be observed that for this example, the most

favorable variance properties are obtained when O is

slightly larger than 60. In the previous example, the

opposite was true. This means that to estimate a’(0)

in some interval [01, 62], it was best in the previous ex-

ample to take 00 near the upper bound of the interval.

For this example, however, the opposite is true, and

the reason is that the performance measure h(O, u)

here is decreasing w.r.t. 0; therefore, importance sam-

pling considerations (Glynn and Iglehart 1989) tell us

that it is better to take 00<8 (simulating at a smaller

00 stochastically increases the number of zero-waits).

3.2. A Reliability System with Age Limits

Consider a Q-component system, where the compo-

nents evolve independently of each other. For each

g = 1, . . . . Q, component q has a lifetime distribution

Fg, with age-dependent failure rate Aq (failure ends

the life of the component), and replacement-time dis-

tribution Gq. Component q also has an age limit

Lg: whenever its age reaches Lg, it is replaced im-

mediately by a new one. This is called a preventive

replacement. So, for each q, component q lives for

a while, then either fails or is replaced preventive y,

then the repair time must elapse, the new component

starts working, lives for a while, and so on. Let to = O

and t1,t2,t3,...be the successive event times in the

evolution of this system, that is, the times at which

there is either a failure, or reaching of an age-limit,

or the end of a repair.

We assume that costs are incurred continuously,

and that the cost rate c(t) at time t is a continu-

ous function of the component’s states and ages at t.

Then, the total cost incurred over a time-horizon T

is given by ~o~ c(t)dt. For example, the system could

be a coherent reliability system (with redundancies)

and c(t) = 1 when the system is operational, c(t) = O

otherwise. If there is a failure cost Kq incurred each

time component q fails, then this failure cost can be

integrated into c(t) by replacing it by a cost rate of

Aq (xQ(t) )l<q, where Zq (t) is the age of component g

at time t.

Suppose that Fq or G~ depends on a parameter

0, and denote them by Fg,o and Gq,e. Suppose that

F’~~~ (u) and Fq~~(u) are differentiable w.r.t. O for each

u. Now, a infinitesimal change in O will provoke in-

finitesimal changes in the ti ‘s, but will not signifi-

cant 1y change the sequence of events. In fact, two

successive events can change order only if they occur

almost simultaneously, and such a change of order will

not affect the order of the subsequent events. There-

fore, these ordering changes are not making the sam-

ple cost discontinuous w.r.t. O and (under minor addi-

tional conditions), IPA yields an unbiased derivative

estimator for the expected tot al cost. That estimator

is given by:

h’(6, w) = ~ [C(~;) - C(ti)]t:, (13)

{i.o<tt<z’}

where t; is the derivative of ti w.r. t. O. It is easily seen

that the tj’s can be expressed as random variables

whose distributions depend on 0, as for the previous

examples, and that a likelihood ratio based on the

lifetime or repair-time random variables can then be

defined to construct the IPA-LR gradient estimator.

Now, suppose that the parameter d is an age-limit;

i.e., Lq = O for some q. Again, h is continuous w.r.t.

an infinitesimal change in Lq, and the IPA estimator

(13) still works nicely in that case. Indeed, even if

a slight increase in Lg now makes a failure to occur

before a preventive replacement, whereas the oppo-

site was true with the original value of Lg (that is, an

event changes type, from “prevent ive replacement”

to “failure”), that changes the cost rate only during

an infinitesimal duration. In (13), if tiis the time of

an event involving component q, then tjwill be equal

to the number of times the age limit -Lq was reached

for component q until time ti.But what is the likeli-

hood ratio in this case ? The only “random variable”

that depends on O here is Lq, and it is a degener-

ate one, whose support depends on 6. Therefore, the

likelihood ratio does not exist and so the IPA-LR es-

timator cannot be constructed. The SF and SF-LR

estimators do not exist either in this case.

4. CONCLUSION

We have shown how a change of measure can be com-

bined with IPA to obtain a gradient estimator in func-

tional form, which we called the IPA-LR estimator.

We compared it with the previously introduced SF-

LR estimator for simple examples. The IPA-LR esti-

mator can be constructed in a similar way for other

applications like stochastic PERT networks, queueing

networks, some inventory systems, and so on. Typi-

cally, it will work only if both the IPA and SF gradient

estimation methods apply to the problem at hand.

One requirement is that the likelihood ratio must ex-

ist. There are applications where IPA applies and

where the parameter 8 is not a parameter of some

probability distribution, but a threshold. Examples

include some classes of inventory systems where L9 is
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an inventory level, maintenance models where O is an

age-limit (as in ~3 .2), or production systems where

O an hedging-point (see Haurie, L’Ecuyer, and van

Delft 1993). For those applications, the IPA-LR and

SF-LR methods do not apply. There are other appli-

cations (see L) Ecu yer 1990 or Rubinstein and Shapiro

1993) where SF-LR does apply, but where IPA, and

therefore IPA-LR, does not.

In the queueing examples that we have imple-

mented, in turned out that O was easy to factor out of

h’ (0, w); see Equation (9). This is typical, e.g., for dis-

tributions from the exponential family, or for location

and scale parameters, if h does not have a too com-

plicated structure, but may not necessarily always be

the case in general. If O cannot be factored out, then

the actual computation of 4(4, u) could become more

costly, and making that computation possible for all

values of O could require storing much more informa-

tion.

In the GI/M/l example that we have examined,

the variance of both the SF-LR and IPA-LR estima-

tors was increasing dramatically fast (with vertical

asymptotes) as O was getting away from t?o, and was

also increasing exponentially fast as a function of the

simulation horizon t. This is typical. As a result,

those functional estimators are typically useful only

in a small neighborhood of 00 and for short horizons

(i.e., for cases where the likelihood ratio is a product

of only a few terms). Steady-state models can never-

theless be treated if they have a regenerative struc-

ture that can be exploited and the regenerative cycles

are short; see Rubinstein (1991) and Rubinstein and

Shapiro (1993).

Rubinstein and Shapiro (1993) study the use of

SF-LR estimators for stochastic optimization through

the stochastic counterpart (SC) method. It turns out

that IPA-LR estimators can also be used in SC. An-

other method for stochastic optimization is the well-

known stochastic approximation (SA) method (Kush-

ner and Clark 1978; Polyak and Juditsky 1992). In

contrast to SC, SA is an iterative method which does

not require a gradient estimator in functional form,

but only a point (gradient) estimator at each itera-

tion. The latter estimator can be obtained, for in-

st ante, by either SF or IPA. Comparison between SC

and SA in terms of efficiency, ease of implementation,

etc., in the asymptotic sense and in the practical sense

(e.g., for a small computer budget), has not been

much investigated at this point. Such comparative

studies should be the subject of further investigation.

If SC and SA are performed in the “optimal” way,

then both have the same convergence rates, namely

O(N- 112). However, performing them in the optimal

way is typically hard to achieve in practice.

ACKNOWLEDGMENTS

Myriam Antaki helped producing the figures. This

work has been supported by NSERC-Canada grant

# OGPO11OO5O and FCAR-Qu6bec grant # 93-ER-

1654.

REFERENCES

Asmussen, S. and R. Y. Rubinstein. 1991. “’The Per-

formance of Likelihood Ratio Estimators Using the

Score Function”, Manuscript, Chalmers lJniversity

of Technology, Goteborg, Sweden.

Glasserman, P., Gradient Estimation via Perturba-

tion Analysis, Kluwer Academic, 1991.

Glynn, P. W. “Likelihood Ratio Gradient Estima-

tion for Stochastic Systems”, Communications of

the ACM, 33, 10 (1990), 75-84.

Glynn and Iglehart. 1989. Importance Sampling for

Stochastic Simulations. Management Science 35,

1367-1392.

Haurie, A., P. L’Ecuyer, and Ch. Van Delft. 1993.

Monte-Carlo Optimization of Parametrized Poli-

cies in a Class of Piecewise Deterministic Control

Systems Arising in Manufacturing Flow Control.

To appear in Discrete Event Dynamic Systems.

L’Ecuyer, P., “A Unified View of the IPA, SF, and

LR Gradient Estimation Techniques”, Manage-

ment Science, 36, 11 (1990), 1364–1383.:

Kushner, H. J. and D. S. Clark, Stochastic Ap-
proximation Methods for Constrained and Uncon-

strained Systems, Springer-Verlag, Applied Math.

Sciences, vol. 26, 1978.

L’Ecuyer, P. 1993. On the Interchange of Derivative

and Expect ation . . . Management Science, to ap-

pear.

Polyak, B. T. and A. B. Juditsky. 1992. Acceleration

of Stochastic Approximation by Averaging. SIAM

J. on Control and Optimization 30, 838--855.

Reiman, M and A. Weiss. 1989. Sensitivity Analysis

for Simulations via Likelihood Ratios. Operations

Research 37, 830-844.

Rubinstein, R. Y. 1991. How to Optimize Discrete-

Event Systems from a Single Sample Path by the

Score Function method. Annals of Operations Re-
search 27, 175–212.

Rubinstein, R. Y. and A. Shapiro, Discrete Event

Systems: Sensitivity Analysis and Stochastic Op-
timization by the Score Function Method, Wiley,

1993.



346 L’Ecuyer

AUTHOR BIOGRAPHY

PIERRE L’ECUYER is a professor in the depart-

ment of “Informatiqueet Recherche Op&ationnelle”

(IRO), at the University of Montreal. He receiveda

Ph.D. in operations research in 1983, from the Uni-

versity of Montreal. From 1983 to 1990, he was with

the computer science department, at Laval Univer-

sit y, Qu6bec. His research int erest,s are in M arkov re-

newal decision processes, sensitivity analysis and op-

timization of discrete-event stochastic systems, ran-

dom number generation, and discrete-event simula-

tion in general. He is the Departmental Editor for

the Simulation Department of Management Sczence

and an Associate Editor for the ACM Transactions

on Modeling and Computer Simulation.


