
D
ra

ft

1

Some Rare-Event Simulation Methods
for Static Network Reliability Estimation

Pierre L’Ecuyer
Université de Montréal, Canada

based on joint work with

Zdravko Botev, New South Wales University, Australia
Richard Simard, Université de Montréal, Canada

Bruno Tuffin, Inria–Rennes, France

Summer School in Monte Carlo Methods for Rare Events
Brown University, June 2016

D
ra

ft

2

Aim

Introduce and illustrate some rare-event simulation ideas that are less
standard but have potential, via a simple application.

I Conditional Monte Carlo with auxiliary variables.

I Splitting when splitting does not seem to apply.

I Strategies for approximate zero-variance importance sampling.

D
ra

ft

3

A static system reliability problem

A system has m components, in state 0 (failed) or 1 (operating).
System state: X = (X1, . . . ,Xm)t .
Structure function: Φ : {0, 1}m → {0, 1}, assumed monotone.
System is operational iff Φ(X) = 1.
Unreliability: u = P[Φ(X) = 0].

If we know p(x) = P[X = x] for all x ∈ {0, 1}m, in theory we can compute

u =
∑

x∈D={X:Φ(X)=0}

p(x).

But the cost of enumerating D is generally exponential in m.

The Xi ’s may be dependent.

D
ra

ft

3

A static system reliability problem

A system has m components, in state 0 (failed) or 1 (operating).
System state: X = (X1, . . . ,Xm)t .
Structure function: Φ : {0, 1}m → {0, 1}, assumed monotone.
System is operational iff Φ(X) = 1.
Unreliability: u = P[Φ(X) = 0].

If we know p(x) = P[X = x] for all x ∈ {0, 1}m, in theory we can compute

u =
∑

x∈D={X:Φ(X)=0}

p(x).

But the cost of enumerating D is generally exponential in m.

The Xi ’s may be dependent.

D
ra

ft

4

Monte Carlo (MC): Generate n i.i.d. realizations of X, say X1, . . . ,Xn,
compute Wi = Φ(Xi) for each i , and estimate u by
W̄n = (W1 + · · ·+ Wn)/n ∼ Binomial(n, u)/n ≈ Poisson(nu)/n.
Can also estimate Var[W̄n] and compute a confidence interval on u.

When u is very small (failure is a rare event), direct MC fails.
Ex: if u = 10−10, system fails once per 10 billion runs on average.

Relative error

RE[W̄n]
def
=

√
MSE[W̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[W̄n] ≤ 10%.

We would like bounded RE (or almost) when u → 0.

D
ra

ft

4

Monte Carlo (MC): Generate n i.i.d. realizations of X, say X1, . . . ,Xn,
compute Wi = Φ(Xi) for each i , and estimate u by
W̄n = (W1 + · · ·+ Wn)/n ∼ Binomial(n, u)/n ≈ Poisson(nu)/n.
Can also estimate Var[W̄n] and compute a confidence interval on u.

When u is very small (failure is a rare event), direct MC fails.
Ex: if u = 10−10, system fails once per 10 billion runs on average.

Relative error

RE[W̄n]
def
=

√
MSE[W̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[W̄n] ≤ 10%.

We would like bounded RE (or almost) when u → 0.

D
ra

ft

4

Monte Carlo (MC): Generate n i.i.d. realizations of X, say X1, . . . ,Xn,
compute Wi = Φ(Xi) for each i , and estimate u by
W̄n = (W1 + · · ·+ Wn)/n ∼ Binomial(n, u)/n ≈ Poisson(nu)/n.
Can also estimate Var[W̄n] and compute a confidence interval on u.

When u is very small (failure is a rare event), direct MC fails.
Ex: if u = 10−10, system fails once per 10 billion runs on average.

Relative error

RE[W̄n]
def
=

√
MSE[W̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, we need n ≈ 1012 to have RE[W̄n] ≤ 10%.

We would like bounded RE (or almost) when u → 0.

D
ra

ft

5

Although our methods apply more generally, we focus here on graph
reliability. Link i “works” iff Xi = 1.
The system is operational iff all the nodes in a given set V0 are connected.

1

2
X1

3
X2

X3

4
X4

5

X8

6

X5

X6

X10

7
X7

8
X9

X12

9
X11

X13

Given X, Φ(X) is easy to evaluate by graph algorithms.
Challenge: How to sample X effectively.

D
ra

ft

6

Conditional Monte Carlo
Idea: replace an estimator X by E[X | G] for a σ-field G that contains

partial information on X . The CMC estimator is Xe
def
= E[X | G].

We have E[Xe] = E[E[X | G]] = E[X] and

Var[X] = E[Var[X | G]︸ ︷︷ ︸
Residual variance

when G is known

(eliminated by CMC)

] + Var[E[X | G]]︸ ︷︷ ︸
Var due to the

variation of G

= E[Var[X | G]]+Var[Xe].

Therefore (Rao-Blackwell theorem):

Var[Xe] = Var[X]− E[Var[X | G]] ≤ Var[X].

To maximize E[Var[X | G]], G should contain as little information as
possible, but then computing Xe may become too hard. The choice of G is
a matter of compromise.

D
ra

ft

7

Conditional MC with auxiliary variables
[Elperin, Gertsbach, Lomonosov 1974, 1991, 1992, etc.]
Special case: the Xi ’s are independent with P[Xi = 0] = qi .

Conceptually, suppose each link i is initially failed and gets repaired at time
Yi ∼ Expon(µi) where µi = − ln(qi). Then P[Yi > 1] = P[Xi = 0] = qi .
Let Y = (Y1, . . . ,Ym) and π the permutation s.t. Yπ(1) < · · · < Yπ(m).

Conditional on π, we can forget the Yi ’s, add the (non-redundant) links one by
one until the graph is operational, say at step C .
Data structure: forest of spanning trees. Adding a link may merge two trees.

Time to repair, conditional on π?
At step j , the time Aj to next repair is exponential with rate Λj , the sum of repair
rates of all links not yet repaired.
Permutation Monte Carlo (PMC) estimator of u: conditional probability that the
total time for these repairs (hypoexponential sum) is larger than 1:

P [A1 + · · ·+ Ac > 1 | π, C = c] .

Theorem [Gertsback and Shpungin 2010]. Gives bounded RE when the qi → 0.

Improvement: turnip; at each step, discard redundant unrepaired links.

D
ra

ft

7

Conditional MC with auxiliary variables
[Elperin, Gertsbach, Lomonosov 1974, 1991, 1992, etc.]
Special case: the Xi ’s are independent with P[Xi = 0] = qi .

Conceptually, suppose each link i is initially failed and gets repaired at time
Yi ∼ Expon(µi) where µi = − ln(qi). Then P[Yi > 1] = P[Xi = 0] = qi .
Let Y = (Y1, . . . ,Ym) and π the permutation s.t. Yπ(1) < · · · < Yπ(m).

Conditional on π, we can forget the Yi ’s, add the (non-redundant) links one by
one until the graph is operational, say at step C .
Data structure: forest of spanning trees. Adding a link may merge two trees.

Time to repair, conditional on π?
At step j , the time Aj to next repair is exponential with rate Λj , the sum of repair
rates of all links not yet repaired.
Permutation Monte Carlo (PMC) estimator of u: conditional probability that the
total time for these repairs (hypoexponential sum) is larger than 1:

P [A1 + · · ·+ Ac > 1 | π, C = c] .

Theorem [Gertsback and Shpungin 2010]. Gives bounded RE when the qi → 0.

Improvement: turnip; at each step, discard redundant unrepaired links.

D
ra

ft

7

Conditional MC with auxiliary variables
[Elperin, Gertsbach, Lomonosov 1974, 1991, 1992, etc.]
Special case: the Xi ’s are independent with P[Xi = 0] = qi .

Conceptually, suppose each link i is initially failed and gets repaired at time
Yi ∼ Expon(µi) where µi = − ln(qi). Then P[Yi > 1] = P[Xi = 0] = qi .
Let Y = (Y1, . . . ,Ym) and π the permutation s.t. Yπ(1) < · · · < Yπ(m).

Conditional on π, we can forget the Yi ’s, add the (non-redundant) links one by
one until the graph is operational, say at step C .
Data structure: forest of spanning trees. Adding a link may merge two trees.

Time to repair, conditional on π?
At step j , the time Aj to next repair is exponential with rate Λj , the sum of repair
rates of all links not yet repaired.
Permutation Monte Carlo (PMC) estimator of u: conditional probability that the
total time for these repairs (hypoexponential sum) is larger than 1:

P [A1 + · · ·+ Ac > 1 | π, C = c] .

Theorem [Gertsback and Shpungin 2010]. Gives bounded RE when the qi → 0.

Improvement: turnip; at each step, discard redundant unrepaired links.

D
ra

ft

8

Hypoexponential cdf: We have

P [A1 + · · ·+ Ac > 1 | π, C = c] =
c∑

j=1

e−Λj

c∏
k=1, k 6=j

Λk

Λk − Λj
.

This formula becomes unstable when c is large and/or the Λj are small.
The product terms are very large and have alternate signs (−1)j−1.

Higham (2009) proposes a stable method for matrix exponential. More
reliable, but significantly slower.

For the case where the above prob is close to 1, we also have

P [A1 + · · ·+ Ac ≤ 1 | π, C = c] =
c∑

j=1

(1− e−Λj)
c∏

k=1, k 6=j

Λk

Λk − Λj
.

D
ra

ft

9

A dodecahedron network

A

B

1

2

3

4

5

67

8

9
10

11

12

13

1415

16

17

18
19

20

21

22

23

24

25

26

27
28

2930

D
ra

ft

10

Turnip method for dodecahedron graph: n = 106, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.881e-3 2.065e-6 2.006e-9 1.992e-12 1.999e-15 2.005e-18
RE[W̄n] 0.00302 0.00421 0.00433 0.00436 0.00435 0.00434
T (sec) 15.6 15.5 15.5 15.5 15.5 15.5

We see that u ≈ 2× 10−3ε and RE is bounded (proved).

D
ra

ft

11

Three dodecahedron graphs in parallel.

60 nodes and 90 links.

A dodec. 1

dodec. 2

dodec. 3

B

D
ra

ft

12

Turnip for three dodecahedrons in parallel: n = 108, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.39e-8 8.80e-18 8.20e-27 8.34e-36 8.07e-45 7.92e-54
RE[W̄n] 0.0074 0.0194 0.0211 0.0210 0.0212 0.0215
T (sec) 6236 6227 6229 6546 6408 6289

We have u ≈ 2× 10−9ε and RE is bounded (proved).
Total CPU time is about 2 hours, regardless of ε.

However, for very large graphs (thousands of links), the turnip method
fails, because the important permutations π, for which the conditional
probability contributes significantly, are rare, and hitting them becomes a
rare event.

Bounded RE does not hold for an asymptotic regime where the size of the
graph increases. Splitting will come to the rescue (later on).

D
ra

ft

13

Dependent Links: A Marshall-Olkin Copula Model
Goal: Define a model where the Xi ’s may have positive dependence.

We use an auxiliary dynamic model to specify the dependence.
Suppose all links are initially operational. For each s ⊆ {1, . . . ,m}, a
shock that takes down all links in s occurs at an exponential time with
rate λs. Let L = {s : λs > 0} = {s(1), . . . , s(κ)}.
This can represent group failures and cascading failures (quite natural).

Denote λj = λs(j), let Yj be the shock time for subset s(j), and
Y = (Y1, . . . ,Yκ) (the latent state of the system).

Xi is the the indicator that component i is operational at time 1:

Xi = I[Yj > 1 for all shocks j such that i ∈ s(j)}.

The previous PMC and turnip methods do not apply here, because the
“repairs” or failures of links are not independent!

D
ra

ft

13

Dependent Links: A Marshall-Olkin Copula Model
Goal: Define a model where the Xi ’s may have positive dependence.

We use an auxiliary dynamic model to specify the dependence.
Suppose all links are initially operational. For each s ⊆ {1, . . . ,m}, a
shock that takes down all links in s occurs at an exponential time with
rate λs. Let L = {s : λs > 0} = {s(1), . . . , s(κ)}.
This can represent group failures and cascading failures (quite natural).

Denote λj = λs(j), let Yj be the shock time for subset s(j), and
Y = (Y1, . . . ,Yκ) (the latent state of the system).

Xi is the the indicator that component i is operational at time 1:

Xi = I[Yj > 1 for all shocks j such that i ∈ s(j)}.

The previous PMC and turnip methods do not apply here, because the
“repairs” or failures of links are not independent!

D
ra

ft

13

Dependent Links: A Marshall-Olkin Copula Model
Goal: Define a model where the Xi ’s may have positive dependence.

We use an auxiliary dynamic model to specify the dependence.
Suppose all links are initially operational. For each s ⊆ {1, . . . ,m}, a
shock that takes down all links in s occurs at an exponential time with
rate λs. Let L = {s : λs > 0} = {s(1), . . . , s(κ)}.
This can represent group failures and cascading failures (quite natural).

Denote λj = λs(j), let Yj be the shock time for subset s(j), and
Y = (Y1, . . . ,Yκ) (the latent state of the system).

Xi is the the indicator that component i is operational at time 1:

Xi = I[Yj > 1 for all shocks j such that i ∈ s(j)}.

The previous PMC and turnip methods do not apply here, because the
“repairs” or failures of links are not independent!

D
ra

ft

14

PMC method, now a destruction process
Generate the shock times Yj (instead of link failure or repair times), sort
them to get Yπ(1) < · · · < Yπ(κ), and retain only the permutation π.

PMC estimator: P[graph is failed at time 1 |π].

To compute it, add the shocks π(1), π(2), . . . , and remove corresponding
links i ∈ s(j), until the system fails, at critical shock number Cs.

Data structure: forest of spanning trees.
When removing a link: breath-first search for alternative path.

The time Aj = Yπ(j) − Yπ(j−1) between two successive shocks is
exponential with rate Λj equal to the sum of rates of all forthcoming
shocks. That is, Λ1 = λ1 + · · ·+ λκ and Λj+1 = Λj − λπ(j) for j ≥ 1.
PMC estimator of u:

U = P [A1 + · · ·+ Ac ≤ 1 | π,Cs = c] =
c∑

j=1

(1− e−Λj)
c∏

k=1, k 6=j

Λk

Λk − Λj
.

D
ra

ft

14

PMC method, now a destruction process
Generate the shock times Yj (instead of link failure or repair times), sort
them to get Yπ(1) < · · · < Yπ(κ), and retain only the permutation π.

PMC estimator: P[graph is failed at time 1 |π].

To compute it, add the shocks π(1), π(2), . . . , and remove corresponding
links i ∈ s(j), until the system fails, at critical shock number Cs.

Data structure: forest of spanning trees.
When removing a link: breath-first search for alternative path.

The time Aj = Yπ(j) − Yπ(j−1) between two successive shocks is
exponential with rate Λj equal to the sum of rates of all forthcoming
shocks. That is, Λ1 = λ1 + · · ·+ λκ and Λj+1 = Λj − λπ(j) for j ≥ 1.
PMC estimator of u:

U = P [A1 + · · ·+ Ac ≤ 1 | π,Cs = c] =
c∑

j=1

(1− e−Λj)
c∏

k=1, k 6=j

Λk

Λk − Λj
.

D
ra

ft

15

Generating the permutation π directly

At step k , the kth shock is selected with probability λj/Λk for shock j ,
where Λk is the sum of rates for the shocks that remain. This avoids the
sort, and we stop when we reach Cs.

However, the probabilities λj/Λk change at each step, so they must be
updated to generate the next shock. Could bring significant overhead:
O(κ) time at each step; O(Csκ) time overall. So it is slower in some
situations.

A special case: If the λj are all equal, the next shock is always selected
uniformly. This amounts to generating a random permutation, which is
easy to do efficiently.
We also have a formula to compute the hypoexponential cdf must faster
in this case.

D
ra

ft

16

Scanning the shocks in reverse order

Instead of adding shocks until the system fails, we can generate all the
shocks to know π, then assume that all shocks have already occurred, and
remove them one by one until V0 is connected. Reconstructing the
network like this is sometimes much faster.

If ci shocks can affect link i , start a counter fi at ci , and decrease it each
time a shock that affects i is removed. Link i is repaired when fi = 0.

Cs is the number of shocks that remain when the system becomes
operational, plus 1.

This gives a faster way to compute Cs when it is large (close to κ).
The estimator U remains the same.

D
ra

ft

17

PMC with anti-shocks

Here we change the estimator. Assume all the shocks have occurred and
generate independent anti-shocks that remove the shocks, one by one.
Idea: repair the shocks rather than the links.

Anti-shock j occurs at exponential time Rj , with rate µj = − ln(1− e−λj).
This gives P[Rj ≤ 1] = P[Yj > 1] = P[shock j has occurred].

Sorting the times Rj gives a permutation π′ (≡ reverse of π).
Ca = κ+ 1− Cs = anti-shock number when system becomes operational.
Times between successive anti-shocks: A′k = Rπ′(k) − Rπ′(k−1),
exponential with rate Λk = µπ(k) + · · ·+ µπ(κ). Estimator of u:

U ′ = P[A′1 + · · ·+ A′Ca
> 1 | π′].

When u is very small, we can often compute U ′ accurately and not U.

D
ra

ft

18

Adapting the turnip method

When generating the shocks [or anti-shocks] in increasing order of
occurrence, at each step j , discard the future shocks [or anti-shocks] that
can no longer contribute to system failure [or repair].

For instance, when removing a link, if there are nodes that become
disconnected from V0, those nodes can be removed for further
consideration. And future shocks k that only affect removed links can be
discarded, and their rate λk subtracted from Λj .

When an anti-shock occurs, if it repairs a link that connects two groups of
nodes, all links that connect the same groups can be discarded, and
anti-shocks that only affect discarded links can be discarded.

Overhead: Must maintain data structures to identify shocks [or
anti-shocks] that can be discarded.

D
ra

ft

18

Adapting the turnip method

When generating the shocks [or anti-shocks] in increasing order of
occurrence, at each step j , discard the future shocks [or anti-shocks] that
can no longer contribute to system failure [or repair].

For instance, when removing a link, if there are nodes that become
disconnected from V0, those nodes can be removed for further
consideration. And future shocks k that only affect removed links can be
discarded, and their rate λk subtracted from Λj .

When an anti-shock occurs, if it repairs a link that connects two groups of
nodes, all links that connect the same groups can be discarded, and
anti-shocks that only affect discarded links can be discarded.

Overhead: Must maintain data structures to identify shocks [or
anti-shocks] that can be discarded.

D
ra

ft

19

Bounded relative error for PMC and turnip

Under mild conditions, we can prove that the PMC and turnip estimators
have bounded RE when the λj → 0, for a fixed graph.

D
ra

ft

20

A generalized splitting (GS) algorithm
Uses latent variables Y. Let

S̃(Y) = inf{γ ≥ 0 : Ψ(X(γ)) = 0},

the time at which the network fails, and S(Y) = 1/S̃(Y).
We want samples of Y for which S(Y) > 1.

Choose real numbers 0 = γ0 < γ1 < · · · < γτ = 1 for which

ρt
def
= P[S(Y) > γt | S(Y) > γt−1] ≈ 1/2

for t = 1, . . . , τ . The γt ’s are estimated by pilot runs.

For each level γt , construct (via MCMC) a Markov chain {Yt,j , j ≥ 0}
with transition density κt and whose stationary density is the density of Y
conditional on S(Y) > γt :

ft(y)
def
= f (y)

I[S(y) > γt]

P[S(Y) > γt]
.

D
ra

ft

21

Defining κt−1 via Gibbs sampling:

Require: Y for which S(Y) > γt−1

for j = 1 to κ do
if S(Y1, . . . ,Yj−1,∞,Yj+1, . . . ,Yκ) < γt−1 then

// removing shock j would connect V0

resample Yj from its density truncated to (0, 1/γt−1)
else

resample Yj from its original density
return Y as the resampled vector.

Data structure: forest of spanning trees.

D
ra

ft

22

GS algorithm with shocks

Generate Y from density f
if S(Y) > γ1 then X1 ← {Y} else return U ← 0
for t = 2 to τ do
Xt ← ∅ // set of states that have reached level γt
for all Y0 ∈ Xt−1 do

for ` = 1 to 2 do
sample Y` from density κt−1(· | Y`−1)
if S(Y`) > γt then add Y` to Xt

return U ← |Xτ |/2τ−1 as an unbiased estimator of u.

Repeat this n times, independently, and take the average.
Can compute a confidence interval, etc.

D
ra

ft

23

GS algorithm with anti-shocks
Same idea, but evolution and resampling is based on R instead of Y.

S(R) = inf{γ ≥ 0 : Ψ(X(γ)) = 1}.

Generate a vector R of anti-shock times from its unconditional density.
if S(R) > γ1 then

X1 ← {R}
else

return U ← 0
for t = 2 to τ do

Xt ← ∅ // states that have reached level γt
for all R0 ∈ Xt−1 do

for ` = 1 to 2 do
sample R` from the density κt−1(· | R`−1)
if S(R`) > γt then

add R` to Xt

return U ← |Xτ |/2τ−1, an unbiased estimate of u.

D
ra

ft

24

Gibbs sampling for anti-shocks density κt−1(· | R):

Require: R = (R1, . . . ,Rκ) for which S(R) > γt−1.
for j = 1 to κ do

if S(R1, . . . ,Rj−1, 0,Rj+1, . . . ,Rκ) ≤ γt−1 then
resample Rj from its density truncated to (γt−1,∞)

else
resample Rj from its original density

return R as the resampled vector.

D
ra

ft

25

Example: dodecahedron graph

GS for the dodecahedron, shocks on links only: n = 106, V0 = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 9 19 29 39 49 59
W̄n 2.877e-3 2.054e-6 2.022e-9 2.01e-12 1.987e-15 1.969e-18
RE[W̄n] 0.0040 0.0062 0.0077 0.0089 0.0099 0.0112
T (sec) 93 167 224 278 334 376

GS, three dodeca. in parallel, shocks on links: n = 106, V0 = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

τ 26 57 87 117 147 176
W̄n 2.38e-8 8.87e-18 8.18e-27 8.09e-36 8.24e-45 7.93e-54
RE[W̄n] 0.0071 0.0109 0.0137 0.0158 0.0185 0.0208
T (sec) 1202 2015 2362 2820 3041 3287

Turnip for three dodecahedrons in parallel: n = 108, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.39e-8 8.80e-18 8.20e-27 8.34e-36 8.07e-45 7.92e-54
RE[W̄n] 0.0074 0.0194 0.0211 0.0210 0.0212 0.0215
T (sec) 6236 6227 6229 6546 6408 6289

D
ra

ft

26

Dodecahedron: distribution of states at last level

Histograms of log10(U) for GS (middle), turnip (left), and for the
conditional prob. of failure for the permutations π obtained by GS (right),
for three dodecahedrons in parallel, with q = 10−2.

−25 −23 −21 −19 −17 −15 −13 −11
0

20

40

-17.06

log10 Wi

pe
rc

en
t

GS
turnip

GS+cond.

D
ra

ft

27

Turnip method for dodecahedron graph: n = 106, V0 = {1, 20}
qi = ε 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.881e-3 2.065e-6 2.006e-9 1.992e-12 1.999e-15 2.005e-18
RE[W̄n] 0.00302 0.00421 0.00433 0.00436 0.00435 0.00434
T (sec) 15.6 15.5 15.5 15.5 15.5 15.5

We see that u ≈ 2× 10−3ε and RE is bounded (proved).

D
ra

ft

28

Dodecahedron graph, shocks on nodes and on links
All shocks at rate λ except on V0 = {1, 20}; n = 106.

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−3

PMC 1.62e-8 993 0.032 12.7 35 0.035
PMC-anti 1.60e-8 1004 0.032 36.3 17 0.018
turnip 1.63e-8 894 0.030 10.7 • 72 0.064
turnip-anti 1.58e-8 296 0.017 35.8 ◦ 45 0.013
GS 1.59e-8 53 0.007 437 0.023
GS-anti 1.60e-8 56 0.007 425 0.024

λ = 10−7

PMC 1.65e-20 1047 0.032 12.7 32 0.034
PMC-anti 1.66e-20 1044 0.032 36.3 18 0.019
turnip-anti 1.58e-20 311 0.018 35.8 ◦ 44 0.014
GS 1.59e-20 143 0.012 982 0.140
GS-anti 1.58e-20 124 0.011 1106 0.137

D
ra

ft

29

Three dodecahedrons in parallel, n = 106

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 0.1

pmc 1.79e-5 3157 0.056 50 207 0.66
pmc-anti 1.72e-5 2410 0.049 95 52 0.13
turn 1.77e-5 2572 0.051 38 • 771 1.98
turn-anti 1.73e-5 1473 0.038 94 ◦ 215 0.32
GS 1.79e-5 31 0.0056 1094 0.034
GS-anti 1.78e-5 30 0.0055 1141 0.034

λ = 0.001

turn-anti 1.20e-29 5.7e5 0.75 94 ◦ 216 12
GS 4.13e-24 158 0.013 4366 0.70
GS-anti 4.06e-24 197 0.014 3552 0.70

D
ra

ft

30

Square lattice graphs

s

t

20× 20 lattice: 400 nodes, 760 links, and 1158 different shocks.
40× 40 lattice: 1600 nodes, 3120 links, and 4718 different shocks.

D
ra

ft

31

20× 20 lattice graph, n = 105

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.67e-10 9.9e4 1.0 202 1062 1050
PMC-anti 6.73e-10 9.8e4 0.99 957 60 58
turnip 6.67e-10 9.9e4 1.0 176 • 4380 4350
turnip-anti 9.61e-10 9.3e3 0.30 905 ◦ 1928 179
GS 8.46e-10 62 0.025 3655 2.3
GS-anti 7.97e-10 61 0.025 3730 2.3

λ = 10−10

PMC 1.34e-19 5.0e4 0.71 202 1018 509
PMC-rev 1.34e-19 5.0e4 0.71 202 60 29
turnip-anti 3.01e-20 3.0e4 0.55 905 ◦ 1694 514
GS 8.24e-20 121 0.035 4899 5.9
GS-anti 8.00e-20 114 0.034 4974 5.7

D
ra

ft

3220× 20 lattice graph, 400 nodes and 760 links.
One shock per node at rate λ and one shock per link at rate 10λ.
V0 = {1, 400}, GS with shocks, n = 104.

λ W̄n RE[W̄n] T (sec)

10−2 4.66e-2 0.0283 102
10−3 2.16e-3 0.0480 133
10−4 2.00e-4 0.0624 122
10−5 1.95e-5 0.0629 153
10−6 2.17e-6 0.0653 168
10−7 2.14e-7 0.0634 184
10−8 2.05e-8 0.1203 105
10−9 1.97e-9 0.1093 150
10−10 1.94e-10 0.0696 266
10−11 1.97e-11 0.0819 187
10−12 2.16e-12 0.0629 359
10−18 1.93e-18 0.0712 811

PMC and turnip do not work here when λ is too small.

D
ra

ft

33

40× 40 lattice graph, n = 104

algorithm W̄n S2
n/W̄

2
n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.1e-27 1.0e4 1 818 2234 2230
turnip-anti 5.2e-35 9988 1 3680 ◦ 3946 3946
GS 7.98e-10 57 0.076 6183 35
GS-anti 7.88e-10 69 0.083 5980 41

λ = 10−10

PMC 2.0e-134 1.0e4 1 812 2199 2200
turnip-anti 1.9e-33 1.0e4 1 3679 ◦ 3531 3531
GS 5.0e-20 151 0.12 6034 91
GS-anti 8.9e-20 124 0.11 6688 83

D
ra

ft

34

Complete graph with 100 nodes, n = 104

Gives 4950 links and 5048 shocks.

algorithm W̄n S2
n/W̄

2
n RE[W̄n] T (sec) WNRV

λ = 0.5

GS 2.45e-20 109 0.11 3859 42
GS-anti 2.49e-20 128 0.11 4004 51

D
ra

ft

35

Extensions

PMC, turnip, and GS could be adapted to rare-event simulation in more
general shock-based reliability models, e.g., where shocks only alter the
state of the system, may change the future shock rates, etc. Several
applications in sight.

Example: Probability that max flow is under a given threshold in a
network where links have random capacities. Application to credit risk.

Example: Probability of overflow in a communication network where links
have capacities and demand is random.

Etc.

D
ra

ft

36

Aproximate zero-variance IS
Suppose the Xj ’s are independent and P[Xj = 0] = qj .
We generate X1,X2, . . . ,Xm in this order.
Can be seen as a Markov chain with state Yj = (X1, . . . ,Xj) at step j .
Importance sampling (IS) scheme: replace each qj by q̃j and final
estimator 1− Φ(X1, . . . ,Xm) by

ũ = (1− Φ(X1, . . . ,Xm))
m∏
j=1

(
qj
q̃j
I[Xj = 0] +

1− qj
1− q̃j

I[Xj = 1]

)
.

Ẽ[ũ] =
∑

{x:Φ(x)=0}

m∏
j=1

(
qj
q̃j
I[xj = 0]q̃j +

1− qj
1− q̃j

I[xj = 1](1− q̃j)

)

=
∑

{x:Φ(x)=0}

m∏
j=1

(qjI[xj = 0] + (1− q̃j)I[xj = 1]) = u.

Challenge: How to choose the q̃j ’s?

D
ra

ft

37

Zero-variance scheme: We have

uj(x1, . . . , xj−1)
def
= P[φ(X) = 0 | X1 = x1, . . . ,Xj−1 = xj−1]

= qj uj+1(x1, . . . , xj−1, 0) + (1− qj) uj+1(x1, . . . , xj−1, 1).

Zero-variance importance sampling scheme (ideal): replace qj with

q̃j = qj
uj+1(x1, . . . , xj−1, 0)

uj(x1, . . . , xj−1)
, 1− q̃j = (1− qj)

uj+1(x1, . . . , xj−1, 1)

uj(x1, . . . , xj−1)
.

Then the final estimator is always equal to

L(X1, . . . ,Xm) =
m∏
j=1

uj(x1, . . . , xj−1)

uj+1(x1, . . . , xj)
=

u0()

um(x1, . . . , xm)
= u.

Practice: replace unknown uj+1 by easily-computable approx. ûj+1.

D
ra

ft

37

Zero-variance scheme: We have

uj(x1, . . . , xj−1)
def
= P[φ(X) = 0 | X1 = x1, . . . ,Xj−1 = xj−1]

= qj uj+1(x1, . . . , xj−1, 0) + (1− qj) uj+1(x1, . . . , xj−1, 1).

Zero-variance importance sampling scheme (ideal): replace qj with

q̃j = qj
uj+1(x1, . . . , xj−1, 0)

uj(x1, . . . , xj−1)
, 1− q̃j = (1− qj)

uj+1(x1, . . . , xj−1, 1)

uj(x1, . . . , xj−1)
.

Then the final estimator is always equal to

L(X1, . . . ,Xm) =
m∏
j=1

uj(x1, . . . , xj−1)

uj+1(x1, . . . , xj)
=

u0()

um(x1, . . . , xm)
= u.

Practice: replace unknown uj+1 by easily-computable approx. ûj+1.

D
ra

ft

38

Suppose each qj → 0 when ε→ 0.

Theorem: If

ûj+1(x1, . . . , xj) = aj+1(x1, . . . , xj)u(x1, . . . , xj) + o(uj+1(x1, . . . , xj))

with aj+1(x1, . . . , xj) independent of ε, then we have BRE.
If aj+1(x1, . . . , xj) ≡ 1, then we also have VRE.

D
ra

ft

39Mincut-maxprob approximation of uj+1(x1, . . . , xj).
Given x1, . . . , xj fixed, take a minimal cut made with the other edges, that
disconnects V0 and has maximal probability.
Approximate uj+1(x1, . . . , xj) by the probability ûmc

j+1(x1, . . . , xj) of this
cut, which is the product of its qj ’s.

1

2

1

3

0

1

4
X4

5

X8

6

X5

X6

X10

7
X7

8
X9

X12

9
X11

X13

Theorem: The mincut-maxprob approximation always gives BRE.
Under some additional conditions, it also gives VRE.

D
ra

ft

40

A dodecahedron network

A

B

1

2

3

4

5

67

8

9
10

11

12

13

1415

16

17

18
19

20

21

22

23

24

25

26

27
28

2930

D
ra

ft

41

Results for dodecahedron graph, with all qj = ε, for n = 104.

ε estimate standard dev. relative error

10−1 2.8960× 10−3 3.49× 10−3 1.2
10−2 2.0678× 10−6 3.42× 10−7 0.17
10−3 2.0076× 10−9 1.14× 10−10 0.057
10−4 2.0007× 10−12 3.46× 10−14 0.017

Can combine the method with series-parallel reductions of the graph at
each step (WSC 2011 paper).

D
ra

ft

41

Results for dodecahedron graph, with all qj = ε, for n = 104.

ε estimate standard dev. relative error

10−1 2.8960× 10−3 3.49× 10−3 1.2
10−2 2.0678× 10−6 3.42× 10−7 0.17
10−3 2.0076× 10−9 1.14× 10−10 0.057
10−4 2.0007× 10−12 3.46× 10−14 0.017

Can combine the method with series-parallel reductions of the graph at
each step (WSC 2011 paper).

D
ra

ft

42

Three dodecahedron graphs in parallel. qj = ε and for n = 104.

A dodec. 1

dodec. 2

dodec. 3

B

ε estimate standard dev. relative error

0.10 2.3573× 10−8 5.49× 10−8 2.3
0.05 2.5732× 10−11 3.03× 10−11 1.2
0.01 8.7655× 10−18 2.60× 10−18 0.30

D
ra

ft

43

Dual method: minpath-maxprob approximation of uj+1(x1, . . . , xj).
Given x1, . . . , xj fixed, take a minimal path made with the other edges,
that connects V0 and has maximal probability.
Approximate 1− uj+1(x1, . . . , xj) by the probability 1− ûmc

j+1(x1, . . . , xj) of
this path, which is the product of its (1− qi)’s.

1

2

1

3

0

1

4
X4

5

X8

6

X5

X6

X10

7
X7

8
X9

X12

9
X11

X13

D
ra

ft

44

Theorem: The minpath-maxprob approximation always gives BRE for
1− u when the qj → 1. Under additional conditions, it also gives VRE.

Lemma: ûmc
j+1(x1, . . . , xj) ≤ u ≤ ûmp

j+1(x1, . . . , xj).

D
ra

ft

45

Example: an r × 2 graph, with qj = q

s

2

1

r − 1

r

r + 2

r + 1

2r − 1

2r

t

Original graph has 3 (vertical) mincuts with maximal prob qr , so
ûmc

1 (∅) = qr . Also several mincuts of prob qr+1, qr+2, etc.

Several minpaths of length 3, so ûmp
1 (∅) = 1− (1− q)3.

D
ra

ft

46

For various r , we selected q so that u is near 10−8 in all cases.

Mincut-maxprob approximation:

r q 108û R̂E ûmc
1 (∅) = qr

2 0.00007 1.46 0.33 4.9× 10−9

5 0.02 1.06 0.46 3.2× 10−9

10 0.1245 1.11 1.8 8.9× 10−10

30 0.371 1.14 7.9 1.2× 10−13

40 0.427 1.05 9.9 1.6× 10−15

50 0.4665 1.08 31 2.7× 10−17

70 0.521 1.35 22 1.5× 10−20

100 0.575 1.48 40 9.2× 10−25

200 0.655 0.48 44 1.8× 10−37

Poor behavior for large r . Reason: the several mincuts of prob qr+1, qr+2,
etc., contribute significantly and cannot be neglected.

D
ra

ft

47

Minpath-maxprob approximation:

r q 108û R̂E ûmp
1 (∅)

2 0.00007 1.68 66 0.0002
5 0.02 3.18 160 0.058

10 0.1245 1.15 110 0.32
30 0.371 1.36 75 0.75
40 0.427 1.20 36 0.81
50 0.4665 0.98 26 0.84
70 0.521 1.58 17 0.89
90 0.559 1.19 6.6 0.91

100 0.575 1.52 9.8 0.92
200 0.655 1.13 3.9 0.95

Not so good for small r , because the minpaths of prob (1− q)4, etc.,
contribute significantly.
But much better than mincuts for large r .

D
ra

ft

48

A linear combination of two unreliability
approximations

We consider an IS scheme that approximates ui+1(·) by the linear
combination

ûi+1(x1, . . . , xi) = αûmc
i+1(x1, . . . , xi) + (1− α)ûmp

i+1(x1, . . . , xi)

∀i and ∀(x1, . . . , xi) ∈ {0, 1}i , for some constant α ∈ [0, 1] to be chosen.

Want to choose α to minimize the variance V (α) of the IS estimator.

This α can be estimated by stochastic approximation (SA). We find

(approximately) a root of V ′(α)
def
= (∂V /∂α)(α) = 0.

If we were allowed to choose a different α = α(x1, . . . , xi) ∈ [0, 1] for each
(x1, . . . , xi), we could in principle achieve zero variance. But would be too
hard to optimize. Choosing a single α is a compromise.

D
ra

ft

48

A linear combination of two unreliability
approximations

We consider an IS scheme that approximates ui+1(·) by the linear
combination

ûi+1(x1, . . . , xi) = αûmc
i+1(x1, . . . , xi) + (1− α)ûmp

i+1(x1, . . . , xi)

∀i and ∀(x1, . . . , xi) ∈ {0, 1}i , for some constant α ∈ [0, 1] to be chosen.

Want to choose α to minimize the variance V (α) of the IS estimator.

This α can be estimated by stochastic approximation (SA). We find

(approximately) a root of V ′(α)
def
= (∂V /∂α)(α) = 0.

If we were allowed to choose a different α = α(x1, . . . , xi) ∈ [0, 1] for each
(x1, . . . , xi), we could in principle achieve zero variance. But would be too
hard to optimize. Choosing a single α is a compromise.

D
ra

ft

49

Crude heuristic to estimate α

If we knew u, we could take α for which

u = u1(∅) = αûmc
1 (∅) + (1− α)ûmp

1 (∅).

That is,

α =
ûmp(∅)− u

ûmp(∅)− ûmc(∅)
.

Can replace unknown u in this formula by a rough estimate û obtained
from pilot runs.

D
ra

ft

50

Learning a good α by stochastic approximation

Start at some α0 ∈ [0, 1] and iterate:

α`+1 = α` −
e

(C + `)β
V̂ ′(α`),

where V̂ ′(α`) is an estimate of V ′(α`).

An unbiased derivative estimator can be derived by infinitesimal
perturbation analysis. Gives a complicated formula but easy to evaluate by
simulation.

At the end, take α as the average

ᾱ`0,` =
1

`− `0

∑̀
ι=`0+1

αι.

D
ra

ft

51

Example: Three dodecahedrons in series

s dodec. 1 dodec. 2 dodec. 3 t

D
ra

ft

52

Example: Three dodecahedrons in series

method q û R̂E α̂ ûmc(∅) ûmp(∅)

MC

10−1 8.577× 10−3 2.8
10−2 6.173× 10−6 1.3
10−3 6.012× 10−9 1.3
10−4 5.989× 10−12 1.3

MP

10−1 8.205× 10−3 6.8
10−2 4.339× 10−6 91
10−3 1.002× 10−9 0.060
10−4 1.000× 10−12 0.018

heuristic

10−1 8.584× 10−3 0.75 0.990 10−3 0.794
10−2 6.015× 10−6 0.31 0.9999635 10−6 0.140
10−3 6.015× 10−9 0.28 0.999999665 10−9 1.489× 10−2

10−4 5.997× 10−12 0.27 0.999999996 10−12 1.498× 10−3

SA

10−1 8.599× 10−3 0.71 0.991277
10−2 6.188× 10−6 0.25 0.999974
10−3 6.014× 10−9 0.22 0.99999975
10−4 5.997× 10−12 0.22 0.9999999975

D
ra

ft

53

Two rows of m nodes

s t

D
ra

ft

54

Two rows of m nodes

method q m û R̂E α̂ ûmc(∅) ûmp(∅)

MC

0.5 2 0.672 0.42
10 0.995 2.0
20 0.998 2.1

0.1 2 0.0329 0.50
10 0.123 5.3
20 0.518 190

MP

0.5 2 0.672 0.20
10 0.9889 0.049
20 0.99982 0.0063

0.1 2 0.0329 1.5
10 0.1208 1.5
20 0.2182 1.3

heuristic

0.5 2 0.672 0.14 0.33 0.25 0.875
10 0.988 0.044 0.0255 0.25 0.999
20 0.99978 0.014 0.02614 0.25 0.9999995

0.1 2 0.03315 0.56 0.912 10−2 0.270

10 0.1205 0.39 0.836 10−2 0.686

20 0.2188 0.34 0.8536 10−2 0.8905

SA

0.5 2 0.672 0.13 0.397
10 0.9886 0.045 0.0225

20 0.99983 0.006 1.6× 10−36

0.1 2 0.0330 0.33 0.946
10 0.1202 0.34 0.877
20 0.2184 0.32 0.828

D
ra

ft

55

References

Z. I. Botev, P. L’Ecuyer, R. Simard, and B. Tuffin, “Static Network
Reliability Estimation under the Marshall-Olkin Copula,” ACM
Transactions on Modeling and Computer Simulation, 26, 2 (2016), Article
14.

P. L’Ecuyer, G. Rubino, S. Saggadi, and B. Tuffin, “Approximate
Zero-Variance Importance Sampling for Static Network Reliability
Estimation,” IEEE Transactions on Reliability, 8, 4 (2011), 590–604.

B. Tuffin, S. Saggadi, and P. L’Ecuyer, “An Adaptive Zero-Variance
Importance Sampling Approximation for Static Network Dependability
Evaluation”, Computers and Operations Research, 45 (2014), 51–59.

P. L’Ecuyer, J. Blanchet, B. Tuffin, and P. W. Glynn, “Asymptotic
Robustness of Estimators in Rare-Event Simulation”, ACM Transactions
on Modeling and Computer Simulation, 20, 1 (2010), Article 6, 41 pages.

