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Chemical reaction networks

Consider chemical species S1, S2, . . . , S` that react via reactions R1, R2, . . . , RK

with reaction rates c1, c2, . . . , cK .

Rk : α1,kS1 + · · ·+ α`,kS`
ck−→ β1,kS1 + · · ·+ β`,kS`, αi,k, βi,k ∈ N

Goal: Simulate system over time t ∈ [0, T ] and observe (a function g of) copy
numbers Xt = (X1,t, X2,t, . . . , X`,t) of the species.
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The τ -leap algorithm
α1,kS1 + · · ·+ α`,kS`

ck−→ β1,kS1 + · · ·+ β`,kS`

Simulate with fixed step τ -leap algorithm, Gillespie ’01. Summarizes several reactions into
one time step of length τ ; faster, but introduces bias (negative copy numbers).

� Poisson variables pk model how often reaction Rk fires in [t, t+ τ).

� Mean parameters of pk are ak(Xt)τ , where ak are the propensity functions.

� ak ’s are polynomials in Xt of degree α1,k + α2,k + · · ·+ α`,k.

In each step, generate p1, . . . , pK and update copy numbers through

Xi,t+τ = Xi,t +

K∑
k=1

pk · (βi,k − αi,k).

This is a discrete time Markov chain (DTMC), with `-dimensional state space using K
random variates to advance the chain by one step.
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Simulation

Goal: Estimate
µ = E[g(XT )].

MC: Generate n points Ui ∼ U(0, 1)K·T/τ .

� Each Ui simulates one chain ; Xi,T .
� Estimate

µ ≈ 1

n

n−1∑
i=0

g(Xi,T ).

RQMC: Generate n points Ui ∈ (0, 1)K·T/τ such that:

� Each Ui is uniformly distributed in (0, 1)K·T/τ .
� The point set {U0,U1, . . . ,Un−1} has low discrepancy.
� Then, estimate as above.
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Previous work

Beentjes, Baker ’18: Traditional RQMC for τ -leaping. Found that, using n RQMC
points, the convergence rate is not better than for MC, n−1, even when `,K, T/τ
were not too big.

Possible problems:

� Discontinuities because of integer values.

� High dimensional point sets needed, dim= K · T/τ (actually effective
dimension important).

Possible solution: array-RQMC.

� Can work well even when discontinuities appear.

� Reduces the dimensionality of the points to `+K.
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Array-RQMC

Simulation of n chains with n RQMC points.

Traditional approach: One point for the trajectory of one chain. Simulates chains
sequentially ; high dimension K · T/τ .

Array-RQMC: One point to advance one chain by one step. Advances all n chains in
parallel at each step ; lower dimension `+K.

� Idea: the distance between empirical and theoretical distribution of states is small at
each step.

� achieved by matching the states to first ` coordinates of point set via (multivariate)
sort after each step.

� empirical mean of a n evaluations of function g at the final states is unbiased
estimator for the mean of g(XT ).

� empirical variance of m independent repetitions is unbiased estimator for the
variance of the mean estimator.
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Multivariate sorting algorithms

If ` = 1 sort chains by size. If ` > 1:

Split sort: Split states into 2 packets by size of first coordinate. Split each packet
into 2 by size of second coordinate. . .

Batch sort: Split states into n1 packets by size of first coordinate. Split each
packet into n2 by size of second coordinate. . .

Hilbert curve sort: Map states to [0, 1]`. Sort the states in the order they are
visited by (discrete version of) hilbert curve. Here, we use sample data to estimate
mean and variance, normalize each state, and use the CDF of standard normal
distribution to map states to [0, 1]`.

Customized sorts: Ideally, find importance function hj : R` → R for step j, then
sort by size of hj(Xjτ ). Might increase efficiency!
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Experimental setting

In every experiment, we observe copy number of one specific species.

Point sets:

� MC: Plain monte carlo
� Lat+Baker: Lattice rule with random shift mod 1 and baker transformation.
� Sob+LMS: Sobol’ points with a left matrix scramble and a digital shift.
� Sob+NUS: Sobol’ points with Owen’s nested uniform scramble.

Observed statistics: We replicate each experiment m = 100 times independently.

� VRF20: Variance reduction factor in comparison to MC for n = 220 points.
� β̂: Variance convergence rate n−β̂ estimated by regression n = 213, 214, . . . , 220.

Goal: Show that

� array-RQMC can beat MC-variance rate β̂ > 1,
� customized sorts can improve your results (proof of concept).
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The Schlögl system

Model with 3 species S1, S2, S3 and K = 4 reactions. We observe S1.

2S1 + S2
c1−→ 3S1,

3S1
c2−→ 2S1 + S2.

S3
c3−→ S1

S1
c4−→ S3

Note: X1,t +X2,t +X3,t =const., therefore ` = 2. Expect standard sorts to work
well.

Simulation: X0 = {250, 105, 2 · 105}, c1 = 3 · 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5,
T = 4, τ = T/15.

Array-RQMC reduces points’ dimension from KT/τ = 60 to `+K = 6 or 5.
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Customized sorts revisited

Observe that ` = 2, so we can plot final copy number of S1 vs. current state at time
jτ ; importance function hj .

� Simulate 220 sample chains with MC.
� Fit polynomial to this data.
� To reduce terms: take propensity functions and current copy number of

observed species.

Here (N0 is total number of molecules):

a1(x, y) =
1

2
c1x(x− 1)y, a2(x, y) =

1

6
c2x(x− 1)(x− 2),

a3(x, y) = c3(N0 − x− y), a4(x, y) = c4x.

Take hj(x, y) = aj,0 + aj,1x+ aj,2y + aj,3x
2 + aj,4xy + aj,5x

3 + aj,6x
2y.
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The sample data at step jτ and fitted hj , j = 5, 10, 14.
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For customized sorts we can follow two strategies:

Multi step: Fit hj in every step.

� Expected to be more representative.

Last step: Fit hj = h to last step only. Use this h in every step.

� Maybe less impact of randomness on data.

11/20



Schlögl system – results

2S1 + S2

c1−→←−
c2

3S1, S3

c3−→←−
c4
S1.

Sort Sample β̂ VRF20
MC 1.00 1

Last step
Lat+Baker 1.30 4894
Sob+LMS 1.36 7000
Sob+NUS 1.37 10481

Multi step
Lat+Baker 1.01 178
Sob+LMS 1.07 206
Sob+NUS 0.99 196

Batch
Lat+Baker 1.39 4421
Sob+LMS 1.48 9309
Sob+NUS 1.56 11150

Hilbert curve
Lattice+Baker 1.68 2493
Sobol+LMS 1.51 4464
Sobol+NUS 1.53 4562
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Problems with multi step sort

Look at mean copy numbers per step with MC (left) and copy numbers of S1 for
n = 30 paths (right).
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cAMP aktivation of PKA model

More challenging example: ` = 6 species, K = 6 reactions (Koh, Blackwell (’12);

Strehl, Ilie (’15)):

PKA+ 2cAMP
c1−→←−
c2

PKA-cAMP2,

PKA-cAMP2 + 2cAMP
c3−→←−
c4

PKA-cAMP4,

PKA-cAMP4

c5−→←−
c6

PKAr + 2PKAc.

Initial values: PKA: 33 · 103, cAMP: 33.03 · 103, others: 1.1 · 103.
Parameters: c1 = 8.696 · 10−5, c2 = 0.02, c3 = 1.154 · 10−4, c4 = 0.02, c5 = 0.016

and c6 = 0.0017; T = 5 · 10−5, τ = T/15.

Array-RQMC reduces points’ dimension from KT/τ = 90 to `+K = 12 or 7.
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Begin with PKA and use same heuristics (sample paths, propensity functions, and
current copy number of PKA) for last step and multi step.

Sort Sample β̂ VRF20
MC 1.00 1

Last step
Lat+Baker 1.05 2593
Sob+LMS 1.05 3334
Sob+NUS 1.04 3126

Multi step
Lat+Baker 1.03 2492
Sob+LMS 1.04 3307
Sob+NUS 1.01 3099

Batch
Lat+Baker 1.05 2575
Sob+LMS 1.06 3611
Sob+NUS 1.01 2735

Hilbert curve
Lattice+Baker 1.00 2327
Sobol+LMS 1.03 2920
Sobol+NUS 1.02 2847

� Variance rate aligns with MC rate.

� Best result for Batch with Sob+LMS. Last
step makes up for it with computation
time.

� Reducing noise in sample paths improved
Last step up to VRF20=4100 (Sob+NUS).

� Select “optimal” sequence of last step
and multi step sorts w.r.t. variance
increment at each step improved up to
VRF20=4300 (Sob+LMS).
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Dimensionality is NOT the key

Same model, but now we observe PKAr:

PKA+ 2cAMP
c1−→←−
c2

PKA-cAMP2,

PKA-cAMP2 + 2cAMP
c3−→←−
c4

PKA-cAMP4,

PKA-cAMP4

c5−→←−
c6

PKAr + 2PKAc.

� Analyzed the data and found indicator, that only PKAc is important for
development of PKAr.

� Tried to simply sort by PKAc.
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Results for PKAr

Exploiting additional information to customize your sort pays off!

Sort Sample β̂ VRF20
MC 1.03 1

By PKAc

Lattice+Baker 1.59 5187
Sobol+LMS 1.63 19841
Sobol+NUS 1.61 16876

Split
Lattice+Baker 1.06 1021
Sobol+LMS 1.28 1958
Sobol+NUS 1.26 1756

Batch
Lattice+Baker 1.16 803
Sobol+LMS 1.22 561
Sobol+NUS 1.25 744

Hilbert curve
Lattice+Baker 1.01 103
Sobol+LMS 1.00 103
Sobol+NUS 1.04 106
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Conclusion

� Introduced chemical reaction networks.

� Presented τ -leap algorithm, which allows to simulate via DTMCs.

� With traditional RQMC, no improvement in convergence of variance
(Beentjes, Baker (’18)).

� We investigate same problem with array RQMC, which relies on sorting
strategies for the states.

� In empirical studies we showed that standard multivariate sorts work very well.

� When states have higher dimension, customized sorts can increase efficiency.

� Using additional info/heuristics to customize own sort can improve results
tremendously!
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