
D
ra
ft

1

Introduction to randomized quasi-Monte Carlo

methods in simulation

Part A

Pierre L’Ecuyer

Université de Montréal, Canada

ETICS, Saissac, September 2024

D
ra
ft

2

The Monte Carlo Method

D
ra
ft

3

Small example: A stochastic activity network
Link k has random length Yk , with cdf Fk(y) ∶= P[Yk ≤ y].
Goal: estimate P[T > x] where T = (random) length of longest path from source to sink.

0source 1
Y0

2

Y1
Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10

Parameters from Elmaghraby (1977): Yk ∼ N(µk , σ2k) for k = 0,1,3,10,11, and Yk ∼ Expon(1/µk)
otherwise.

D
ra
ft

4

Monte Carlo (simulation)

Algorithm: Monte Carlo to estimate E[T]
for i = 0, . . . , n − 1 do

for k = 0, . . . ,12 do
Generate Uk ∼ U(0,1) and let Yk = F −1k (Uk)

Compute Xi = T = h(Y0, . . . , Y12) = f (U0, . . . , U12)
Estimate E[T] = ∫(0,1)s f (u)du by X̄n = 1n ∑

n−1
i=0 Xi , etc.

Can also compute confidence interval on E[T], a histogram for the distribution of T , etc.

We may pay a penalty if T > 90, for example, and want to estimate P[T > 90].

D
ra
ft

5

Naive idea: replace each Yk by its expectation. Gives T = 48.2.

Results of an experiment with n = 100000.
Histogram of values of T gives more information than estimates of E[T] or P[T > x].
Values from 14.4 to 268.6; 11.57% exceed x = 90.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000
T = x = 90

T = 48.2
mean = 64.2

ξ̂0.99 = 131.8

D
ra
ft

5

Naive idea: replace each Yk by its expectation. Gives T = 48.2.

Results of an experiment with n = 100000.
Histogram of values of T gives more information than estimates of E[T] or P[T > x].
Values from 14.4 to 268.6; 11.57% exceed x = 90.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000
T = x = 90

T = 48.2
mean = 64.2

ξ̂0.99 = 131.8

D
ra
ft

6

Monte Carlo to estimate an expectation

Want to estimate µ = E[X] where X = f (U) = f (U0, . . . , Us−1), and the Uj are i.i.d. U(0,1)
“random numbers.” We have

µ = E[X] = ∫
[0,1)s

f (u)du.

Monte Carlo (MC) estimator:

X̄n =
1

n

n−1
∑
i=0
Xi

where Xi = f (Ui) and U0, . . . ,Un−1 i.i.d. uniform over [0,1)s .

We have E[X̄n] = µ and Var[X̄n] = σ2/n = Var[X]/n.

D
ra
ft

7

Convergence

Theorem. Suppose σ2 <∞. When n →∞:
(i) Strong law of large numbers: limn→∞ µ̂n = µ with probability 1.

(ii) Central limit theorem (CLT):

√
n(µ̂n − µ)
Sn

⇒ N(0,1),

where

S2n =
1

n − 1

n−1
∑
i=0
(Xi − X̄n)2.

D
ra
ft

7

Convergence

Theorem. Suppose σ2 <∞. When n →∞:
(i) Strong law of large numbers: limn→∞ µ̂n = µ with probability 1.
(ii) Central limit theorem (CLT):

√
n(µ̂n − µ)
Sn

⇒ N(0,1),

where

S2n =
1

n − 1

n−1
∑
i=0
(Xi − X̄n)2.

D
ra
ft

8

Confidence interval at level α (we want Φ(x) = 1 −α/2):

(µ̂n ± zα/2Sn/
√
n), where zα/2 = Φ−1(1 −α/2).

Example: zα/2 ≈ 1.96 for α = 0.05.

−3 −1.96 −1 0 1 1.96 3

α/2 α/21 −α

−zα/2 zα/2

The width of the confidence interval is asymptotically proportional to σ/
√
n, so it

converges as O(n−1/2). Relative error: σ/(µ
√
n).

For one more decimal digit of accuracy, we must multiply n by 100.

Warning: If the Xi have an asymmetric law, these confidence intervals can have very bad

coverage (convergence to normal can be very slow).

D
ra
ft

8

Confidence interval at level α (we want Φ(x) = 1 −α/2):

(µ̂n ± zα/2Sn/
√
n), where zα/2 = Φ−1(1 −α/2).

Example: zα/2 ≈ 1.96 for α = 0.05.

−3 −1.96 −1 0 1 1.96 3

α/2 α/21 −α

−zα/2 zα/2

The width of the confidence interval is asymptotically proportional to σ/
√
n, so it

converges as O(n−1/2). Relative error: σ/(µ
√
n).

For one more decimal digit of accuracy, we must multiply n by 100.

Warning: If the Xi have an asymmetric law, these confidence intervals can have very bad

coverage (convergence to normal can be very slow).

D
ra
ft

9

Conditional Monte Carlo estimator of P[T > x] = E[I[T > x]].
Generate the Yj ’s only for the 8 arcs that do not belong to the cut L = {4,5,6,8,9}, and
replace the naive estimator I[T > x] by its conditional expectation given those Yj ’s,

Xe = P[T > x ∣ {Yj , j /∈ L}].

This reduces the variance and makes the integrand continuous in the Uj ’s.

0source 1
Y0

2

Y1
Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10

D
ra
ft

10

Another minimal cut: L = {2,3,5,6,9,13}.

0source 1
Y1

2

Y2
Y3

3
Y4

4

Y8

5

Y10

Y5

Y6

6
Y7

7

Y12

Y9

8 sink

Y13

Y11

Works for a general graph: just take L as a minimal cut between source and sink.

D
ra
ft

11

To compute Xe: for each l ∈ L, say from al to bl , compute the length αl of the longest
path from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed x iff αl + Yl + βl ≤ x , which
occurs with probability P[Yl ≤ x −αl − βl] = Fl[x −αl − βl].

Since the Yl are independent, we obtain

Xe = 1 −∏
l∈L
Fl[x −αl − βl].

This makes the integrand continuous in the Uj ’s if the Yk ’s are continuous r.v.’s for k ∈ L.
Also reduces the dimensionality of the integrand!

Can be faster to compute than X, and always has less variance.

D
ra
ft

11

To compute Xe: for each l ∈ L, say from al to bl , compute the length αl of the longest
path from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed x iff αl + Yl + βl ≤ x , which
occurs with probability P[Yl ≤ x −αl − βl] = Fl[x −αl − βl].

Since the Yl are independent, we obtain

Xe = 1 −∏
l∈L
Fl[x −αl − βl].

This makes the integrand continuous in the Uj ’s if the Yk ’s are continuous r.v.’s for k ∈ L.
Also reduces the dimensionality of the integrand!

Can be faster to compute than X, and always has less variance.

D
ra
ft

12

Example: Pricing a financial derivative.

Market price of some asset (e.g., one share of a stock) evolves in time as stochastic process

{S(t), t ≥ 0} with (supposedly) known probability law (estimated from data).

A financial contract gives owner net payoff g(S(t1), . . . , S(td)) at time T = td , where g ∶ Rd → R,
and 0 ≤ t1 < ⋯ < td are fixed observation times.

Under a no-arbitrage assumption, present value (fair price) of contract at time 0, when S(0) = s0,
can be written as

v(s0, T) = E∗ [e−rT g(S(t1), . . . , S(td))] ,

where E∗ is under a risk-neutral measure and e−rT is the discount factor.

This expectation can be written as an integral over [0,1)s and estimated by the average of n i.i.d.
replicates of X = e−rT g(S(t1), . . . , S(td)).

D
ra
ft

13

A simple model for S: geometric Brownian motion (GBM):

S(t) = s0e(r−σ
2
/2)t+σB(t)

where r is the interest rate, σ is the volatility, and B(⋅) is a standard Brownian motion: for any
t2 > t1 ≥ 0, B(t2) −B(t1) ∼ N(0, t2 − t1), and the increments over disjoint intervals are independent.

Algorithm: Option pricing under GBM model

for i = 0, . . . , n − 1 do
Let t0 = 0 and B(t0) = 0
for j = 1, . . . , d do

Generate Uj ∼ U(0,1) and let Zj = Φ−1(Uj)
Let B(tj) = B(tj−1) +

√
tj − tj−1Zj

Let S(tj) = s0 exp [(r − σ2/2)tj + σB(tj)]
Compute Xi = e−rT g(S(t1), . . . , S(td))

Return X̄n = 1n ∑
n−1
i=0 Xi , estimator of v(s0, T).

D
ra
ft

13

A simple model for S: geometric Brownian motion (GBM):

S(t) = s0e(r−σ
2
/2)t+σB(t)

where r is the interest rate, σ is the volatility, and B(⋅) is a standard Brownian motion: for any
t2 > t1 ≥ 0, B(t2) −B(t1) ∼ N(0, t2 − t1), and the increments over disjoint intervals are independent.

Algorithm: Option pricing under GBM model

for i = 0, . . . , n − 1 do
Let t0 = 0 and B(t0) = 0
for j = 1, . . . , d do

Generate Uj ∼ U(0,1) and let Zj = Φ−1(Uj)
Let B(tj) = B(tj−1) +

√
tj − tj−1Zj

Let S(tj) = s0 exp [(r − σ2/2)tj + σB(tj)]
Compute Xi = e−rT g(S(t1), . . . , S(td))

Return X̄n = 1n ∑
n−1
i=0 Xi , estimator of v(s0, T).

D
ra
ft

14

Example of contract: Discretely-monitored Asian call option:

g(S(t1), . . . , S(td)) = max
⎛
⎝
0,
1

d

d

∑
j=1
S(tj) −K

⎞
⎠
.

Option price written as an integral over the unit hypercube:

Let Zj = Φ−1(Uj) where the Uj are i.i.d. U(0,1). Here we have s = d and

v(s0, T) = ∫
[0,1)s
e−rT max(0, 1

s

s

∑
i=1

s0⋅

exp

⎡⎢⎢⎢⎢⎣
(r − σ2/2)ti + σ

i

∑
j=1

√
tj − tj−1Φ−1(uj)

⎤⎥⎥⎥⎥⎦
−K
⎞
⎠
du1 . . .dus

= ∫
[0,1)s

f (u1, . . . , us)du1 . . .dus .

D
ra
ft

15
Numerical illustration: Bermudean Asian option with d = 12, T = 1 (one year), tj = j/12 for
j = 0, . . . ,12, K = 100, s0 = 100, r = 0.05, σ = 0.5.

We performed n = 106 independent simulation runs.
In 53.47% of cases, the payoff is 0.

Mean: 13.1. Max = 390.8

Histogram of the 46.53% positive values:

Payoff
0 50 100 15013.1

Frequency (×103)

0

10

20

30

D
ra
ft

16

Variants and extensions

µ = E[X] = E[f (U)] = ∫
(0,1)s

f (u)du

The dimension s can be random and unbounded.

The function f can be very involved.

It can be a function of the trajectory of a Markov chain, for example.

We may want to estimate the whole density of X, or a quantile, etc.

We may want to estimate a global optimizer of f .

D
ra
ft

17

Quasi-Monte Carlo

D
ra
ft

18

Quasi-Monte Carlo (QMC)
Replace the independent random points Ui by a set of deterministic points

Pn = {u0, . . . ,un−1} that cover [0,1)s more evenly. Approximate (or estimate)

µ = ∫
[0,1)s

f (u)du by µ̄n =
1

n

n−1
∑
i=0
f (ui).

Integration error En = µ̄ − µ (deterministic). This is classical QMC.

Pn is called a highly-uniform point set or low-discrepancy point set if some measure of

discrepancy between the empirical distribution of Pn and the uniform distribution converges

to 0 faster than O(n−1/2) (the typical rate for independent random points).

Main construction methods: lattice rules and digital nets

(Korobov, Hammersley, Halton, Sobol’, Faure, Niederreiter, etc.)

Randomized QMC (RQMC): Randomize Pn so that E[En] = 0 and Var[En]≪ σ2/n.

D
ra
ft

18

Quasi-Monte Carlo (QMC)
Replace the independent random points Ui by a set of deterministic points

Pn = {u0, . . . ,un−1} that cover [0,1)s more evenly. Approximate (or estimate)

µ = ∫
[0,1)s

f (u)du by µ̄n =
1

n

n−1
∑
i=0
f (ui).

Integration error En = µ̄ − µ (deterministic). This is classical QMC.

Pn is called a highly-uniform point set or low-discrepancy point set if some measure of

discrepancy between the empirical distribution of Pn and the uniform distribution converges

to 0 faster than O(n−1/2) (the typical rate for independent random points).

Main construction methods: lattice rules and digital nets

(Korobov, Hammersley, Halton, Sobol’, Faure, Niederreiter, etc.)

Randomized QMC (RQMC): Randomize Pn so that E[En] = 0 and Var[En]≪ σ2/n.

D
ra
ft

19

Very simple case: one dimension (s = 1)
A simple solution: Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n} (left Riemann sum), which gives
∣En∣ ≤ K/(2n) = O(n−1) if sup0≤u≤1 ∣f ′(u)∣ ≤ K.

0 10.5

Improvement: P ′n = {1/(2n), 3/(2n), . . . , (2n − 1)/(2n)} (the midpoint rule), which gives
∣En∣ ≤ K/(24n2) = O(n−2) if sup0≤u≤1 ∣f ′′(u)∣ ≤ K.

0 10.5

D
ra
ft

19

Very simple case: one dimension (s = 1)
A simple solution: Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n} (left Riemann sum), which gives
∣En∣ ≤ K/(2n) = O(n−1) if sup0≤u≤1 ∣f ′(u)∣ ≤ K.

0 10.5

Improvement: P ′n = {1/(2n), 3/(2n), . . . , (2n − 1)/(2n)} (the midpoint rule), which gives
∣En∣ ≤ K/(24n2) = O(n−2) if sup0≤u≤1 ∣f ′′(u)∣ ≤ K.

0 10.5

D
ra
ft

20

If we allow different weights for the f (ui), we have the trapezoidal rule, which approximates
f by a piecewise-linear interpolation with n pieces:

0 10.5

1

n

n−1
∑
i=0
[f (i/n) + f ((i + 1)/n)

2
] = 1
n
[f (0) + f (1)

2
+
n−1
∑
i=1
f (i/n)] .

This gives ∣En∣ ≤ K/(12n2) = O(n−2) if sup0≤u≤1 ∣f ′′(u)∣ ≤ K.

Simpson’s rule use a piecewise-quadratic approximation with n/2 pieces:

f (0) + 4f (1/n) + 2f (2/n) +⋯ + 2f ((n − 2)/n) + 4f ((n − 1)/n) + f (1)
3n

,

which gives ∣En∣ = O(n−4) si f (4) is bounded.

D
ra
ft

20

If we allow different weights for the f (ui), we have the trapezoidal rule, which approximates
f by a piecewise-linear interpolation with n pieces:

0 10.5

1

n

n−1
∑
i=0
[f (i/n) + f ((i + 1)/n)

2
] = 1
n
[f (0) + f (1)

2
+
n−1
∑
i=1
f (i/n)] .

This gives ∣En∣ ≤ K/(12n2) = O(n−2) if sup0≤u≤1 ∣f ′′(u)∣ ≤ K.

Simpson’s rule use a piecewise-quadratic approximation with n/2 pieces:

f (0) + 4f (1/n) + 2f (2/n) +⋯ + 2f ((n − 2)/n) + 4f ((n − 1)/n) + f (1)
3n

,

which gives ∣En∣ = O(n−4) si f (4) is bounded.

D
ra
ft

21

These approximations work well when the derivatives of f (of the appropriate order) are

never too large. That is, f must be “smooth”.

For QMC and RQMC, we will restrict ourselves to equal-weight rules.

For the RQMC points that we will examine, one can prove that equal weights are optimal.

D
ra
ft

22

A simplistic solution for when s > 1: a rectangular grid (left) with n = d s points:

Pn = {(i1/d, . . . , it/d) tels que 0 ≤ ij < d ∀j}.

We can center it to obtain a s-dimensional midpoint rule (right).

0 1

1

ui ,2

ui ,1 0 1

1

ui ,2

ui ,1

This quickly becomes impractical when s increases.

D
ra
ft

23

Error bound for midpoint rule in s dimensions with n = d s points.

Suppose that

sup
(u1,...,us)∈[0,1]

RRRRRRRRRRR

∂2f (u1, . . . , us)
∂u2j

RRRRRRRRRRR
≤ Kj <∞

for j = 1, . . . , s and let K = K1 +⋯ +Ks .
Then the midpoint rule with n points in s dimensions gives

∣En∣ ≤ Kd−2/24 = Kn−2/s/24 = O(n−2/s).

The s-dimensional trapezoidal rule gives the same rate: En = O(n−2/s).

Note that these rates are deterministic, whereas the MC rate is only probabilistic.

In s = 4 dimensions, we get the same rate as for MC.
In s < 4 dimensions, this rate is better, while for s > 4 the MC rate is better.

D
ra
ft

23

Error bound for midpoint rule in s dimensions with n = d s points.

Suppose that

sup
(u1,...,us)∈[0,1]

RRRRRRRRRRR

∂2f (u1, . . . , us)
∂u2j

RRRRRRRRRRR
≤ Kj <∞

for j = 1, . . . , s and let K = K1 +⋯ +Ks .
Then the midpoint rule with n points in s dimensions gives

∣En∣ ≤ Kd−2/24 = Kn−2/s/24 = O(n−2/s).

The s-dimensional trapezoidal rule gives the same rate: En = O(n−2/s).

Note that these rates are deterministic, whereas the MC rate is only probabilistic.

In s = 4 dimensions, we get the same rate as for MC.
In s < 4 dimensions, this rate is better, while for s > 4 the MC rate is better.

D
ra
ft

24

The degradation comes from the superposition of points in the projections over subsets of

coordinates. To see why, note that any integrand f over [0,1)s can be decomposed as

f (u1, . . . , us) =
s

∑
j=1
fj(uj) + ∑

1≤i<j≤s
fi ,j(ui , uj) + ∑

1≤i<j<k≤s
fi ,j,k(ui , uj , uk) +⋯

This is a sum of s one-dimensional functions, plus other terms. The integration error here

will be the total error for the first sum, plus the error for the other terms.

But each one-dimensional projection of Pn contains only the d distinct values

{0,1/d, . . . , (d − 1)/d}, so the first s terms are evaluated at only those d values. Then the
error for these terms with the midpoint rule will be O(d−2) = O(n−2/s) instead of O(n−2).

If we do not shift the points by 1/(2d) for each coordinate (as in the left plot), the error
will be O(d−1) = O(n−1/s) instead of O(n−1).

D
ra
ft

24

The degradation comes from the superposition of points in the projections over subsets of

coordinates. To see why, note that any integrand f over [0,1)s can be decomposed as

f (u1, . . . , us) =
s

∑
j=1
fj(uj) + ∑

1≤i<j≤s
fi ,j(ui , uj) + ∑

1≤i<j<k≤s
fi ,j,k(ui , uj , uk) +⋯

This is a sum of s one-dimensional functions, plus other terms. The integration error here

will be the total error for the first sum, plus the error for the other terms.

But each one-dimensional projection of Pn contains only the d distinct values

{0,1/d, . . . , (d − 1)/d}, so the first s terms are evaluated at only those d values. Then the
error for these terms with the midpoint rule will be O(d−2) = O(n−2/s) instead of O(n−2).

If we do not shift the points by 1/(2d) for each coordinate (as in the left plot), the error
will be O(d−1) = O(n−1/s) instead of O(n−1).

D
ra
ft

25
To avoid this superposition of points, we would like to construct Pn so that each

one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

0 1

1

ui ,2

ui ,1

We also want these n values to be enumerated in a different order for the different

coordinates. Otherwise all the points are on a diagonal line.

We must take a different permutation of {0, 1/n, . . . , (n − 1)/n} for each coordinate, and
choose these permutations so that Pn is highly uniform over [0,1)s . How can we do that?

We may also center the points by adding 1/(2n) to each coordinate, as in the midpoint rule.

D
ra
ft

26

Example: lattice with s = 2, n = 101, v1 = (1,12)/n

Pn = {ui = iv1 mod 1) ∶ i = 0, . . . , n − 1}
= {(0,0), (1/101,12/101), (2/101, 43/101), . . .}.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

D
ra
ft

26

Example: lattice with s = 2, n = 101, v1 = (1,12)/n

Pn = {ui = iv1 mod 1) ∶ i = 0, . . . , n − 1}
= {(0,0), (1/101,12/101), (2/101, 43/101), . . .}.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

D
ra
ft

26

Example: lattice with s = 2, n = 101, v1 = (1,12)/n

Pn = {ui = iv1 mod 1) ∶ i = 0, . . . , n − 1}
= {(0,0), (1/101,12/101), (2/101, 43/101), . . .}.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

D
ra
ft

26

Example: lattice with s = 2, n = 101, v1 = (1,12)/n

Pn = {ui = iv1 mod 1) ∶ i = 0, . . . , n − 1}
= {(0,0), (1/101,12/101), (2/101, 43/101), . . .}.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

D
ra
ft

26

Example: lattice with s = 2, n = 101, v1 = (1,12)/n

Pn = {ui = iv1 mod 1) ∶ i = 0, . . . , n − 1}
= {(0,0), (1/101,12/101), (2/101, 43/101), . . .}.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

D
ra
ft

27

Another example: s = 2, n = 1021, v1 = (1,90)/n
Pn = {ui = iv1 mod 1 ∶ i = 0, . . . , n − 1}
= {(i/1021, (90i/1021) mod 1) ∶ i = 0, . . . ,1020}.

0 1

1

ui ,2

ui ,1

v1

D
ra
ft

28

A bad lattice: s = 2, n = 101, v1 = (1,51)/n

0 1

1

ui ,2

ui ,1

v1

Good uniformity in one dimension, but not in two!

D
ra
ft

29

Lattice rules (Korobov, Sloan, etc.)

Integration lattice:

Ls =
⎧⎪⎪⎨⎪⎪⎩
v =

s

∑
j=1
zjvj such that each zj ∈ Z

⎫⎪⎪⎬⎪⎪⎭
,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .

Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0,1)s .

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0,1, . . . , n − 1}s . These are the most popular.

Korobov rule: a = (1, a, a2 mod n, . . .).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

If pgcd(n, aj) = 1, then coordinate j takes each value in Zn/n = {0,1/n,2/n, . . . , (n − 1)/n}
exactly once, in a certain order.

D
ra
ft

29

Lattice rules (Korobov, Sloan, etc.)

Integration lattice:

Ls =
⎧⎪⎪⎨⎪⎪⎩
v =

s

∑
j=1
zjvj such that each zj ∈ Z

⎫⎪⎪⎬⎪⎪⎭
,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .

Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0,1)s .

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0,1, . . . , n − 1}s . These are the most popular.

Korobov rule: a = (1, a, a2 mod n, . . .).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

If pgcd(n, aj) = 1, then coordinate j takes each value in Zn/n = {0,1/n,2/n, . . . , (n − 1)/n}
exactly once, in a certain order.

D
ra
ft

29

Lattice rules (Korobov, Sloan, etc.)

Integration lattice:

Ls =
⎧⎪⎪⎨⎪⎪⎩
v =

s

∑
j=1
zjvj such that each zj ∈ Z

⎫⎪⎪⎬⎪⎪⎭
,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .

Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0,1)s .

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0,1, . . . , n − 1}s . These are the most popular.

Korobov rule: a = (1, a, a2 mod n, . . .).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

If pgcd(n, aj) = 1, then coordinate j takes each value in Zn/n = {0,1/n,2/n, . . . , (n − 1)/n}
exactly once, in a certain order.

D
ra
ft

30
Remarks and insight

Ces remarques seront précisées par des théorèmes plus loin.

1. Avec de tels points, si f est une somme de fonctions à une variable (pas d’autres

termes), l’erreur va converger à la même vitesse que pour une fonction à une dimension.

Mais s’il y a d’autres termes, la convergence sera moins bonne en général.

2. Plus la dimension s augmente, plus c’est difficile de bien couvrir l’hypercube unitaire

uniformément par des points. Ainsi, QMC est généralement moins efficace en plus grande

dimension. Les taux de convergence de l’erreur vont réfléter cela.

3. Par contre, si f est bien approximée par une somme de fonctions de petite dimension,

par exemples de 1 à 3 dimensions, et si les points sont bien construits pour les projections

correspondantes, alors on peut gagner beaucoup.

4. Pour que QMC/RQMC fasse beaucoup mieux que MC, il faut en général que f et ses

dérivées soient lisses et ne varient pas trop. QMC n’aime pas les fonctions discontinues ou

qui oscillent beaucoup.

D
ra
ft

31

Digital net in base b (Sobol’, Niederreiter, ...)

This is a different type of construction for n = bk points in s dimensions.

Select a prime number b (the base, most commonly b = 2), two integers w ≥ k ≥ 0, and s
generating matrices C1,⋯,Cs of dimensions w × k , with entries in Zb, and whose first k
rows are linearly independent. For i = 0, . . . , bk − 1 and j = 1, . . . , s, let:

i = ai ,0 + ai ,1b +⋯ + ai ,k−1bk−1 (k digits en base b)

⎛
⎜
⎝

ui ,j,1
⋮
ui ,j,w

⎞
⎟
⎠
= Cj

⎛
⎜
⎝

ai ,0
⋮

ai ,k−1

⎞
⎟
⎠
mod b, (w digits en base b)

ui ,j =
w

∑
ℓ=1
ui ,j,ℓb

−ℓ, ui = (ui ,1, . . . , ui ,s) ∈ [0,1)s .

Digital sequence: each Cj has an unlimited number of columns.

Gives an infinite sequence of points. Can stop at n = bk points for any k .

D
ra
ft

31

Digital net in base b (Sobol’, Niederreiter, ...)

This is a different type of construction for n = bk points in s dimensions.

Select a prime number b (the base, most commonly b = 2), two integers w ≥ k ≥ 0, and s
generating matrices C1,⋯,Cs of dimensions w × k , with entries in Zb, and whose first k
rows are linearly independent. For i = 0, . . . , bk − 1 and j = 1, . . . , s, let:

i = ai ,0 + ai ,1b +⋯ + ai ,k−1bk−1 (k digits en base b)

⎛
⎜
⎝

ui ,j,1
⋮
ui ,j,w

⎞
⎟
⎠
= Cj

⎛
⎜
⎝

ai ,0
⋮

ai ,k−1

⎞
⎟
⎠
mod b, (w digits en base b)

ui ,j =
w

∑
ℓ=1
ui ,j,ℓb

−ℓ, ui = (ui ,1, . . . , ui ,s) ∈ [0,1)s .

Digital sequence: each Cj has an unlimited number of columns.

Gives an infinite sequence of points. Can stop at n = bk points for any k .

D
ra
ft

32

Uniformity

For each one-dimensional projection, we have exactly one point in each interval

[i/n, (i + 1)/n), for i = 0, . . . , n − 1.

The higher-dimensional uniformity will depend on how we construct the Cj ’s with respect to

each other. In s dimensions, we can partition [0,1)s in n rectangular boxes of the same size
and request that each box contains exactly one point ui .

In two dimensions, if k = k1 + k2 and if we partition the first axis in bk1 equal intervals and
the second axis in bk2 equal intervals, we obtain a partition into n = bk rectangles of the
same size. The first k1 digits ui ,1 and the first k2 digits of ui ,2 determine in which box the

point ui will fall. There will be one point in each box iff the vector formed by those k1 + k2
digits takes each of its bk possible values when i goes from 0 to n − 1. This happens iff the
matrix formed by the first k1 rows of C1 and the first k2 rows of C2 is invertible.

One easy way to obtain this property: Select a k × k invertible matrix C1, then put the rows
of C1 in reverse order to define C2. Then the matrix that contains the first k1 rows of C1
and the first k2 = k − k1 rows of C2 is invertible, because it has the same rows as C1.

D
ra
ft

32

Uniformity

For each one-dimensional projection, we have exactly one point in each interval

[i/n, (i + 1)/n), for i = 0, . . . , n − 1.

The higher-dimensional uniformity will depend on how we construct the Cj ’s with respect to

each other. In s dimensions, we can partition [0,1)s in n rectangular boxes of the same size
and request that each box contains exactly one point ui .

In two dimensions, if k = k1 + k2 and if we partition the first axis in bk1 equal intervals and
the second axis in bk2 equal intervals, we obtain a partition into n = bk rectangles of the
same size. The first k1 digits ui ,1 and the first k2 digits of ui ,2 determine in which box the

point ui will fall. There will be one point in each box iff the vector formed by those k1 + k2
digits takes each of its bk possible values when i goes from 0 to n − 1. This happens iff the
matrix formed by the first k1 rows of C1 and the first k2 rows of C2 is invertible.

One easy way to obtain this property: Select a k × k invertible matrix C1, then put the rows
of C1 in reverse order to define C2. Then the matrix that contains the first k1 rows of C1
and the first k2 = k − k1 rows of C2 is invertible, because it has the same rows as C1.

D
ra
ft

32

Uniformity

For each one-dimensional projection, we have exactly one point in each interval

[i/n, (i + 1)/n), for i = 0, . . . , n − 1.

The higher-dimensional uniformity will depend on how we construct the Cj ’s with respect to

each other. In s dimensions, we can partition [0,1)s in n rectangular boxes of the same size
and request that each box contains exactly one point ui .

In two dimensions, if k = k1 + k2 and if we partition the first axis in bk1 equal intervals and
the second axis in bk2 equal intervals, we obtain a partition into n = bk rectangles of the
same size. The first k1 digits ui ,1 and the first k2 digits of ui ,2 determine in which box the

point ui will fall. There will be one point in each box iff the vector formed by those k1 + k2
digits takes each of its bk possible values when i goes from 0 to n − 1. This happens iff the
matrix formed by the first k1 rows of C1 and the first k2 rows of C2 is invertible.

One easy way to obtain this property: Select a k × k invertible matrix C1, then put the rows
of C1 in reverse order to define C2. Then the matrix that contains the first k1 rows of C1
and the first k2 = k − k1 rows of C2 is invertible, because it has the same rows as C1.

D
ra
ft

32

Uniformity

For each one-dimensional projection, we have exactly one point in each interval

[i/n, (i + 1)/n), for i = 0, . . . , n − 1.

The higher-dimensional uniformity will depend on how we construct the Cj ’s with respect to

each other. In s dimensions, we can partition [0,1)s in n rectangular boxes of the same size
and request that each box contains exactly one point ui .

In two dimensions, if k = k1 + k2 and if we partition the first axis in bk1 equal intervals and
the second axis in bk2 equal intervals, we obtain a partition into n = bk rectangles of the
same size. The first k1 digits ui ,1 and the first k2 digits of ui ,2 determine in which box the

point ui will fall. There will be one point in each box iff the vector formed by those k1 + k2
digits takes each of its bk possible values when i goes from 0 to n − 1. This happens iff the
matrix formed by the first k1 rows of C1 and the first k2 rows of C2 is invertible.

One easy way to obtain this property: Select a k × k invertible matrix C1, then put the rows
of C1 in reverse order to define C2. Then the matrix that contains the first k1 rows of C1
and the first k2 = k − k1 rows of C2 is invertible, because it has the same rows as C1.

D
ra
ft

33

Two-dimensional example with b = 2, k1 = 2, k2 = 3, k = 5.

Let cj,ℓ denote row ℓ of matrix Cj .

0 1

1

ui ,2

ui ,1

⎛
⎜⎜⎜⎜⎜⎜
⎝

ui ,1,1
ui ,1,2
ui ,2,1
ui ,2,2
ui ,2,3

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1,1
c1,2
c2,1
c2,2
c2,3

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

ai ,0
ai ,1
ai ,2
ai ,3
ai ,4

⎞
⎟⎟⎟⎟⎟⎟
⎠

mod 2,

The box number of point ui is determined by the first two bits of ui ,1 (the first two rows of

C1) and the first three bits of ui ,2 (the first three rows of C2).

We have one point per box iff the linear mapping above is one-to-one,

iff the five rows c1,1,⋯, c2,3 are linearly independent.

D
ra
ft

34
Example: Hammersley point set: b = 2, s = 2, C1 = reflected identity, C2 = identity:

C1 =
⎛
⎜⎜⎜
⎝

0 ⋯ 0 1

0 ⋯ 1 0

⋮ ⋰ 0 0

1 ⋯ 0 0

⎞
⎟⎟⎟
⎠
, C2 =

⎛
⎜⎜⎜
⎝

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋱ 0

0 0 ⋯ 1

⎞
⎟⎟⎟
⎠
.

For k = 8, this gives the n = 28 = 256 points (en binary):

i u1,i u2,i
0 .00000000 .0

1 .00000001 .1

2 .00000010 .01

3 .00000011 .11

4 .00000100 .001

5 .00000101 .101

⋮ ⋮ ⋮
254 .11111110 .01111111

255 .11111111 .11111111

Left column: 0,1/n,2/n, . . .

Right column: van der Corput

sequence in base 2.

Works for any k > 0.

D
ra
ft

34
Example: Hammersley point set: b = 2, s = 2, C1 = reflected identity, C2 = identity:

C1 =
⎛
⎜⎜⎜
⎝

0 ⋯ 0 1

0 ⋯ 1 0

⋮ ⋰ 0 0

1 ⋯ 0 0

⎞
⎟⎟⎟
⎠
, C2 =

⎛
⎜⎜⎜
⎝

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋱ 0

0 0 ⋯ 1

⎞
⎟⎟⎟
⎠
.

For k = 8, this gives the n = 28 = 256 points (en binary):

i u1,i u2,i
0 .00000000 .0

1 .00000001 .1

2 .00000010 .01

3 .00000011 .11

4 .00000100 .001

5 .00000101 .101

⋮ ⋮ ⋮
254 .11111110 .01111111

255 .11111111 .11111111

Left column: 0,1/n,2/n, . . .

Right column: van der Corput

sequence in base 2.

Works for any k > 0.

D
ra
ft

35

Hammersley point set in base 2, n = 28 = 256, s = 2.

0 1

1

ui ,2

ui ,1

D
ra
ft

35

Hammersley point set in base 2, n = 28 = 256, s = 2.

0 1

1

ui ,2

ui ,1

D
ra
ft

35

Hammersley point set in base 2, n = 28 = 256, s = 2.

0 1

1

ui ,2

ui ,1

D
ra
ft

35

Hammersley point set in base 2, n = 28 = 256, s = 2.

0 1

1

ui ,2

ui ,1

D
ra
ft

35

Hammersley point set in base 2, n = 28 = 256, s = 2.

0 1

1

ui ,2

ui ,1

D
ra
ft

36

Hammersley point set in base 2: In general, can take n = 2k points.

If we partition [0,1)2 in rectangles of sizes 2−k1 by 2−k2 where k1 + k2 ≤ k , each rectangle
will contain exactly the same number of points. We say that the points are equidistributed

for this partition.

Generalization to base b > 2. For a digital net in base b in s dimensions, we choose s
permutations of {0,1, . . . , bk − 1}, then divide each coordinate by bk .

Can also have s =∞ and/or n =∞ (infinite sequence of points).

D
ra
ft

36

Hammersley point set in base 2: In general, can take n = 2k points.

If we partition [0,1)2 in rectangles of sizes 2−k1 by 2−k2 where k1 + k2 ≤ k , each rectangle
will contain exactly the same number of points. We say that the points are equidistributed

for this partition.

Generalization to base b > 2. For a digital net in base b in s dimensions, we choose s
permutations of {0,1, . . . , bk − 1}, then divide each coordinate by bk .

Can also have s =∞ and/or n =∞ (infinite sequence of points).

D
ra
ft

37

Equidistribution in s dimensions

Suppose we divide axis j in bqj equal parts, for each j . This determines a partition of [0,1)s
into 2q1+⋯+qs rectangles of equal sizes. If each rectangle contains exactly the same number

of points, we say that the point set Pn is (q1, . . . , qs)-equidistributed in base b.

This occurs iff the matrix formed by the first q1 rows of C1, the first q2 rows of C2, . . . ,

the first qs rows of Cs , is of full rank (mod b). To verify equidistribution, we can construct

these matrices and compute their rank.

Pn is a (t, k, s)-net iff it is (q1, . . . , qs)-equidistributed whenever q1 +⋯ + qs = k − t.
t-value of a net: smallest t for which it is a (t, k, s)-net.
It is possible to have t = 0 only if b ≥ s − 1.
Example: Hammersley points form a (0, k,2)-net in base 2.

An infinite sequence {u0,u1, . . . ,} in [0,1)s is a (t, s)-sequence in base b if for all k > 0
and ν ≥ 0, Q(k, ν) = {ui ∶ i = νbk , . . . , (ν + 1)bk − 1}, is a (t, k, s)-net in base b.
This is possible for t = 0 only if b ≥ s.

D
ra
ft

37

Equidistribution in s dimensions

Suppose we divide axis j in bqj equal parts, for each j . This determines a partition of [0,1)s
into 2q1+⋯+qs rectangles of equal sizes. If each rectangle contains exactly the same number

of points, we say that the point set Pn is (q1, . . . , qs)-equidistributed in base b.

This occurs iff the matrix formed by the first q1 rows of C1, the first q2 rows of C2, . . . ,

the first qs rows of Cs , is of full rank (mod b). To verify equidistribution, we can construct

these matrices and compute their rank.

Pn is a (t, k, s)-net iff it is (q1, . . . , qs)-equidistributed whenever q1 +⋯ + qs = k − t.
t-value of a net: smallest t for which it is a (t, k, s)-net.
It is possible to have t = 0 only if b ≥ s − 1.
Example: Hammersley points form a (0, k,2)-net in base 2.

An infinite sequence {u0,u1, . . . ,} in [0,1)s is a (t, s)-sequence in base b if for all k > 0
and ν ≥ 0, Q(k, ν) = {ui ∶ i = νbk , . . . , (ν + 1)bk − 1}, is a (t, k, s)-net in base b.
This is possible for t = 0 only if b ≥ s.

D
ra
ft

38

Faure nets and sequences in base b
Faure (1982) proposed the matrices

Cj = P j mod b = PCj−1 mod b

with C0 = I and P = (pl ,c) upper triangular where

pl ,c = (
c

l
) = c!

l!(c − l)!

for l ≤ c .

Faure proved that if b is prime and b ≥ s, this gives a (0, s)-sequence in base b.

Thus, for all k > 0 and ν ≥ 0, Q(k, ν) = {ui ∶ i = νbk , . . . , (ν + 1)bk − 1}
(which contains n = bk points) is a (0, k, s)-net in base b.

In this set, each coordinate j visits all values in {0,1/n, . . . , (n − 1)/n} once and only once.

D
ra
ft

38

Faure nets and sequences in base b
Faure (1982) proposed the matrices

Cj = P j mod b = PCj−1 mod b

with C0 = I and P = (pl ,c) upper triangular where

pl ,c = (
c

l
) = c!

l!(c − l)!

for l ≤ c .

Faure proved that if b is prime and b ≥ s, this gives a (0, s)-sequence in base b.

Thus, for all k > 0 and ν ≥ 0, Q(k, ν) = {ui ∶ i = νbk , . . . , (ν + 1)bk − 1}
(which contains n = bk points) is a (0, k, s)-net in base b.

In this set, each coordinate j visits all values in {0,1/n, . . . , (n − 1)/n} once and only once.

D
ra
ft

39

Sobol’ nets and sequences

Sobol’ (1967) proposed a digital net in base b = 2 where

Cj =
⎛
⎜⎜⎜
⎝

1 vj,2,1 . . . vj,c,1 . . .

0 1 . . . vj,c,2 . . .

⋮ 0 ⋱ ⋮
⋮ 1

⎞
⎟⎟⎟
⎠
.

Column c of Cj is represented by an odd integer

mj,c =
c

∑
l=1
vj,c,l2

c−l = vj,c,12c−1 + ⋅ ⋅ ⋅ + vj,c,c−12 + 1 < 2c .

The integers mj,c are selected as follows.

D
ra
ft

39

Sobol’ nets and sequences

Sobol’ (1967) proposed a digital net in base b = 2 where

Cj =
⎛
⎜⎜⎜
⎝

1 vj,2,1 . . . vj,c,1 . . .

0 1 . . . vj,c,2 . . .

⋮ 0 ⋱ ⋮
⋮ 1

⎞
⎟⎟⎟
⎠
.

Column c of Cj is represented by an odd integer

mj,c =
c

∑
l=1
vj,c,l2

c−l = vj,c,12c−1 + ⋅ ⋅ ⋅ + vj,c,c−12 + 1 < 2c .

The integers mj,c are selected as follows.

D
ra
ft

40For each j , we choose a primitive polynomial over F2,

fj(z) = zdj + aj,1zdj−1 +⋯ + aj,dj ,

and we choose dj integers mj,0, . . . ,mj,dj−1 (the first dj columns).

Then, mj,dj ,mj,dj+1, . . . are determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕⋯⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2
djmj,c−dj ⊕mj,c−dj

Proposition. If the polynomials fj(z) are all distinct, we obtain a (t, s)-sequence with
t ≤ d0 +⋯ + ds−1 + 1 − s.

Sobol’ suggests to list all primitive polynomials over F2 by increasing order of degree, starting with
f0(z) ≡ 1 (which gives C0 = I), and to take fj(z) as the (j + 1)-th polynomial in the list.

There are many ways of selecting the first mj,c ’s, which are called the direction numbers. They can

be selected to minimize some discrepancy (or figure of merit).

The values proposed by Sobol’ give an (s, ℓ)-equidistribution for ℓ = 1 and ℓ = 2 (only the first two
bits).

Joe and Kuo (2008) tabulated direction numbers giving good t-values for the two-dimensional

projections, for given s and k .

D
ra
ft

40For each j , we choose a primitive polynomial over F2,

fj(z) = zdj + aj,1zdj−1 +⋯ + aj,dj ,

and we choose dj integers mj,0, . . . ,mj,dj−1 (the first dj columns).

Then, mj,dj ,mj,dj+1, . . . are determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕⋯⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2
djmj,c−dj ⊕mj,c−dj

Proposition. If the polynomials fj(z) are all distinct, we obtain a (t, s)-sequence with
t ≤ d0 +⋯ + ds−1 + 1 − s.

Sobol’ suggests to list all primitive polynomials over F2 by increasing order of degree, starting with
f0(z) ≡ 1 (which gives C0 = I), and to take fj(z) as the (j + 1)-th polynomial in the list.

There are many ways of selecting the first mj,c ’s, which are called the direction numbers. They can

be selected to minimize some discrepancy (or figure of merit).

The values proposed by Sobol’ give an (s, ℓ)-equidistribution for ℓ = 1 and ℓ = 2 (only the first two
bits).

Joe and Kuo (2008) tabulated direction numbers giving good t-values for the two-dimensional

projections, for given s and k .

D
ra
ft

40For each j , we choose a primitive polynomial over F2,

fj(z) = zdj + aj,1zdj−1 +⋯ + aj,dj ,

and we choose dj integers mj,0, . . . ,mj,dj−1 (the first dj columns).

Then, mj,dj ,mj,dj+1, . . . are determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕⋯⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2
djmj,c−dj ⊕mj,c−dj

Proposition. If the polynomials fj(z) are all distinct, we obtain a (t, s)-sequence with
t ≤ d0 +⋯ + ds−1 + 1 − s.

Sobol’ suggests to list all primitive polynomials over F2 by increasing order of degree, starting with
f0(z) ≡ 1 (which gives C0 = I), and to take fj(z) as the (j + 1)-th polynomial in the list.

There are many ways of selecting the first mj,c ’s, which are called the direction numbers. They can

be selected to minimize some discrepancy (or figure of merit).

The values proposed by Sobol’ give an (s, ℓ)-equidistribution for ℓ = 1 and ℓ = 2 (only the first two
bits).

Joe and Kuo (2008) tabulated direction numbers giving good t-values for the two-dimensional

projections, for given s and k .

D
ra
ft

41

Other constructions

Niederreiter-Xing point sets and sequences: better t-values than Sobol’

Polynomial lattice rules (special case of digital nets)

Halton sequence

Etc.

D
ra
ft

42

Worst-case error bounds
Koksma-Hlawka-type inequalities (Koksma, Hlawka, Hickernell, etc.):

∣µ̂n,rqmc − µ∣ ≤ V (f) ⋅D(Pn)

for all f in some Hilbert space or Banach space H, where V (f) = ∥f − µ∥H is the variation
of f , and D(Pn) is the discrepancy of Pn.

Lattice rules: For certain Hilbert spaces of smooth periodic functions f with

square-integrable partial derivatives of order up to α:

D(Pn) = O(n−α+ϵ) for arbitrary small ϵ.

Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must have finite variation

in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes).

Popular constructions achieve

D(Pn) = O(n−1(lnn)s) = O(n−1+ϵ) for arbitrary small ϵ.
More recent constructions offer O(n−α+ϵ) rates for smooth functions.

However, these bounds are conservative and too hard to compute in practice.

D
ra
ft

42

Worst-case error bounds
Koksma-Hlawka-type inequalities (Koksma, Hlawka, Hickernell, etc.):

∣µ̂n,rqmc − µ∣ ≤ V (f) ⋅D(Pn)

for all f in some Hilbert space or Banach space H, where V (f) = ∥f − µ∥H is the variation
of f , and D(Pn) is the discrepancy of Pn.

Lattice rules: For certain Hilbert spaces of smooth periodic functions f with

square-integrable partial derivatives of order up to α:

D(Pn) = O(n−α+ϵ) for arbitrary small ϵ.

Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must have finite variation

in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes).

Popular constructions achieve

D(Pn) = O(n−1(lnn)s) = O(n−1+ϵ) for arbitrary small ϵ.
More recent constructions offer O(n−α+ϵ) rates for smooth functions.

However, these bounds are conservative and too hard to compute in practice.

D
ra
ft

42

Worst-case error bounds
Koksma-Hlawka-type inequalities (Koksma, Hlawka, Hickernell, etc.):

∣µ̂n,rqmc − µ∣ ≤ V (f) ⋅D(Pn)

for all f in some Hilbert space or Banach space H, where V (f) = ∥f − µ∥H is the variation
of f , and D(Pn) is the discrepancy of Pn.

Lattice rules: For certain Hilbert spaces of smooth periodic functions f with

square-integrable partial derivatives of order up to α:

D(Pn) = O(n−α+ϵ) for arbitrary small ϵ.

Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must have finite variation

in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes).

Popular constructions achieve

D(Pn) = O(n−1(lnn)s) = O(n−1+ϵ) for arbitrary small ϵ.
More recent constructions offer O(n−α+ϵ) rates for smooth functions.

However, these bounds are conservative and too hard to compute in practice.

D
ra
ft

43

Randomized quasi-Monte Carlo (RQMC)

µ̂n,rqmc =
1

n

n−1
∑
i=0
f (Ui),

with Pn = {U0, . . . ,Un−1} ⊂ (0,1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0,1)s ;
(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased).

Var[µ̂n,rqmc] =
Var[f (Ui)]

n
+ 2
n2
∑
i<j

Cov[f (Ui), f (Uj)].

We want the last sum to be as negative as possible.

Weak attempts to do this:

antithetic variates (n = 2), Latin hypercube sampling (LHS), stratification, ...

D
ra
ft

43

Randomized quasi-Monte Carlo (RQMC)

µ̂n,rqmc =
1

n

n−1
∑
i=0
f (Ui),

with Pn = {U0, . . . ,Un−1} ⊂ (0,1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0,1)s ;
(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased).

Var[µ̂n,rqmc] =
Var[f (Ui)]

n
+ 2
n2
∑
i<j

Cov[f (Ui), f (Uj)].

We want the last sum to be as negative as possible.

Weak attempts to do this:

antithetic variates (n = 2), Latin hypercube sampling (LHS), stratification, ...

D
ra
ft

44

Variance estimation:

Can compute m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then estimate µ and

Var[µ̂n,rqmc] by their sample mean X̄m and sample variance S2m.
Could be used to compute a confidence interval.

Beware: X̄m does not obey a central-limit theorem in general when m is fixed and n →∞.

D
ra
ft

45

Stratification of the unit hypercube

Partition axis j in kj ≥ 1 equal parts, for j = 1, . . . , s.
Draw n = k1⋯ks random points, one per box, independently.

Example, s = 2, k1 = 12, k2 = 8, n = 12 × 8 = 96.

0 1

1

ui ,2

ui ,1

D
ra
ft

46

Stratification of the unit hypercube

Example, s = 2, k1 = 24, k2 = 16, n = 384.

0 1

1

ui ,2

ui ,1

D
ra
ft

47

Stratified estimator:

Xs,n =
1

n

n−1
∑
j=0
f (Uj).

The crude MC variance with n points can be decomposed as

Var[X̄n] = Var[Xs,n] +
1

n

n−1
∑
j=0
(µj − µ)2

where µj is the mean over box j . The more the µj differ, the more the variance is reduced.

This is a simple form of stratification with proportional allocation.

Gives an unbiased estimator, and variance can be estimated by replicating m ≥ 2 times.

If f ′ is continuous and bounded, and all kj are equal, then

Var[Xs,n] = O(n−1−2/s).

For large s, not practical. For small s, not really better than midpoint rule with a grid when

f is smooth. But can still be applied to a few important random variables.

D
ra
ft

47

Stratified estimator:

Xs,n =
1

n

n−1
∑
j=0
f (Uj).

The crude MC variance with n points can be decomposed as

Var[X̄n] = Var[Xs,n] +
1

n

n−1
∑
j=0
(µj − µ)2

where µj is the mean over box j . The more the µj differ, the more the variance is reduced.

This is a simple form of stratification with proportional allocation.

Gives an unbiased estimator, and variance can be estimated by replicating m ≥ 2 times.

If f ′ is continuous and bounded, and all kj are equal, then

Var[Xs,n] = O(n−1−2/s).

For large s, not practical. For small s, not really better than midpoint rule with a grid when

f is smooth. But can still be applied to a few important random variables.

D
ra
ft

48

Latin Hypercube Sampling (LHS)
Also a form of stratification with proportional allocation. We stratify in one dimension

(only) for each coordinate, independently. The number of points is equal to the number of

one-dimensional intervals, so s can be very large and there is no curse of dimensionality.

We partition the unit hypercube in ks subcubes, and we generate k points in total in a way

that for each coordinate j , there is exactly one point in each of the k sub-intervals of (0,1).

0 1

1

ui ,2

ui ,1

Permute the columns randomly,

for each coordinate.

Then generate one point ran-

domly in each selected box.

D
ra
ft

48

Latin Hypercube Sampling (LHS)
Also a form of stratification with proportional allocation. We stratify in one dimension

(only) for each coordinate, independently. The number of points is equal to the number of

one-dimensional intervals, so s can be very large and there is no curse of dimensionality.

We partition the unit hypercube in ks subcubes, and we generate k points in total in a way

that for each coordinate j , there is exactly one point in each of the k sub-intervals of (0,1).

0 1

1

ui ,2

ui ,1

Permute the columns randomly,

for each coordinate.

Then generate one point ran-

domly in each selected box.

D
ra
ft

48

Latin Hypercube Sampling (LHS)
Also a form of stratification with proportional allocation. We stratify in one dimension

(only) for each coordinate, independently. The number of points is equal to the number of

one-dimensional intervals, so s can be very large and there is no curse of dimensionality.

We partition the unit hypercube in ks subcubes, and we generate k points in total in a way

that for each coordinate j , there is exactly one point in each of the k sub-intervals of (0,1).

0 1

1

ui ,2

ui ,1

Permute the columns randomly,

for each coordinate.

Then generate one point ran-

domly in each selected box.

D
ra
ft

48

Latin Hypercube Sampling (LHS)
Also a form of stratification with proportional allocation. We stratify in one dimension

(only) for each coordinate, independently. The number of points is equal to the number of

one-dimensional intervals, so s can be very large and there is no curse of dimensionality.

We partition the unit hypercube in ks subcubes, and we generate k points in total in a way

that for each coordinate j , there is exactly one point in each of the k sub-intervals of (0,1).

0 1

1

ui ,2

ui ,1

Permute the columns randomly,

for each coordinate.

Then generate one point ran-

domly in each selected box.

D
ra
ft

49

Algorithm to generate the k LHS points

U1 = (U1,1, . . . , U1,j , . . . , U1,s), . . . , Uk = (Uk,1, . . . , Uk,j , . . . , Uk,s) ∶

in s dimensions:

for coordinate j = 1, . . . , s do
generate a random permutation (π1,j , . . . , πk,j) of the integers {1, . . . , k}
for i = 1, . . . , k do
generate Ui ,j uniformly in ((πi ,j − 1)/k, πi ,j/k)

Then we compute the average Xlh = [f (U1) +⋯ + f (Uk)]/k .

D
ra
ft

50

Properties of LHS

For each i , we have Ui ∼ U[0,1]s , so the LHS estimator Xlh is unbiased.
For each j , {U1,j , . . . , Uk,j} is a stratified sample of the U(0,1) distribution.

We can replicate the procedure m times independently to estimate the mean and the

variance as in RQMC.

LHS does not always reduce the variance compared with MC, but under certain conditions,

we know that it does. For example:

Theorem. If f (U1, . . . , Us) is monotone in Uj for all j , then Var[Xlh] ≤ Var[X̄k].
There is also a central-limit theorem for LHS. Unless f is a sum of one-dimensional

functions, the variance remains in O(k−1) as for standard MC, so LHS does not improve
the convergence rate of the variance or standard deviation.

The reason: LHS only ensures uniformity of one-dimensional projections. RQMC, on the

other hand, can also provide better uniformity for higher-dimensional projections.

D
ra
ft

50

Properties of LHS

For each i , we have Ui ∼ U[0,1]s , so the LHS estimator Xlh is unbiased.
For each j , {U1,j , . . . , Uk,j} is a stratified sample of the U(0,1) distribution.

We can replicate the procedure m times independently to estimate the mean and the

variance as in RQMC.

LHS does not always reduce the variance compared with MC, but under certain conditions,

we know that it does. For example:

Theorem. If f (U1, . . . , Us) is monotone in Uj for all j , then Var[Xlh] ≤ Var[X̄k].

There is also a central-limit theorem for LHS. Unless f is a sum of one-dimensional

functions, the variance remains in O(k−1) as for standard MC, so LHS does not improve
the convergence rate of the variance or standard deviation.

The reason: LHS only ensures uniformity of one-dimensional projections. RQMC, on the

other hand, can also provide better uniformity for higher-dimensional projections.

D
ra
ft

50

Properties of LHS

For each i , we have Ui ∼ U[0,1]s , so the LHS estimator Xlh is unbiased.
For each j , {U1,j , . . . , Uk,j} is a stratified sample of the U(0,1) distribution.

We can replicate the procedure m times independently to estimate the mean and the

variance as in RQMC.

LHS does not always reduce the variance compared with MC, but under certain conditions,

we know that it does. For example:

Theorem. If f (U1, . . . , Us) is monotone in Uj for all j , then Var[Xlh] ≤ Var[X̄k].
There is also a central-limit theorem for LHS. Unless f is a sum of one-dimensional

functions, the variance remains in O(k−1) as for standard MC, so LHS does not improve
the convergence rate of the variance or standard deviation.

The reason: LHS only ensures uniformity of one-dimensional projections. RQMC, on the

other hand, can also provide better uniformity for higher-dimensional projections.

D
ra
ft

51

Randomly-Shifted Lattice

Random shift modulo 1: Replace Pn by (Pn +U) mod 1 where U ∼ U[0,1)s .
This preserves the lattice structure and satisfies the two RQMC conditions.

Example: lattice with s = 2, n = 101, v1 = (1,12)/101

0 1

1

ui ,2

ui ,1

U

D
ra
ft

51

Randomly-Shifted Lattice

Random shift modulo 1: Replace Pn by (Pn +U) mod 1 where U ∼ U[0,1)s .
This preserves the lattice structure and satisfies the two RQMC conditions.

Example: lattice with s = 2, n = 101, v1 = (1,12)/101

0 1

1

ui ,2

ui ,1

U

D
ra
ft

51

Randomly-Shifted Lattice

Random shift modulo 1: Replace Pn by (Pn +U) mod 1 where U ∼ U[0,1)s .
This preserves the lattice structure and satisfies the two RQMC conditions.

Example: lattice with s = 2, n = 101, v1 = (1,12)/101

0 1

1

ui ,2

ui ,1

U

D
ra
ft

51

Randomly-Shifted Lattice

Random shift modulo 1: Replace Pn by (Pn +U) mod 1 where U ∼ U[0,1)s .
This preserves the lattice structure and satisfies the two RQMC conditions.

Example: lattice with s = 2, n = 101, v1 = (1,12)/101

0 1

1

ui ,2

ui ,1

U

D
ra
ft

52

Random digital shift for digital net

Equidistribution in digital boxes is lost with random shift modulo 1,

but can be kept with a random digital shift in base b.

In base 2: Generate U ∼ U(0,1)s and XOR it bitwise with each ui .

Example for b = 2 and s = 2:

ui = (0.01100100..., 0.10011000...)2
U = (0.00100000..., 0.01010001...)2

ui ⊕U = (0.01000100..., 0.11001001...)2.

Each randomized point has U(0,1)s distribution.

Preservation of the equidistribution (k1 = 3, k2 = 5):

ui = (0.***, 0.*****)
U = (0.001, 0.01010)2

ui ⊕U = (0.***, 0.*****)

The red bits are changed for all the points. It permutes the rectangular boxes.

D
ra
ft

52

Random digital shift for digital net

Equidistribution in digital boxes is lost with random shift modulo 1,

but can be kept with a random digital shift in base b.

In base 2: Generate U ∼ U(0,1)s and XOR it bitwise with each ui .

Example for b = 2 and s = 2:

ui = (0.01100100..., 0.10011000...)2
U = (0.00100000..., 0.01010001...)2

ui ⊕U = (0.01000100..., 0.11001001...)2.

Each randomized point has U(0,1)s distribution.
Preservation of the equidistribution (k1 = 3, k2 = 5):

ui = (0.***, 0.*****)
U = (0.001, 0.01010)2

ui ⊕U = (0.***, 0.*****)

The red bits are changed for all the points. It permutes the rectangular boxes.

D
ra
ft

53
Example with

U = (0.1270111220, 0.3185275653)10
= (0. 0010 0000100000111100, 0. 0101 0001100010110000)2.

We flip the bits 3, 9, 15, 16, 17, 18 of ui ,1
and the bits 2, 4, 8, 9, 13, 15, 16 of ui ,2.

0 1

1

ui ,2

ui ,1
0 1

1

ui ,2

ui ,1

Flipping bit 3 of ui ,1 exchanges the red and green intervals.

D
ra
ft

54

Random digital shift in base b

We have ui ,j = ∑wℓ=1 ui ,j,ℓb−ℓ.
Let U = (U1, . . . , Us) ∼ U[0,1)s where Uj = ∑wℓ=1 Uj,ℓ b−ℓ.

We replace each ui ,j by Ũi ,j = ∑wℓ=1[(ui ,j,ℓ + Uj,ℓ) mod b]b−ℓ.

Proposition. P̃n is (q1, . . . , qs)-equidistributed in base b iff Pn is.
For w =∞, each point Ũi has the uniform distribution over (0,1)s .

D
ra
ft

55
The two following permutation methods preserve equidistribution and they both provably

reduces the variance to O(n−3(logn)s) when f is sufficiently smooth.

Linear matrix scrambling (Matoušek 1998, Hickernell et Hong, Tezuka, Owen):

Apply a linear transformation to each Cj . There are several variants.

Most common is left matrix srambling (LMS): For Sobol’ upper-triangular matrices Cj ,
generate random lower-triangular invertible matrices Lj , to obtain the new generating

matrices C̃j = LjCj . These C̃j inherit the equidistribution properties of the Cj .

Lj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0

ℓ2,1 1 0 . . . 0

⋮ ⋱ 0

ℓk,1 ℓk,2 1

ℓk+1,1 ℓk+1,2 ℓk+1,k
⋮ ⋮

ℓw,1 ℓw,2 ℓw,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and Cj =
⎛
⎜⎜⎜
⎝

1 v1,2 . . . v1,k
0 1 . . . v2,k
⋮ 0 ⋱ ⋮

⋮ 1

⎞
⎟⎟⎟
⎠
.

This only changes the Cj ’s.

After that, we must apply a random digital shift in base b to get RQMC (unbiasedness).

D
ra
ft

56

Nested uniform scrambling (NUS) (Owen 1995).

Deeper scrambling. More costly than LMS, mostly because we must store all the points

explicitly.

It was recently proved that LMS + random digital shift, with w =∞, gives the same
variance as NUS.

D
ra
ft

57

Numerical Illustrations

D
ra
ft

58

Asian option example

T = 1 (year), tj = j/d , K = 100, s0 = 100, r = 0.05, σ = 0.5.

s = d = 2. Exact value: µ ≈ 17.0958. MC Variance: 934.0.

Lattice: Korobov with a from old table + random shift mod 1.

Sobol: left matrix scramble + random digital shift.

Variance estimated from m = 100 indep. randomizations.
VRF = (MC variance) / (nVar[Xs,n])

method n X̄m nS2m VRF

stratif. 210 17.100 232.8 4

lattice 210 17.092 20.8 45

Sobol 210 17.094 1.66 563

stratif. 216 17.046 135.3 7

lattice 216 17.096 4.38 213

Sobol 216 17.096 0.037 25,330

stratif. 220 17.085 117.6 8

lattice 220 17.096 0.112 8,318

Sobol 220 17.096 0.0026 360,000

D
ra
ft

59

s = d = 12. µ ≈ 13.122. MC variance: 516.3.

Lattice: Korobov + random shift.

Sobol: left matrix scramble + random digital shift.

Variance estimated from m = 1000 indep. randomizations.

method n X̄m nS2m VRF

lattice 210 13.114 39.3 13

Sobol 210 13.123 5.9 88

lattice 216 13.122 6.61 78

Sobol 216 13.122 1.63 317

lattice 220 13.122 8.59 60

Sobol 220 13.122 0.89 579

D
ra
ft

60

Variance for estimator of P[T > x] for SAN

26 28 210 212 214
2−26

2−22

2−18

2−14

2−10

n

va
ri
a
n
ce

Stochastic Activity Network (x = 64)

MC

Sobol

Lattice (P2) + baker
n−2

RQMC variance decreases roughly as O(n−1.2). For E[T], we observe O(n−1.4) instead.

D
ra
ft

61

Variance for estimator of P[T > x] with CMC

26 28 210 212 214
2−29

2−25

2−21

2−17

2−13

n

va
ri
a
n
ce

Stochastic Activity Network (CMC x = 64)

MC

Sobol

Lattice (P2) + baker
n−2

RQMC variance decreases roughly as O(n−1.6).

