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G. Marsaglia introduced recently a class of very fast xorshift random number generators, whose
implementation uses three “xorshift” operations. They belong to a large family of generators based

on linear recurrences modulo 2, which also includes shift-register generators, the Mersenne twister,

and several others. In this paper, we analyze the theoretical properties of xorshift generators,
search for the best ones with respect to the equidistribution criterion, and test them empirically.

We find that the vast majority of xorshift generators with only three xorshift operations, including
those having good equidistribution, fail several simple statistical tests. We also discuss generators

with more than three xorshifts.
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1. INTRODUCTION

Marsaglia [2003] proposed a class of very fast uniform random number generators
(RNGs) called xorshift. The state of a xorshift generator is a vector of bits. At each
step, the next state is obtained by applying a certain number of xorshift operations
to w-bit blocks in the current state, where w = 32 or 64, and a xorshift operation
is defined as follows: replace the w-bit block by a bitwise xor (exclusive or) of the
original block with a shifted copy of itself by a positions either to the right or to
the left, where 0 < a < w.

Xorshifts are linear operations. The left shift of a w-bit vector x by one bit,
x � 1, can also be written as Lx where L is the w × w matrix with ones on its
main superdiagonal and zeros elsewhere. Similarly, the right shift x � 1 can be
written as Rx where R has ones on its main subdiagonal and zeros elsewhere.
Matrices of the forms (I + La) and (I + Ra), where a ∈ {1, . . . , w − 1}, are called
left and right xorshift matrices, respectively. They represent left and right a-bit
xorshift operations.
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2 · F. Panneton and P. L’Ecuyer

A xorshift generator is defined by a recurrence of the form

vi =
p∑

j=1

Ãjvi−mj
mod 2 (1)

where p is a positive integer, the vi’s are w-bit vectors, the mj ’s are positive integers,
and Ãj is either the identity or the product of νj xorshift matrices for some νj ≥ 0,
for each j (Ãj is the zero matrix if νj = 0). If we define r = max1≤j≤p mj ,
the generator’s state at step i can be written as xi = (vT

i−r+1, . . . ,v
T
i )T and the

output is ui =
∑w

`=1 vi,`−12−` where vi = (vi,0, . . . , vi,w−1)T. The output sequence
{ui, i ≥ 0} is supposed to imitate i.i.d. random variables uniformly distributed over
the interval [0, 1]. We can rewrite (1) as

vi =
r∑

j=1

Ajvi−j mod 2 where Aj =
∑

{l:ml=j}

Ãl. (2)

This is a special case of the multiple recursive matrix method defined in Niederreiter
[1995].

Marsaglia [2003] considers three types of xorshift generators, mostly with ν1 +
· · · + νr = 3 (i.e., exactly three xorshift operations). The type I generators have
r = 1 and A1 is the product of three xorshift matrices. For example, one may
have A1 = (I + L13)(I + R17)(I + L5), which Marsaglia says is “one of my favorite
choices.” For the type II generators, r > 1, Ar 6= 0 and only one other matrix
Aj is nonzero. For example, one could have r = 4, A4 = (I + R7)(I + L11), and
A1 = (I+L20). The type III generators have r > 1, Ar 6= 0, exactly three matrices
Aj are xorshift matrices, and the others are zero. For example, one may have
r = 12, A2 = (I + L7), A3 = (I + R11), and A12 = (I + L21).

These generators are extremely fast and it is easy to find parameter values for
which they have full period length 2rw − 1. This period length can be made very
large by selecting a large r and (say) w = 32. But as we all know, a long period
does not suffice to have a high-quality generator. In his paper, Marsaglia says:
“Although I have only tested a few of them, any one of the 648 choices above is
likely to provide a very fast, simple, high quality RNG.” So, how robust and reliable
are they?

To answer this question, in this paper, we study the xorshift generators from
both the theoretical and empirical perspectives. These generators form a subclass
of a large and well-known family of RNGs based on linear recurrences modulo 2,
as described in Section 2. In Section 3, we recall standard equidistribution criteria
that are widely used to measure the uniformity and independence of these linear
generators. In Section 4, we establish some properties of xorshift matrices and
generators. In particular, we identify classes of generators having the same period
length, others having the same equidistribution, and others that are completely
equivalent. In Section 5, we assess the equidistribution of specific instances pro-
posed by Marsaglia and submit them to statistical tests. Many of them have very
bad equidistribution and fail some tests spectacularly. In Section 6, we perform a
search for the best generators of type I, II, and III with respect to equidistribution
criteria, under the constraint that they use only three xorshift operations. We test
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the best ones and find that they are statistically weak. In Section 7, we briefly look
at xorshift generators with more than three xorshifts.

2. MATRIX LINEAR RECURRENCES MODULO 2

The xorshift generators belong to a large class of RNGs based on the following type
of linear recurrences modulo 2:

xi = Axi−1 mod 2, (3)
yi = Bxi mod 2, (4)

ui =
w∑

`=1

yi,`−12−` = .yi,0 yi,1 yi,2 · · · , (5)

where xi = (xi,0, . . . , xi,k−1)T and yi = (yi,0, . . . , yi,w−1)T are the k-bit state and
the w-bit output vector at step i, A is a k×k binary transition matrix, B is a w×k
binary output transformation matrix, k and w are positive integers, and ui ∈ [0, 1) is
the output at step i. By appropriate choices of A and B, several types of generators
can be obtained as special cases of this general class; for instance the Tausworthe,
linear feedback shift register (LFSR), generalized feedback shift register (GFSR),
twisted GFSR, Mersenne twister, WELL, etc. (see, e.g., L’Ecuyer 2004; Panneton
et al. 2005, and Panneton 2004 for the details). Important advantages of these
generators are that fast implementations are available (they exploit the binary
nature of computers) and that their mathematical properties are well understood
from a theoretical perspective.

Let P (z) = det(A− Iz) be the characteristic polynomial of A. It is well-known
that the recurrence (3) has period length 2k − 1 (its maximal possible value) if and
only if P (z) is a primitive polynomial modulo 2 [Niederreiter 1992; Knuth 1998].

Xorshift generators fit this setting by taking k = rw,

A =


0 I · · · 0
...

. . .
...

0 0 · · · I
Ar Ar−1 · · · A1

 ,

xi = (vT
i−r+1, . . . ,v

T
i )T, and yi = vi. The matrix B contains a w × w identity I in

its upper left corner and zeros elsewhere. The characteristic polynomial of this A is
P (z) = det(zrI +

∑r
j=1 zr−jAj). While completing this paper, we found a related

article by Brent [2004a], who also reports the similitudes between the xorshift and
LFSR generators.

Note that replacing the identity I in the upper left corner of B by an arbitrary
invertible w × w matrix B̃, i.e., defining yi = B̃vi, is equivalent to replacing each
Aj in (2) by B̃AjB̃−1, which gives the recurrence

yi =
r∑

j=1

B̃AjB̃−1yi−j mod 2. (6)

This does not change the characteristic polynomial P (z).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3. EQUIDISTRIBUTION

For an arbitrary integer t > 0, a vector of t successive output values of an RNG
would ideally behave as a random vector uniformly distributed over the t-dimensional
unit hypercube [0, 1]t. But for an RNG defined by (3)–(5), all these vectors must
belong to the finite set

Ψt = {(u0, u1, . . . , ut−1) : x0 ∈ {0, 1}k}.

It is customary to require that Ψt covers [0, 1]t very evenly for all t up to some large
integer, so that drawing a point uniformly from the “sample space” Ψt gives a good
approximation of a uniform random variable over [0, 1]t [L’Ecuyer 2004]. For this
class of RNGs, a standard way of assessing the uniformity of Ψt is the following.

Recall that Ψt has cardinality 2k. If we divide the interval [0, 1) into 2` equal
segments for some positive integer `, this determines a partition of the unit hyper-
cube [0, 1)t into 2t` cubic cells of equal size, called a (t, `)-equidissection in base 2.
The set Ψt is said to be (t, `)-equidistributed if each cell contains exactly 2k−t` of
its points. This can be verified by expressing the t` bits that determine the cell
number of a point as a linear combination of the k bits of the state, and check-
ing if the corresponding matrix has full rank [Fushimi and Tezuka 1983; L’Ecuyer
1996]. For a fixed resolution `, let t` denote the largest value of t such that Ψt is
(t, `)-equidistributed. A theoretical upper bound on t` is t∗`

def= bk/`c. We define
the dimension gap in resolution ` as δ` = t∗` − t`. As measures of uniformity, we
consider the worst-case dimension gap and the sum of dimension gaps, defined as

∆∞ = max
1≤`≤w

δ` and ∆1 =
w∑

`=1

δ`.

A small value of ∆1 or ∆∞ indicates good uniformity. A generator is called max-
imally equidistributed (ME) if ∆1 = 0 [L’Ecuyer 1996]. ME generators have the
best possible equidistribution properties in terms of cubic equidissections.

4. PROPERTIES OF XORSHIFT GENERATORS

In this section, we examine some theoretical properties of xorshift matrices and show
how these properties affect the period length and the equidistribution of xorshift
generators.

4.1 General Properties

Our first proposition implies that to reach the maximal period 2rw − 1, a xorshift
generator must contain both left and right xorshift matrices.

Proposition 4.1. If the nonzero matrices Ai are products and/or sums of either
all left or all right xorshift matrices, then P (z) cannot be irreducible, and therefore
cannot be primitive.

Proof. If the nonzero Ai’s are all products and/or sums of xorshift matrices on
the same side, then the matrix zrI +

∑r
j=1 zr−jAj is triangular, hence P (z) is the

product of its main diagonal, i.e. a product of z’s and (1− z)’s.

Consider a generator defined by (3)—(5) where B has an arbitrary w×w matrix B̃
in its upper left corner and zeros elsewhere. Let Ψt(A, B̃) denote the corresponding
ACM Journal Name, Vol. V, No. N, Month 20YY.
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set Ψt. Our next result says that adding a right xorshift to the output of such a
generator preserves its equidistribution, and therefore does not change its values of
∆1 and ∆∞.

Proposition 4.2. For ` ≤ w, the set Ψt(A, (I + Ra)B̃) is (t, `)-equidistributed
for 0 < a < w if and only if Ψt(A, B̃) is.

Proof. The t` bits that determine in which box of the (t, `)-equidissection the
point (u0, . . . , ut−1) will fall are the ` most significant bits of each of its coordinates.
Let y(t, `) = (y0,0, . . . , y0,`−1, . . . , yt−1,0, . . . , yt−1,`−1)

T

be the vector of those bits
and observe that y(t, `) = M(t, `)x0 where M(t, `) is the t`×k binary matrix whose
row `i + j is row j of BAi, for 1 ≤ j ≤ ` and 0 ≤ i ≤ t − 1. The set Ψt is (t, `)-
equidistributed if and only if each possibility for y(t, `) occurs the same number of
times when x0 runs through all of its 2k possibilities. This happens if and only if
the matrix M(t, `) has full rank, t`.

If we consider Ψt(A, T̃B̃) instead of Ψt(A, B̃), where T̃ = I + Ra, we must
redefine row `i + j of M(t, `) as row j of TBAi, where T is a matrix with T̃ in
its upper-left corner and zeros elsewhere. This amounts to left-multiplying M(t, `)
by a block-diagonal t` × t` matrix D comprised of t diagonal blocks which are all
equal to the ` × ` upper-left corner of T̃. But for any a > 0, the matrix T̃ is
lower-triangular with ones all over its main diagonal, so D also has this property
and is thus invertible. Therefore, left-multiplying M(t, `) by D does not change its
rank and this completes the proof.

Two matrices M1 and M2 are similar if there exists an invertible matrix C such
that M1 = CM2C−1. Similarity is an equivalence relationship, denoted M1 ∼ M2.
Similar transition matrices A have the same characteristic polynomial and define
generators with the same period length. The next proposition exploits this fact to
derive several useful properties of xorshift matrices.

Proposition 4.3. Let H,H1,H2,H3,K1,K2,K3 ∈ {L,R} and such that Hi 6=
Ki for i = 1, 2, 3. We have that:

(a) (I + La) ∼ (I + Ra);
(b) (I + Ha)(I + Hb) = (I + Hb)(I + Ha);
(c) (I + Hc

3)(I + Hb
2)(I + Ha

1) ∼ (I + Ha
1)(I + Hc

3)(I + Hb
2);

(d) (I + Hc
3)(I + Hb

2)(I + Ha
1) ∼ (I + Kc

3)(I + Kb
2)(I + Ka

1);
(e) if H1,H2 and H3 are not all the same matrix,

then (I + Hc
3)(I + Hb

2)(I + Ha
1) ∼ (I + Hc

3)(I + Ha
1)(I + Hb

2).

Proof. Let P denote the square matrix with ones on its main antidiagonal and
zeros elsewhere, i.e., the identity matrix with its columns in reverse order. We have
(I + La) = P(I + Ra)P−1 and this implies (a) and (d). Part (b) can be verified by
multiplying the terms on each side and using the fact that HaHb = Ha+b = HbHa.
For part (c), we have (I + Hc

3)(I + Hb
2)(I + Ha

1) ∼ (I + Ha
1)(I + Hc

3)(I + Hb
2)(I +

Ha
1)(I + Ha

1)−1 ∼ (I + Ha
1)(I + Hc

3)(I + Hb
2). Part (e) is left as an exercise to the

reader.

By using the properties listed in Proposition 4.3, one can easily show the following
proposition.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Proposition 4.4. The eight matrices

X1 = (I + Lc)(I + Rb)(I + La), X2 = (I + La)(I + Rb)(I + Lc),
X3 = (I + Rc)(I + Lb)(I + Ra), X4 = (I + Ra)(I + Lb)(I + Rc),
X5 = (I + Rb)(I + Lc)(I + La), X6 = (I + Lb)(I + Ra)(I + Rc),
X7 = (I + Lc)(I + La)(I + Rb), X8 = (I + Ra)(I + Rc)(I + Lb),

where a, b, c are in {1, . . . , w − 1}, are all similar.

Proof. Let P be as in the proof of Proposition 4.3 and Cj , 1 ≤ j ≤ 8, be
the matrices such that X1 = CjXjC−1

j . Using Proposition 4.3, we show that:
C2 = (I + La)−1(I + Lc), C3 = P, C4 = P(I + Ra)−1(I + Rc), C5 = (I + Lc),
C6 = (I + Lc)P, C7 = (I + La)−1 and C8 = (I + La)−1P.

We will make use of this last proposition in our examination of the three types
of xorshift generators proposed by Marsaglia [2003].

4.2 Generators of type I

Because the matrices X1, . . . ,X8 are all similar, by finding a triple (a, b, c) for which
the generator based on X1 has full period, we in fact identify eight full-period
generators. Marsaglia [2003] recognizes this fact (without providing a proof), but
only for the matrices X1, . . . ,X6, and he includes the matrices (I+Rb)(I+La)(I+
Lc) and (I + Lb)(I + Rc)(I + Ra), which are in fact a repetition X5 and X6.

The next proposition implies that to verify the equidistribution of all type I
generators defined by a triple (a, b, c), we only need to verify the equidistribution
of the generators based on X1, X2, X3, and X5.

Proposition 4.5. For a given triple (a, b, c), the type I generators with A1 =
X7 and A1 = X5 have exactly the same equidistribution properties, and the type I
generators with A1 equal to either X3, X4, X6, or X8 also have exactly the same
equidistribution properties.

Proof. By (6), taking A1 = X7 and yi = (I + Rb)vi is equivalent to using
the recurrence yi = (I + Rb)X7(I + Rb)−1yi−1 = (I + Rb)(I + Lc)(I + La)(I +
Rb)(I + Rb)−1yi−1 = X5yi−1. This means that Ψt(X5, I) = Ψt(X7, I + Rb) for
all t. It then follows from Proposition 4.2 that the generators with X7 and X5

have identical equidistribution properties. A similar argument applies to the type
I generators produced by X3, X4, X6, and X8.

4.3 Generators of type II

A generator of type II is implemented via a special version of (2) which can be
written as:

vi = Gvi−m ⊕Hvi−r (7)

where G and H are w×w matrices and ⊕ denotes the bitwise exclusive-or operation.
We denote this generator by the triple (G,H,m). Property (6) implies that for a
given non-singular w × w matrix C, (CGC−1,CHC−1,m) provides a full-period
generator if and only if (G,H,m) provides one.

Table I lists all possibilities of G and H. They are grouped in a way that
within each group, they all have the same characteristic polynomial through the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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similarity matrix C. The last column indicates the generators having the same
equidistribution. Marsaglia [2003] only mentions generators for which G = G1 =
(I + Rb)(I + La), H = H1 = (I + Rc), and m = 1. The following theorem tells us
that it is worthless to search for full-period generators of type II with H = I.

Table I. List of possible combinations (G,H), regrouped in classes of generators having the same
period length.

i Gi Hi C Equidistribution

1 (I + Rb)(I + La) (I + Rc) I same as i = 3

2 (I + Lb)(I + Ra) (I + Lc) P
3 (I + La)(I + Rb) (I + Rc) (I + Rb) same as i = 1

4 (I + Ra)(I + Lb) (I + Lc) (I + Lb)P

5 (I + Rc) (I + Rb)(I + La) I same as i = 7

6 (I + Lc) (I + Lb)(I + Ra) P
7 (I + Rc) (I + La)(I + Rb) (I + Rb) same as i = 5

8 (I + Lc) (I + Ra)(I + Lb) (I + Lb)P

9 (I + Ra)(I + Rb) (I + Lc) I

10 (I + La)(I + Lb) (I + Rc) P

11 (I + Lc) (I + Ra)(I + Rb) I

12 (I + Rc) (I + La)(I + Lb) P

13–14 I Xj , j ∈ {1, 2}
15–16 I Xj , j ∈ {5, 7} See Section 4 same for i = 15, 16
17–20 I Xj , j ∈ {3, 4, 6, 8} same for 17 ≤ i ≤ 20

Theorem 4.6. Let G be any binary w×w matrix where w > 1. The recurrence
(7) with H = I cannot have period length 2rw − 1.

Proof. For n equal to any power of 2, we denote by Fn the finite field with n
elements, Fw

n its w-fold cartesian product, and Fn[z] the space of polynomials with
coefficients in Fn. Let Q(z) = det(G − Iz) be the characteristic polynomial of G
over F2 and suppose that Q(z) is irreducible over F2. Let η ∈ F2w be a root of
Q(z). The elements 1, η, . . . , ηw−1 form a basis of F2w over F2.

We can show (see the proof of Theorem 2 in Matsumoto and Kurita 1992) that
for a nonzero vector in t ∈ Fw

2 , the homomorphism

φ : F2w → Fw
2

ηl 7→ Glt,

where 0 6= t ∈ Fw
2 is fixed, is also an isomorphism. By applying the inverse of φ to

recurrence (7), we obtain the linear recurrence

φ−1(xi) = φ−1(Gxi−m) + φ−1(xi−r),

which can be rewritten as the following linear recurrence in F2w :

xi = ηxi−m + xi−r, (8)

where xi = φ−1(xi) ∈ F2w , because φ−1(Gxi−m) = ηxi−m (see Theorem 2 in Mat-
sumoto and Kurita 1992). Notice that (7) and (8) have the same period length.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The characteristic polynomial over F2w of (8) is

P (z) = zr − ηzr−m − 1 ∈ F2w [z]

By Theorem 3.18 of Lidl and Niederreiter [1994], because (−1)rP (0) = (−1)r+1 is
not a primitive element of F2w , the polynomial P (z) is not primitive over F2w . This
implies that the period of (8) cannot be 2rw − 1, and similarly for (7).

Now, suppose that Q(z) is not irreducible. Let q = r −m. We know that

P (z) = det(zrI− zqG− I) = det(zq(zmI−G− z−qI))
= det(zqI) det((zm − z−q)I−G)
= zwqQ(zm − z−q) ∈ F2[z]

Notice that Q(zm−z−q) is not in F2[z], so we do not know yet if P (z) is irreducible
over F2 or not. On the other hand, Q(zm − z−q) ∈ L2 where L2 is the field of
formal Laurent series with coefficients in F2. Because Q(z) is not irreducible, we
can decompose it in c > 1 factors Qi(z) ∈ F2[z], each of degree di > 0.

Let h(z) = hnzn + hn−1z
n−1 + · · · ∈ L2. We define the function p(h(z)) =

min{i : hi 6= 0}. For h(z) ∈ L2 to be in F2[z], it is necessary that p(h(z)) ≥ 0.
Observe that, because Q(z) is of degree w, we have that w = d1 + · · · + dc and
p(Qi(zm + z−q)) = −qdi. Let Q̄i(z) = zqdiQi(zm + z−q). Then, p(Q̄i(z)) = 0,
which implies that Q̄i(z) ∈ F2[z]. We can develop

zwqQ(zm − z−q) = zwq
c∏

i=1

Qi(zm − z−q)

=
c∏

i=1

zqdiQi(zm − z−q)

=
c∏

i=1

Q̄i(z).

The last equality implies that P (z) is not irreducible over F2 because it can be
decomposed in c > 1 factors Q̄i(z) ∈ F2[z], i = 1, . . . , c. This shows that if Q(z)
is not irreducible over F2, then neither is P (z), and (8) cannot have the maximal
period 2rw − 1 in that case.

So far, we have discussed the choice of H and G, but not the choice of m. For
the case where G = I, conditions on m for the recurrence (7) to have full period
2rw − 1 can be found in Matsumoto and Kurita [1992]. In the case where both
m and r are even, we have never encountered a full-period generator of type II,
despite making exhaustive searches for r = 4, 8, and 12. So we conjecture that one
cannot have full period in this case, but we have no proof.

4.4 Generators of type III

The generators of type III are based on the recurrence

vn = (I + Ha1
1 )vn−m1 ⊕ (I + Ha2

2 )vn−m2 ⊕ (I + Ha3
3 )vn−r (9)

where Hi ∈ {L,R}, ai < w, and 1 ≤ i ≤ r. We denote this variant by (H1,H2,H3,
m1,m2, a1, a2, a3). If (H1,H2,H3,m1,m2, a1, a2, a3) provides a generator of max-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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imal period then so does (K1,K2,K3,m1,m2, a1, a2, a3) where Ki 6= Hi and Ki ∈
{L,R}, by the similarity matrix C = P.

5. SPECIFIC GENERATORS PROPOSED BY MARSAGLIA

Marsaglia [2003] lists all parameters (a, b, c) that yield full-period type-I xorshift
generators with w = 32 and w = 64. We have checked his results and they are
correct except for what seems to be a typo: for w = 32, (a, b, c) = (9, 5, 1) should
read (a, b, c) = (9, 5, 14). For the type-II and type-III generators, Marsaglia pro-
vides only a few sets of parameters. In the following subsections, we analyze the
equidistribution and statistical properties of some generators he proposed.

5.1 Equidistribution properties

We computed the values of ∆1 for all type-I full-period generators with w = 32 and
w = 64; they are listed in Panneton [2004]. These values range from ∆1 = 1 (good
equidistribution) to ∆1 = 153 (very bad). For example, a type-I generator qualified
by Marsaglia as one of his “favorites” is based on X2 with (a, b, c) = (5, 17, 13) and
w = 32. This generator has ∆1 = 2, a good value. Another interesting example
is the type-I generator based on X4 with (a, b, c) = (7, 1, 9). This generator has
∆1 = 1, the best value of all type-I generators with w = 32, but if we change X4

to X3 with the same parameters (a, b, c), i.e., simply change the order in which the
two right xorshifts are performed, we get ∆1 = 56, which is the worst possible value
when w = 32. This illustrates the fact that the behavior of a generator based on
a given triple (a, b, c) and given transition matrix Xi does not help predicting the
behavior of another generator with the same triple but a different choice of Xi.

All type-II and type-III generators proposed by Marsaglia with w = 32 have
rather poor values of ∆1. For example, the type-II generator ((I+R1)(I+L2), (I+
R4), 1) with r = 5 has ∆1 = 164, the type-II generator ((I + R1)(I + L10), (I +
R26), 1) with r = 3 has ∆1 = 81, and the type III generator (L,R,L, 1, 2, 6, 19, 3)
with r = 3 has ∆1 = 69.

5.2 Statistical Testing

We have applied the batteries of empirical statistical tests SmallCrush and Crush
implemented in the software package TestU01 [L’Ecuyer and Simard 2001b] to
several xorshift generators proposed by Marsaglia [2003]. All tests included in
these batteries look for evidence against the null hypotheses H0 that the generator
produces i.i.d U(0, 1) random variables. These two batteries run in about one
minute and one hour, respectively, on a standard PC. None of the proposed xorshift
generators passed all these tests and most of them even failed the “baby” battery
SmallCrush in a spectacular way.

In what follows, we describe a few of these tests and give concrete illustrations
of the results.

The maximum-of-t test (see Knuth 1998, page 70) generates n sequences of t
values in [0, 1] and computes the maximum X of the t values for each sequence.
The interval [0, 1] is partitioned into d segments in a way that under H0, X falls in
any given segment with probability n/d. The empirical and theoretical frequencies
of the d segments are then compared via a chi-square test statistic. The p-value
of this test is defined as the probability that the chi-square statistic takes a value
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Table II. List of tests from TestU01 used in this paper
Num. Name Parameters

1 Maximum-of-t N = 10, n = 107, τ = 0, d = 5× 105, t = 5

2 Birthday spacings N = 5, n = 107, τ = 14, d = 28, t = 8, p = 1

3 Indep. Hamming weights n = 108, τ = 20, s = 10, L = 30

4 Matrix rank n = 106, τ = 20, s = 10, L = 90

5 Matrix rank n = 50000, τ = 20, s = 10, L = 300

larger or equal to the one observed, under H0. For a two-level test, this is repeated
N times and the empirical distribution of the N p-values thus obtained is compared
to the uniform distribution via a Kolmogorov-Smirnov test, whose p-value (at the
second level) is taken as the final p-value of the test. In Crush, we find this test
with the parameters given in the first row of Table II (test number 1).

The birthday spacings test [Marsaglia 1985; L’Ecuyer and Simard 2001a] parti-
tions [0, 1]t into dt subcubes of equal sizes, numbers them from 0 to k − 1 in a
natural order, and throws n points into [0, 1]t using t successive uniform random
numbers for each point. Let I1 ≤ I2 ≤ · · · ≤ In be the (sorted) numbers of cells in
which the points fall. The test computes the differences Ij+1 − Ij , for 1 ≤ j < n,
and counts the number Y of collisions between these differences. Under H0, Y is
approximately Poisson with mean λ = n3/(4k). This process is repeated N times
“independently” and the p-value of the test is defined as the probability that a
Poisson random variable with mean Nλ takes a value larger or equal to the sum of
the N observed values of Y . In a slight generalization of the test, each output value
u of the generator (a real number between 0 and 1) is replaced by 2τu mod 1 before
these numbers are used to determine the box number. The effect of this is to skip
the first τ bits of each output value of the generator and take the following ones.
This generalization applies to the other tests of Table II as well. Crush contains
this test with τ = 14, t = 8, d = 28, n = 107, and N = 5. So it uses bits 15 to 22
of 8 successive uniforms to determine the box number of each point, assuming that
bit 1 is the most significant bit. This is test number 2 in Table II.

The independence of Hamming weights test [L’Ecuyer and Simard 1999] takes s
successive bits, say bits τ+1 to τ+s, from each of 2n dL/se successive uniforms, and
concatenates these bits to construct 2n blocks of L bits. Let Xj be the Hamming
weight (the numbers of bits equal to 1) of the jth block, for j = 1, . . . , 2n. Each
vector (Xj , Xj+1) can take (L + 1) × (L + 1) possible values. The test counts
the number of occurrences of each possibility among the non-overlapping pairs
{(X2j−1, X2j), 1 ≤ j ≤ n}, and compares these observations with the expected
numbers under H0, via a chi-square test, after lumping together in a single class
all classes for which the expected number is less than 10. This is test number 3 in
Table II.

The matrix rank test generates n random L×L binary matrices, computes their
ranks, and compares the empirical distribution of these ranks with their theoretical
distribution under H0 via a chi-square test [Marsaglia 1985; L’Ecuyer and Simard
2001a]. Each matrix is filled up line by line by taking s-bit blocks from L2/s
successive uniforms (assuming that s divides L). Tests 4 and 5 in Table II are of
this type. These tests skip the τ = 20 most significant bits of each output value and
ACM Journal Name, Vol. V, No. N, Month 20YY.
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uses the s = 10 bits that follow. With a xorshift generator, the rank of the matrix
cannot exceed the degree k = rw of P (z), so we expect all xorshift generators to
fail this test when L > rw. But in many cases, we observed decisive failures for L
much smaller than kw.

We tested all full-period type-I generators with A1 = X1, for w = 32 and w = 64.
All type-I generators with w = 32 and about half of those with w = 64 had a p-
value smaller than 10−300 for at least one test of SmallCrush. This can certainly
be called a spectacular failure! All but two of the generators of type II proposed
in Marsaglia [2003] failed a maximum-of-t test found in SmallCrush (with t = 6,
d = 105, τ = 0, and n = 2 × 106) with a p-value smaller than 10−300, and the
other two failed other tests in SmallCrush or Crush. The generator qualified by
Marsaglia as one of his “favorites” had p-values smaller than 10−164 for all five tests
of Table II.

The type II generator ((I + R1)(I + L2), (I + R4), 1) with r = 5 has the p-value
of p = 3.6×10−9 in test 2. The one with ((I+R1)(I+L10), (I+R26), 1) and r = 3
gets p = 1.9 × 10−165 for test 1 and p < 10−300 for test 3. The type-III generator
proposed by Marsaglia [2003], which has (L,R,L, 1, 2, 6, 19, 3) and r = 3, gets
p = 1.6× 10−96 for test 1.

6. A SEARCH FOR BETTER XORSHIFT GENERATORS

We made a search for good full-period generators of types II and III with re-
spect to the equidistribution criterion ∆1 with the constraint that the number of
xorshifts cannot exceed 3, as for most generators proposed in Marsaglia’s paper.
We tested empirically the best generators we found, by applying SmallCrush and
Crush [L’Ecuyer and Simard 2001b].

Table III lists the best generators of type II we found, with respect to ∆1, in
an exhaustive search among those with w = 32 and r = 2, 3, 4, 5, 8, 12, 25. The
best ones have reasonably good values of ∆1 if we compare with other well-known
generators. For example, for r = 25 and w = 32, we have one with ∆1 = 123,
which compares advantageously with the TT800 generator of Matsumoto and Kurita
[1994], for which ∆1 = 261.

We applied SmallCrush and Crush to all generators listed in Table III. The
number p3 in the table is the p-value for test number 3 of Table II. The symbol
ε means “smaller than 10−300” and a blank indicates a p-value between 0.01 and
0.99. For r ≤ 5, all but one generator fail this test spectacularly. This means that
there is significant dependence between the Hamming weights of successive numbers
produced by these generators. Many of these generators also failed the matrix rank
tests of Table II. For example, two of the generators with rw = 25 × 32 = 800
failed Test 5 and three of those with rw = 12 × 32 = 384 failed Test 4, both with
a p-value smaller than 10−300.

Three generators in Table III passed all the tests of SmallCrush and Crush: these
are generators 22, 28, and 29. In view of the weaknesses of the other generators of
the same family and same (or slightly smaller) period, we cannot recommend them
for simulation purposes.

We also made an exhaustive search for good generators of type III with respect
to ∆1, with w = 32 and r = 2, 3, 4, 5, 8, 12, 25, and tested the best ones with
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Table III. Value of ∆1 for the best generators of type II with w = 32 and r = 2, 3, 4, 5, 8, 12, 25.

Num. r m H G ∆1 p3

1 2 1 (I + L11) (I + R13)(I + L19) 4 10−6

2 2 1 (I + L11) (I + L19)(I + R13) 7 10−9

3 2 1 (I + R8)(I + L9) (I + L22) 7 ε
4 2 1 (I + L11)(I + R9) (I + L17) 7 ε

5 3 1 (I + L23) (I + R4)(I + L13) 11 ε
6 3 1 (I + L23) (I + L11)(I + R7) 12 ε
7 3 1 (I + L23) (I + R7)(I + L11) 12 ε
8 3 1 (I + L18) (I + R5)(I + L13) 13 ε

9 4 1 (I + R7)(I + L11) (I + L20) 13 ε
10 4 1 (I + R7)(I + L11) (I + L19) 17 ε
11 4 1 (I + L17) (I + R5)(I + L12) 17 ε
12 4 1 (I + L19) (I + R15)(I + L7) 19
13 4 1 (I + L11)(I + R7) (I + L19) 19 ε

14 5 1 (I + R7)(I + L11) (I + L20) 18 ε
15 5 1 (I + R6)(I + L11) (I + L20) 19 ε
16 5 3 (I + L9)(I + R6) (I + L20) 25 ε
17 5 3 (I + R6)(I + L9) (I + L20) 25 ε

18 8 3 (I + R13)(I + L19) (I + L8) 45
19 8 3 (I + R14)(I + L17) (I + L8) 48
20 8 1 (I + R7)(I + L15) (I + L10) 52
21 8 1 (I + R11)(I + L8) (I + L21) 54

22 12 5 (I + L21)(I + R11) (I + L6) 74
23 12 5 (I + R6)(I + L7) (I + L22) 79
24 12 1 (I + R8)(I + L7) (I + L18) 84
25 12 5 (I + L7)(I + R6) (I + L22) 90

26 25 9 (I + R8)(I + L11) (I + L18) 123
27 25 9 (I + L11)(I + R8) (I + L18) 137
28 25 7 (I + L20) (I + R13)(I + L5) 155
29 25 2 (I + L10) (I + R13)(I + L19) 158

SmallCrush and Crush. Almost all those with r ≤ 8 have failed at least one of
the tests, whereas all those with r ≥ 12 passed all the tests in these batteries.
The parameters of the latter generators are given in Table IV. All generators with
r = 25 in that table have a smaller value of ∆1 than TT800, but slightly larger than
for the best generators of type II. Although these generators behave better than
those of type II in the statistical tests, we are not enthusiastic to recommend them
for simulation, because those of (already large) period lengths 28×32− 1 = 2256− 1
fail the tests decisively, which is not reassuring.

7. INCREASING THE NUMBER OF XORSHIFTS

So far we restricted ourselves to generators with only three xorshift operations, as
in Marsaglia’s paper. An obvious idea for improving the statistical robustness is
to increase the number of xorshifts. In this context, it is important to note that
an a-bit left [right] xorshift does not modify the a least [most] significant bits. For
this reason, if we decide to have several xorshifts and if we care about the least
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table IV. Value of ∆1 for the best generators of type III with w = 32 and r = 12, 25.

Num. r m2 m1 Ha2
2 Ha1

1 Ha3
3 ∆1

31 12 2 3 L7 R11 L21 96
32 12 5 11 L5 L18 R11 100
33 12 7 9 L18 R11 L5 102
34 12 5 10 L5 L18 R11 103

35 25 4 10 L21 R11 L7 186
36 25 5 24 L5 R11 L18 188
37 25 7 24 L5 R11 L18 190
38 25 5 16 L19 R11 L5 219

significant bits as well as the most significant ones, there should be a good balance
between the numbers of left and right xorshifts. On the other hand, our criterion
∆1 gives more importance to the most significant bits than to the least significant
ones, because of the way equidistribution is defined. For this reason, computer
searches based on ∆1 tend to return generators having mostly left xorshifts and
very few right xorshifts. To balance the two types of xorshifts in a search based on
∆1, we must impose constraints on their respective numbers. Another possibility
would be to modify the criterion ∆1 to take into account the equidistribution of
the low-order bits. We leave this as a topic for further investigation.

We performed a computer search for full-period xorshift generators with w = 32,
order r = 8, s = 7 xorshifts with at least 3 right ones, and the smallest possible ∆1.
These generators have period length 2256 − 1 and the best we found have ∆1 = 9.
One of them has recurrence vn = (I + L9)(I + L13)vn−1 + (I + L7)vn−4 + (I +
R3)vn−5 +(I+R10)vn−7 +(I+L24)(I+R7)vn−8 and its characteristic polynomial
P (z) has 131 nonzero coefficients. A C implementation of this generator in given
in Figure 1.

In a similar search for s = 13 and the same values for the other parameters, the
best we found also has ∆1 = 9 and 129 nonzero coefficients in its characteristic
polynomial. Its recurrence is: vn = (I + L17)vn−1 + (I + L10)vn−2 + (I + R9)(I +
L17)vn−4 +(I+R3)vn−4 +(I+R12)vn−5 +(I+R25)vn−5 +(I+R3)(I+R2)vn−6 +
(I+R27)vn−7 +(I+R22)vn−7 +(I+L24)(I+R3)vn−8. These two generators pass
all the tests in Crush. On the other hand, they obviously fail matrix rank tests for
L > 256 and tests based on linear complexity, because their bit sequences follow
linear recurrences of order 256, modulo 2.

For comparison, we made a similar search without any constraint on the number
of right xorshifts, with s = 13 and r = 7. The best generator we found had ∆1 = 1
but a single right xorshift for 12 left xorshifts, and it failed test 4 in Table II.

Brent [2004b] recently proposed type-II xorshift generators based on the recur-
rence

vi = (I + Rd)(I + Lc)vi−m ⊕ (I + Rb)(I + La)vi−r, (10)

with four xorshift operations, and the parameters given in Table V. We computed
the equidistribution of these generators and their values of ∆1, given in the table, are
not particularly good. We submitted them to the Crush battery, and the first two
failed the matrix-rank tests of Table II, but the other ones (with r ≥ 8 and period
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static unsigned int x[8]; /* Generator’s state.*/

/* Initializes state.*/
void initxorshift7 (unsigned int *init) {

int j;
for (j=0; j<8; j++) x[j] = init[j];

}

/* Advances by one step and returns a number in [0,1).*/
double xorshift7 (void) {

static int k = 0;
unsigned int y, t;
t = x[(k+7) & 0x7U]; t = t ^ (t<<13); y = t ^ (t<<9);
t = x[(k+4) & 0x7U]; y^= t ^ (t<<7);
t = x[(k+3) & 0x7U]; y^= t ^ (t>>3);
t = x[(k+1) & 0x7U]; y^= t ^ (t>>10);
t = x[k]; t = t ^ (t>>7); y^= t ^ (t<<24);
x[k] = y; k = (k+1) & 0x7U;
return ((double) y * 2.32830643653869628906e-10 );

}

Fig. 1. A C implementation of a seven-xorshift generator

length ρ ≥ 2256− 1) passed all the tests. Brent recognizes the potential weaknesses
of these xorshift generators and proposes an implementation that incorporates a
combination with a Weyl generator, with the hope that this improves the quality.

Table V. Values of ∆1 for the type II generators of the form (10) proposed by Brent.

r m a b c d ∆1

2 1 17 14 12 19 7

4 3 15 14 12 17 34
8 3 18 13 14 15 58

16 1 17 15 13 14 142

32 15 19 11 13 16 141
64 59 19 12 14 15 465

128 95 17 12 13 15 845

132 67 15 14 13 18 1838
140 19 17 13 15 16 2038

To see how the number of xorshifts affects the speed of the generators, we im-
plemented generators of types I, II, and III with three xorshifts, as well as the
generators described above with 4, 7, and 13 xorshifts. To generate 109 (one bil-
lion) uniform random numbers in [0, 1) and add them up, it took approximately 32
seconds for the fastest generators (type I with three xorshifts) and 38 seconds with
the slowest one (13 xorshifts). So adding xorshifts does not slow down the generator
significantly in comparison with the time for the function call, transformation into
a real number, and adding the numbers. The timings with the Mersenne twister
of Matsumoto and Nishimura [1998] and the WELL generators of Panneton et al.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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[2005] are about the same. These timings are for a 2.8Ghz Intel Pentium 4 processor
running Linux and the gcc compiler with the -O2 optimization flag.

8. CONCLUSION

We have studied both theoretically and empirically the xorshift generators proposed
by Marsaglia. These generators are fast, but not reliable, according to our analysis.
Those of type I are doomed right from the start because of their short period length.
The other ones also have problems when the number of xorshifts is restricted to
three. To get over these limitations, one may want to use a larger number of
xorshifts together with a long period. To get rid of the linear structure of the output
sequence and further improve the statistical robustness, these xorshift generators
could be combined with other RNGs from different classes. Preferably, this should
be supported by some theoretical analysis of the point set Ψt of the combined
generator, e.g., as in L’Ecuyer and Granger-Piché [2003].
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Number 02ER3218, and a Canada Research Chair to the second author. The first
author benefited from NSERC and NATEQ scholarships. We thank Richard Simard
for his help in improving the presentation and running the statistical tests.

REFERENCES

Brent, R. P. 2004a. Note on Marsaglia’s xorshift random number generators. Journal of Sta-
tistical Software 11, 5, 1–4. See http://www.jstatsoft.org/v11/i05/brent.pdf.

Brent, R. P. 2004b. Some uniform and normal random number generators. http://web.comlab.

ox.ac.uk/oucl/work/richard.brent/random.html.

Fushimi, M. and Tezuka, S. 1983. The k-distribution of generalized feedback shift register

pseudorandom numbers. Communications of the ACM 26, 7, 516–523.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Third ed. Addison-Wesley, Reading, Mass.

L’Ecuyer, P. 1996. Maximally equidistributed combined Tausworthe generators. Mathematics

of Computation 65, 213, 203–213.

L’Ecuyer, P. 2004. Random number generation. In Handbook of Computational Statistics, J. E.

Gentle, W. Haerdle, and Y. Mori, Eds. Springer-Verlag, Berlin, 35–70. Chapter II.2.
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