
Array-RQMC for option pricing under stochastic
volatility models

Amal BEN ABDELLAH

Join work with : Pierre L’Ecuyer and Florian Puchhammer
Département d’informatique et de recherche opérationnelle,

Université de Montréal

Optimization Days
May 2019



Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods have
been studied extensively for estimating an integral, say E[Y ], in a
moderate number of dimensions.

Array-RQMC has been proposed as a way to effectively apply RQMC when
simulating a Markov chain over a large number of steps to estimate an
expected cost or reward.

This method simulates n copies of the chain in parallel using a set of
RQMC point independently at each step, and sorts the chains in a specific
sorting function after each step.

2 / 25



Introduction

Array-RQMC has already been applied for pricing Asian options when the
underlying process evolves as a geometric Brownian motion (GBM) with
fixed volatility. In that case, the state is two-dimensional and a single
random number is needed at each step, so the required RQMC points are
three-dimensional.

In this talk, we show how to apply this method in case the underlying
process has stochastic volatility. We show that Array-RQMC can also
work very well for these models, even if it requires RQMC points in larger
dimension.

We examine in particular the variance-gamma, Heston, and
Ornstein-Uhlenbeck stochastic volatility model and we provide numerical
results.

3 / 25



Array-RQMC for Markov Chain Setting

1 Setting: A Markov Chain with state space χ ⊆ Rl , evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j = 1, ..., τ.

where the Uj are i.i.d uniform random variate’s over (0, 1)d , the functions
ϕj : X × (0, 1)d → X are measurable and τ is fixed time horizon .
We want to estimate

µ = E[Y ] where Y = g(Xτ ),

and g : X → R is a cost (or reward) function. Here we have a cost only at
the last step τ .

4 / 25



Array-RQMC for Markov Chain Setting

1 Monte Carlo: For i = 0, .., n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),

j = 1, .., τ , where the Ui ,j ’s are i.i.d. U(0, 1)d , Estimate µ by

µ̂n =
1

n

n∑
i=1

g(Xi ,τ ) =
1

n

n∑
i=1

Yi .

The simulation of each realization of Y requires a vector
V = (U1, . . . ,Uτ ) of dτ independent uniform random variables over (0, 1).

E[µ̂n] = µ and Var[µ̂n] =
1

n
Var[Yi ] = O(n−1) .

5 / 25



Array-RQMC for Markov Chain Setting

1 RQMC : One RQMC point set for each sample path.

Put Vi = (Ui ,1, ...,Ui ,τ ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ par

µ̂rqmc,n =
1

n

n∑
i=1

g(Xi ,τ )

Where Pn = {V0, ...,Vn−1} ⊂ (0, 1)s satisfies:

each point Vi has the uniform distribution over (0, 1)s ;

Pn covers (0, 1)s very evenly (i.e., has low discrepancy)

This dimension s is often very large! and RQMC generally becomes
ineffective, because E[Y ] is a large integral.

6 / 25



Array-RQMC

Simulate an ”array” of n chains in ”parallel”.
At each step, use an RQMC point set Pn to advance all the chains by one
step, with global negative dependence across the chains.

Goal: Want small discrepancy (or ”distance” ) between empirical
distribution of Sn,j = {X0,j , ...,Xn−1,j} and theoretical distribution of Xj . If
we succeed, these unbiased estimators will have small variance :

µj = E[gj(Xj)] ≈ µ̂rqmc,j ,n =
1

n

∑n
i=1 gj(Xi ,j)

Var[µ̂rqmc,j ,n] =
Var[gj(Xi ,j)

n
+

2

n2

∑n−1
i=0

∑n−1
k=i+1 Cov[gj(Xi ,j), gj(Xk,j)] .

7 / 25



RQMC insight

Suppose that Xj ∼ U(0, 1)l . This can be achieved by a change of variable.
We estimate

µj = E[g(Xj)] = E[g(ϕj(Xj−1,U))] =

∫
[0,1)l+d

g(ϕj(x , u))dxdu

µ̂rqmc,j ,n =
1

n

n−1∑
i=0

g(Xi ,j) =
1

n

n−1∑
i=0

g(ϕj(Xj−1,Ui ,j)).

This is RQMC with the point set Qn = {(Xi ,j−1,Ui ,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) over [0, 1)l+d .

Xi ,j−1’s isn’t chosen from Qn : they come from the simulation .
To construct the randomized Ui ,j , select a LD point set

Q̃n = {(w0,U0,j), ..., (wn−1,Un−1,j)},

where the wi ∈ [0, 1)l are fixed and each Ui ,j ∼ U(0, 1)d .

8 / 25



RQMC insight

We suppose that there is a sorting function h : X → R that assigns to
each state a value which summarizes in a single real number the most
important information that we should retain from that state.

At each step j , the n chains are sorted by increasing order of their values
of h(Xi ,j−1).

Compute an appropriate permutation πj of the n states, based on the
h(Xi ,j−1), to match them with the RQMC points and we permute the
states Xi ,j−1 so that Xπj (i),j−1 is ”close” to wi for each i(LD between the
two sets), and compute Xi ,j = ϕj(Xπj (i),j−1,Ui ,j) for each i .

9 / 25



Array-RQMC algorithm

Algorithm 1 Array-RQMC Algorithm

Xi,0 ← x0 for i = 0, ..., n − 1;
for j = 1, 2, ..., τ do

Compute an appropriate permutation πj of the n states, based
on the h(Xi,j−1), to match them with the RQMC points;

Randomized afresh {U0,j , ...,Un−1,j} in Q̃n;
for i = 0, 2, ..., n − 1 do

Xi,j = ϕj(X̃πj(i),j−1,Ui,j);
end for

end for
return the average µ̂arqmc,n = Ȳn = (1/n)

∑n−1
i=0 g(Xi,τ ) as an estimate of µ.

The average µ̂arqmc,n = Ȳn is an unbiased estimator of µ.

The empirical variance of m independent realizations of µ̂arqmc,n gives An
unbiased estimator of Var [Ȳn].

10 / 25



Mapping chains to points

If l = 1, can take wi = (i + 0.5)/n and just sort the states according to
their first coordinate .
For l > 1, there are various ways to define the matching (multivariate
sort):

1 Multivariate batch sort:
We select positive integers nl , n2, ..., nl such that n = nln2...nl.
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.
Sort each packet by second coordinate, in n2 packets of size n/n1n2.

...
At the last level, sort each packet of size nl by the last coordinate.

2 Multivariate split sort:
n1 = n2 = ... = 2.
Sort by first coordinate in 2 packets.
Sort each packet by second coordinate in 2 packets.

etc.

In these two sorts, the state space does not have to be [0, 1)l .
11 / 25



Sorting by a Hilbert curve

Suppose that the state space is : X = [0, 1)l .
Partition this cube into 2ml subcubes of equal size.
While any subcube contains more than one point, partition it in 2l .

The Hilbert curve defines a way to enumerate the subcubes so that
successive subcubes are always adjacent. This gives a way to sort the
points. Colliding points are ordered arbitrarily. We precompute and store
the map from point coordinates (first m bits) to its position in the list.

Map the states to points as if the state has one dimension.
Use RQMC points in 1 + d dimensions, ordered by first coordinate.

12 / 25



What if state space is not [0, 1)l?

Define a transformation ψ : X → [0, 1)l so that the transformed state is
approximately uniformly distributed over [0, 1)l .

Gerber and Chopin [2015] propose to use the hilbert curve sort after
mapping the state to the [0, 1)l via a logistic transformation defined as
follows : ψ(x) = (ψ1(x1), ..., ψ`(x`)) ∈ [0, 1]` for all x = (x1, . . . , x`) ∈ X ,
where

ψj(xj) =

[
1 + exp

(
−
xj − x j
x̄j − x j

)]−1

, j = 1, ..., `,

with constants x̄j = µj + 2σj and x j = µj − 2σj in which µj and σj are
estimates of the mean and the variance of the distribution of the jth
coordinate of the state.

13 / 25



Experimental setting

For all the option pricing examples, we have an asset price that evolves as
a stochastic process {S(t), t ≥ 0} and a payoff that depends on the
values of this process at fixed observation times
0 = t0 < t1 < t2 < ... < tτ = T . More specifically, for given constants r
(the interest rate) and K (the strike price).

European option payoff :

Y = Ye = g(S(T )) = e−rT max(S(T )− K , 0)

Asian option payoff :

Y = Ya = g(S̄) = e−rT max(S̄ − K , 0)

where S̄ = (1/τ)
∑τ

j=1 S(tj).

14 / 25



Experimental setting

In our examples, we consider the following RQMC points sets :

1 MC : Independent points, which corresponds to crude Monte Carlo ;

2 Stratif : Stratified sampling over the unit hypercube ;

3 Sobol+LMS : Sobol’ points with a random linear matrix scrambling
and a digital random shift ;

4 Sobol+NUS : Sobol’ points with nested uniform scrambling ;

5 Lattice+baker : A rank-1 lattice rule with a random shift modulo 1
followed by a baker’s transformation.

We define the variance reduction factor (VRF20) observed for n = 220 for
a given method compared with MC by σ2

y/(nVar [Ȳn]). In each case, we
fitted a linear regression model for the variance per run as a function of n,
in log-log scale. We denote by β̂ the regression slope estimated by this
linear model.

15 / 25



Example 1: Asian Option Under Variance Gamma Process

We consider the pricing of an Asian option on a single asset price that evolves
according to a variance-gamma (VG) process defined at time tj as follows :

S(tj) = S(0) exp[(w + r)tj + Y (tj)],

where Y (tj) = X (G (tj)), X is a BM with drift and variance parameters θ and σ,
G is a gamma process with mean and variance parameters 1 and ν .

Algorithm 2 Computing Xj = (S(tj), S̄j) given (S(tj−1), S̄j−1), for 1 ≤ j ≤
τ .

Generate Uj,1,Uj,2 ∼ Uniform(0, 1), independent;

∆j = G(tj )− G(tj−1) = F−1
j (Uj,1) ∼ Gamma((tj − tj−1)/ν, ν);

Zj = Φ−1(Uj,2) ∼ Normal(0, 1);

Y (tj )← Y (tj−1) + θ∆j + σ
√

∆jZj ;
S(tj )← S(tj−1) exp[(r + ω)(tj − tj−1) + (Y (tj )− Y (tj ))];
S̄j = [(j − 1)S̄j−1 + S(tj )]/j ;

State: Xj = (S(tj), S̄j)

Transition: Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1,Uj,1,Uj,2)

16 / 25



Numerical Experiments

We ran the simulation with the following parameters θ = 0.1436, σ = 0.12136, ν = 0.3,
r = 0.1, T = 240/365, τ = 10, K = 100, and S(0) = 100.
We tried a simple linear mapping hj : R2 → R defined by hj (S(tj ), S̄j ) = bj S̄j + (1− bj )S(tj )
where bj = (j − 1)/(τ − 1).

Sort Point sets β̂ VRF20

Split sort

MC -1 1
Stratif -1.17 42

Sobol’+LMS -1.77 91550
Sobol’+NUS -1.80 106965

Lattice+baker -1.83 32812

Batch sort
(n1 = n2)

MC -1 1
Stratif -1.17 42

Sobol’+LMS -1.71 100104
Sobol’+NUS -1.54 90168

Lattice+baker -1.95 58737

Hilbert sort
(with logistic
map)

MC -1 1
Stratif -1.43 204

Sobol’+LMS -1.59 68297
Sobol’+NUS -1.67 79869

Lattice+baker -1.55 45854

Linear map sort
MC -1 1

Stratif -1.35 192
Sobol’+LMS -1.64 115216
Sobol’+NUS -1.75 166541

Lattice+baker -1.72 6873917 / 25



Example 2: Heston Volatility Model

The Heston volatility model is defined by the following two-dimensional stochastic differential
equation:

dS(t) = rS(t)dt + V (t)1/2S(t)dB1(t),

dV (t) = λ(σ2 − V (t))dt + ξV (t)1/2dB2(t),

for t ≥ 0, S(t) and V (t) are, respectively, the value and the instantaneous variance of an asset

price, and (B1,B2) is a pair of standard Brownian motions with correlation ρ between them.
to reduce the bias due to the discretization, we make the change of variable
W (t) = eλt(V (t)− σ2), with dW (t) = eλtξV (t)1/2dB2(t), and apply the Euler method to
(S ,W ) instead of (S,V ). The Euler approximation scheme with step size δ = T/τ applied to
W gives

W̃ (jδ) = W̃ ((j − 1)δ) + eλ(j−1)δξ(Ṽ ((j − 1)δ)δ)1/2Zj,2.

We obtain the following discrete-time stochastic recurrence, which we will simulate by
Array-RQMC:

Ṽ (jδ) = max
[
0, σ2 + e−λδ

(
Ṽ ((j − 1)δ)− σ2 + ξ(Ṽ ((j − 1)δ)δ)1/2Zj,2

)]
,

S̃(jδ) = (1 + rδ)S̃((j − 1)δ) + (Ṽ ((j − 1)δ)δ)1/2S̃((j − 1)δ)Zj,1,

where (Zj,1,Zj,2) is a pair of standard normals with correlation ρ. We generate

this pair from a pair (Uj,1,Uj,2) of independent Uniform(0, 1) variables via

Zj,1 = Φ−1(Uj,1) and Zj,2 = ρZj,1 +
√

1− ρ2 Φ−1(Uj,2).

18 / 25



Example 2: Heston Volatility Model

The Heston volatility model is defined by the following two-dimensional stochastic differential
equation:

dS(t) = rS(t)dt + V (t)1/2S(t)dB1(t),

dV (t) = λ(σ2 − V (t))dt + ξV (t)1/2dB2(t),

for t ≥ 0, S(t) and V (t) are, respectively, the value and the instantaneous variance of an asset

price, and (B1,B2) is a pair of standard Brownian motions with correlation ρ between them.
to reduce the bias due to the discretization, we make the change of variable
W (t) = eλt(V (t)− σ2), with dW (t) = eλtξV (t)1/2dB2(t), and apply the Euler method to
(S ,W ) instead of (S,V ). The Euler approximation scheme with step size δ = T/τ applied to
W gives

W̃ (jδ) = W̃ ((j − 1)δ) + eλ(j−1)δξ(Ṽ ((j − 1)δ)δ)1/2Zj,2.

We obtain the following discrete-time stochastic recurrence, which we will simulate by
Array-RQMC:

Ṽ (jδ) = max
[
0, σ2 + e−λδ

(
Ṽ ((j − 1)δ)− σ2 + ξ(Ṽ ((j − 1)δ)δ)1/2Zj,2

)]
,

S̃(jδ) = (1 + rδ)S̃((j − 1)δ) + (Ṽ ((j − 1)δ)δ)1/2S̃((j − 1)δ)Zj,1,

where (Zj,1,Zj,2) is a pair of standard normals with correlation ρ. We generate

this pair from a pair (Uj,1,Uj,2) of independent Uniform(0, 1) variables via

Zj,1 = Φ−1(Uj,1) and Zj,2 = ρZj,1 +
√

1− ρ2 Φ−1(Uj,2).

18 / 25



Example 2: Heston Volatility Model

The running average S̄j at step j must be the average of the S(tk) at the
observation times tk ≤ wj = jδ. If we denote Nj =

∑τ
k=1 I[tk ≤ jδ], we

have S̄j = (1/Nj)
∑Nj

k=1 S(tk), which we approximate by

S̄ j = (1/Nj)
∑Nj

k=1 S̃(tk).

1 Asian Option

State: Xj = (S̃(jδ), Ṽ (jδ), S̄ j)

Transition:

Xj = (S̃(jδ), Ṽ (jδ), S̄ j) = ϕj(S̃((j−1)δ), Ṽ ((j−1)δ), S̄ (j−1),Uj ,1,Uj ,2).

2 European Option

State: Xj = (S̃(jδ), Ṽ (jδ))

Transition:

Xj = (S̃(jδ), Ṽ (jδ)) = ϕj(S̃((j − 1)δ), Ṽ ((j − 1)δ),Uj ,1,Uj ,2).

19 / 25



Numerical Experiments

We ran experiments with T = 1 (one year), K = 100, S(0) = 100, V (0) = 0.04,

r = 0.05, σ = 0.2, λ = 5, ξ = 0.25, ρ = −0.5, and τ = 256 (δ = 1/256).

European Asian

Sort Point sets β̂ VRF20 β̂ VRF20

Split sort

MC -1 1 -1 1
Stratif -1.26 91 -1.36 48

Sobol’+LMS -1.61 60034 -1.72 5034
Sobol’+NUS -1.69 64908 -1.70 5755

Lattice+baker -1.70 36477 -1.73 3782

Batch sort

MC -1 1 -1 1
Stratif -1.34 93 -1.31 39

Sobol’+LMS -1.74 34916 -1.23 472
Sobol’+NUS -1.82 50101 -1.36 633

Lattice+baker -1.78 14626 -1.23 550

Hilbert sort
(with logistic
map)

MC -1 1 -1 1
Stratif -1.04 34 -1.13 40

Sobol’+LMS -1.20 339 -1.03 105
Sobol’+NUS -1.09 241 -1.08 102

Lattice+baker -1.01 229 -1.09 113

20 / 25



Example 3: Ornstein-Uhlenbeck Volatility Model

The Ornstein-Uhlenbeck volatility model is defined by the following stochastic
differential equations:

dS(t) = rS(t)dt + eV (t)S(t)dB1(t),

dV (t) = α(b − V (t))dt + σdB2(t),

(B1,B2) is a pair of standard Brownian motions with correlation ρ between them,
r is the risk-free rate, b is the long-term average volatility, α is the rate of return
to the average volatility, and σ is a variance parameter for the volatility process.
The discrete-time approximation of the stochastic recurrence is

S̃(jδ) = S̃((j − 1)δ) + rδS̃((j − 1)δ) + exp
[
Ṽ ((j − 1)δ)

]√
δZj,1,

Ṽ (jδ) = αδb + (1− αδ)Ṽ ((j − 1)δ) + σ
√
δZj,2,

where (Zj,1,Zj,2) is a pair of standard normals with correlation ρ.

21 / 25



Example 3: Ornstein-Uhlenbeck Volatility Model

The running average S̄j at step j must be the average of the S(tk) at the
observation times tk ≤ wj = jδ. If we denote Nj =

∑τ
k=1 I[tk ≤ jδ], we

have S̄j = (1/Nj)
∑Nj

k=1 S(tk), which we approximate by

S̄ j = (1/Nj)
∑Nj

k=1 S̃(tk).

1 Asian Option

State: Xj = (S̃(jδ), Ṽ (jδ), S̄ j)

Transition:

Xj = (S̃(jδ), Ṽ (jδ), S̄ j) = ϕj(S̃((j−1)δ), Ṽ ((j−1)δ), S̄ (j−1),Uj ,1,Uj ,2).

2 European Option

State: Xj = (S̃(jδ), Ṽ (jδ))

Transition:

Xj = (S̃(jδ), Ṽ (jδ)) = ϕj(S̃((j − 1)δ), Ṽ ((j − 1)δ),Uj ,1,Uj ,2).

22 / 25



Numerical Experiments

We ran a numerical experiment with T = 1, K = 100, S(0) = 100, V (0) = 0.04,

r = 0.05, b = 0.4, α = 5, σ = 0.2, ρ = −0.5, and τ = 256 (so δ = 1/256).

European Asian

Sort Point sets β̂ VRF20 β̂ VRF20

Split sort

MC -1 1 -1 1
Stratif -1.33 102 -1.23 46

Sobol’+LMS -1.39 60155 -1.50 65173
Sobol’+NUS -1.35 66507 -1.43 58063

Lattice+baker -1.07 47494 -1.42 42024

Batch sort

MC -1 1 -1 1
Stratif -1.32 102 -1.23 46

Sobol’+LMS -1.28 49370 -1.20 7144
Sobol’+NUS -1.33 66155 -1.30 28665

Lattice+baker -1.32 51356 -1.21 6813

Hilbert sort
(with logistic
map)

MC -1 1 -1 1
Stratif -1.31 404 -1.37 429

Sobol’+LMS -1.67 196131 -1.16 23896
Sobol’+NUS -1.69 259918 -1.30 28665

Lattice+baker -1.70 223170 -1.27 34416

23 / 25



Conclusion

We have shown how Array-RQMC can be applied for pricing options
under stochastic volatility models.

The method Array-RQMC requires higher-dimensional RQMC points
than with the simpler Geometric Brownian Motion model, and when
time has to be discretized to apply Euler’s method, the number of
steps of the Markov chain is much larger.

The empirical results shows that it’s brings very significant variance
reductions compared with crude Monte Carlo.

24 / 25



References

M. Gerber and N. Chopin. Sequential quasi-Monte Carlo.
Journal of the Royal Statistical Society, Series B, 77(Part 3):509–579, 2015.

P. L’Ecuyer, V. Demers, and B. Tuffin. Rare-events, splitting, and quasi-Monte Carlo.
ACM Transactions on Modeling and Computer Simulation, 17(2):Article 9, 2007.

P. L’Ecuyer, C. Lécot, and A. L’Archevêque-Gaudet. On array-RQMC for Markov chains:
Mapping alternatives and convergence rates.
Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 485–500, Berlin, 2009.
Springer-Verlag.

P. L’Ecuyer, C. Lécot, and B. Tuffin. A randomized quasi-Monte Carlo simulation method
for Markov chains.
Operations Research, 56(4):958–975, 2008.

P. L’Ecuyer, D. Munger, C. Lécot, and B. Tuffin. Sorting methods and convergence rates
for array-rqmc: Some empirical comparisons.
Mathematics and Computers in Simulation, 2017.
http://dx.doi.org/10.1016/j.matcom.2016.07.010.

P. L’Ecuyer and C. Sanvido. Coupling from the past with randomized quasi-Monte Carlo.
Mathematics and Computers in Simulation, 81(3):476–489, 2010.

C. Wächter and A. Keller. Efficient simultaneous simulation of Markov chains.
Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 669–684, Berlin, 2008.
Springer-Verlag.

25 / 25


	Introduction

