
D
ra
ft

1

Introduction to randomized quasi-Monte Carlo

methods in simulation

Part B

Pierre L’Ecuyer

Université de Montréal, Canada

ETICS, Saissac, September 2024



D
ra
ft

2

QMC/RQMC Theory



D
ra
ft

3

Short Recap
We want to estimate µ = ∫[0,1)s f (u)du where U = (U0, . . . , Us−1) and the Uj are i.i.d. U(0,1).

Monte Carlo (MC) estimator:

µ̂n =
1

n

n−1

∑
i=0

f (Ui)

where U0, . . . ,Un−1 i.i.d. uniform over [0,1)s .
We have E[µ̂n] = µ and Var[µ̂n] = σ2/n = Var[f (U)]/n.

Quasi-Monte Carlo (QMC) approximation:

µ̄n =
1

n

n−1

∑
i=0

f (ui)

where Pn = {u0, . . . ,un−1} are deterministic points that cover [0,1)s very evenly.

Randomized Quasi-Monte Carlo (RQMC) estimator:

µ̂n,rqmc =
1

n

n−1

∑
i=0

f (Ui),

where {U0, . . . ,Un−1} ⊂ (0,1)s are randomized versions of the points of Pn so that still cover the space
evenly while each Ui is uniform over [0,1)s .



D
ra
ft

4

How should we measure the uniformity of Pn?
We want a measure that can translate into error or variance bounds.

For two arbitrary points a < b ∈ (0,1)s , the rectangular box B = [a,b) with corners at a and
b is an s-dimensional interval. Let vol[a,b) denote the volume of this box and ∣Pn ∩ [a,b)∣/n
be the proportion of the points that it contains. We call the absolute difference

disc([a,b), Pn) = ∣vol[a,b) − ∣Pn ∩ [a,b)∣/n∣ the local discrepancy for that interval.

0 1

1
u2

u1a1 b1

a2

b2

To measure the discrepancy between the distribution of Pn and the uniform distribution, we

can take the sup or average of disc([a,b), Pn) over the intervals B.



D
ra
ft

5

Classical discrepancies

Extreme discrepancy of Pn: D(Pn) = sup
[a,b)⊆[0,1)s

disc([a,b), Pn).

Star discrepancy of Pn: D∗(Pn) = sup
b∈[0,1)s

disc([000,b], Pn).

These two discrepancies behave in the same way when n →∞:
Theorem. D∗(Pn) ≤ D(Pn) ≤ 2sD∗(Pn).

The sup can also be replaced by a more general Lp norm, for 1 ≤ p <∞.
Lp star discrepancy of Pn:

D∗(p)(Pn) = (∫[0,1)s (disc([0
00,u), Pn))pdu)

1/p
≤ D∗(Pn) ≤ cs,p[D∗(p)(Pn)]

p/(p+s),

and similarly for the Lp extreme discrepancy. They behave as D∗(Pn) when n increases.
For large s and n, D∗(Pn) is too hard to compute, practice, but D∗(2)(Pn) can be computed
in O(sn2) operations for an arbitrary Pn via a formula from Warnok.



D
ra
ft

6

Is D∗(Pn) really meaningful?
Let P∞ = {u1,u2, . . .} be an infinite (deterministic) sequence of points and Pn denote the
first n points of this sequence.

P∞ is called uniformly distributed if D∗(Pn)→ 0 as n →∞.
Theorem (Weyl 1916). When n →∞, ∣En∣→ 0 for all bounded Riemann-integrable
functions f if and only if D∗(Pn)→ 0.

Classical Koksma-Hlawka inequality (Koksma(1942) for s = 1, Hlawka(1961) for s > 1):

∣En∣ ≤ Vhk(f ) ⋅D∗(Pn)

where Vhk(f ) denotes the total variation of f in the sense of Hardy and Krause;
see Kuipers and Niederreiter (1974) for a definition.

Vhk(f ) <∞ implies no discontinuity not aligned with the axes.



D
ra
ft

6

Is D∗(Pn) really meaningful?
Let P∞ = {u1,u2, . . .} be an infinite (deterministic) sequence of points and Pn denote the
first n points of this sequence.

P∞ is called uniformly distributed if D∗(Pn)→ 0 as n →∞.
Theorem (Weyl 1916). When n →∞, ∣En∣→ 0 for all bounded Riemann-integrable
functions f if and only if D∗(Pn)→ 0.

Classical Koksma-Hlawka inequality (Koksma(1942) for s = 1, Hlawka(1961) for s > 1):

∣En∣ ≤ Vhk(f ) ⋅D∗(Pn)

where Vhk(f ) denotes the total variation of f in the sense of Hardy and Krause;
see Kuipers and Niederreiter (1974) for a definition.

Vhk(f ) <∞ implies no discontinuity not aligned with the axes.



D
ra
ft

7

Erdõs-Turán-Koksma Inequality. For each s, there is a constant cs such that for all Pn,

D∗(Pn) ≤ cs
⎛
⎝
1

m + 1 + ∑
h∈Zs(m)

∏
j /=0

1

∣hj ∣

RRRRRRRRRRRR

1

n

n−1
∑
i=0
e2πih

tui

RRRRRRRRRRRR

⎞
⎠

for all integers m ≥ 1, where Zs(m) = {h = (h1, . . . , hs) ∈ {−m, . . . ,m}s} and i =
√
−1.

This inequality permits one to construct explicit low-discrepancy sequences by bounding the

exponential sum. It is a convenient tool.

It was used for example to prove that the digital sequence constructions by Sobol’, Faure,

Niederreiter, etc., have a discrepancy that converges as O(n−1(logn)s). This implies that
with these point sets, if Vhk(f ) <∞, then

∣En∣ ≤ Vhk(f ) ⋅D∗(Pn) = O(n−1(logn)s) .

For lattice rules and digital nets, we will rather use other variants of this inequality that do

not involve D∗(Pn), but other discrepancies that are much easier to compute.



D
ra
ft

7

Erdõs-Turán-Koksma Inequality. For each s, there is a constant cs such that for all Pn,

D∗(Pn) ≤ cs
⎛
⎝
1

m + 1 + ∑
h∈Zs(m)

∏
j /=0

1

∣hj ∣

RRRRRRRRRRRR

1

n

n−1
∑
i=0
e2πih

tui

RRRRRRRRRRRR

⎞
⎠

for all integers m ≥ 1, where Zs(m) = {h = (h1, . . . , hs) ∈ {−m, . . . ,m}s} and i =
√
−1.

This inequality permits one to construct explicit low-discrepancy sequences by bounding the

exponential sum. It is a convenient tool.

It was used for example to prove that the digital sequence constructions by Sobol’, Faure,

Niederreiter, etc., have a discrepancy that converges as O(n−1(logn)s). This implies that
with these point sets, if Vhk(f ) <∞, then

∣En∣ ≤ Vhk(f ) ⋅D∗(Pn) = O(n−1(logn)s) .

For lattice rules and digital nets, we will rather use other variants of this inequality that do

not involve D∗(Pn), but other discrepancies that are much easier to compute.



D
ra
ft

8

Error and variance expressions for lattice rules
Suppose f has Fourier expansion

f (u) = ∑
h∈Zs
f̂ (h)e2πihtu ,

with Fourier coefficients

f̂ (h) = ∫
(0,1)s

f (u) exp(−2πih ⋅ u)du.

Note that

e2πih
tu =

s

∏
j=1
e2πihjuj =

s

∏
j=1
[cos(2πhjuj) + i sin(2πhjuj)] (by Euler formula),

so this expansion is in terms of one-periodic trigonometric functions over the real space.

It is defined everywhere, just by making copies of its definition over [0,1)s .
When using standard MC to estimate µ = E[f (U)], the MC variance is

Var[f (U)] = ∑
h∈Zs
∣f̂ (h)∣2Var[e2πihtU] = ∑

h∈Zs
∣f̂ (h)∣2.



D
ra
ft

9

Suppose now that we estimate µ = E[f (U)] using a lattice rule with point set
Pn = {ui , i = 0, . . . , n − 1}. The dual lattice to Ls is

L∗s = {h ∈ Rs ∶ htv ∈ Z for all v ∈ Ls} ⊆ Zs .

One can show that in this case,

1

n

n−1
∑
i=0
e2πih

tui =
⎧⎪⎪⎨⎪⎪⎩

1 if h ∈ L∗s ;
0 otherwise.

For a deterministic lattice rule, if ∑
h∈Zs
∣f̂ (h)∣ <∞, then En = ∑

000/=h∈L∗s
f̂ (h).

For a randomly shifted lattice, Var[µ̂n,rqmc] = ∑
000/=h∈L∗s

∣f̂ (h)∣2.

From the viewpoint of variance reduction, an optimal lattice for f minimizes Var[µ̂n,rqmc].
Roughly, the dual lattice should not contain the large (absolute) Fourier coefficients.



D
ra
ft

9

Suppose now that we estimate µ = E[f (U)] using a lattice rule with point set
Pn = {ui , i = 0, . . . , n − 1}. The dual lattice to Ls is

L∗s = {h ∈ Rs ∶ htv ∈ Z for all v ∈ Ls} ⊆ Zs .

One can show that in this case,

1

n

n−1
∑
i=0
e2πih

tui =
⎧⎪⎪⎨⎪⎪⎩

1 if h ∈ L∗s ;
0 otherwise.

For a deterministic lattice rule, if ∑
h∈Zs
∣f̂ (h)∣ <∞, then En = ∑

000/=h∈L∗s
f̂ (h).

For a randomly shifted lattice, Var[µ̂n,rqmc] = ∑
000/=h∈L∗s

∣f̂ (h)∣2.

From the viewpoint of variance reduction, an optimal lattice for f minimizes Var[µ̂n,rqmc].
Roughly, the dual lattice should not contain the large (absolute) Fourier coefficients.



D
ra
ft

10

For a integer α > 0, a function f has smoothness α if it has square-integrable mixed partial
derivatives up to order α. If f has smoothness α and the periodic continuation of its

derivatives up to order α − 1 is continuous across the unit cube boundaries, then

∣f̂ (h)∣ = O((max(1, h1)⋯max(1, hs))−α).

Moreover, there always exists a rank-1 lattice (a vector v1 = v1(n) = a(n)/n) such that

Pα ∶= ∑
000/=h∈L∗s

(max(1, h1)⋯max(1, hs))−α = O(n−α+ϵ),

which gives Var[µ̂n,rqmc] = O(n−2α+ϵ), for any ϵ > 0.
Pα is the error and P2α is the variance for a worst-case f for which

f̂ (h)∝ (max(1, ∣h1∣)⋯max(1, ∣hs ∣))−α.

A larger α means a smoother f and a faster convergence rate.



D
ra
ft

11

When α is a positive integer, this worst-case f is proportional to

f ∗(u) = ∑
u⊆{1,...,s}

∏
j∈u

(2π)α
α!
Bα(uj).

where Bα is the Bernoulli polynomial of degree α.

In particular, B1(u) = u − 1/2 and B2(u) = u2 − u + 1/6.
Easy to compute Pα or P2α and search for good lattices in this case!

Pα or P2α has been proposed long ago as a figure of merit.
Beware: in many “older” papers, α is replaced by α/2.

Worst-case function may not be representative of what happens in applications.

Also, the hidden factor in O increases quickly with s.
To get a bound that is uniform in s, the Fourier coefficients must decrease fast enough

with the dimension and “size” of vectors h. This is typically what happens in applications

for which RQMC is effective!



D
ra
ft

11

When α is a positive integer, this worst-case f is proportional to

f ∗(u) = ∑
u⊆{1,...,s}

∏
j∈u

(2π)α
α!
Bα(uj).

where Bα is the Bernoulli polynomial of degree α.

In particular, B1(u) = u − 1/2 and B2(u) = u2 − u + 1/6.
Easy to compute Pα or P2α and search for good lattices in this case!

Pα or P2α has been proposed long ago as a figure of merit.
Beware: in many “older” papers, α is replaced by α/2.

Worst-case function may not be representative of what happens in applications.

Also, the hidden factor in O increases quickly with s.
To get a bound that is uniform in s, the Fourier coefficients must decrease fast enough

with the dimension and “size” of vectors h. This is typically what happens in applications

for which RQMC is effective!



D
ra
ft

12

Baker’s (or tent) transformation
In applications, the periodic continuation of f is often not continuous at the boundary of

[0,1)s (i.e., over the torus). A simple transformation can make it continuous:
If f (0) /= f (1), define f̃ by f̃ (1 − u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance from O(n−2+ϵ) to O(n−4+ϵ) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.
In practice, we transform the points Ui instead of f

.



D
ra
ft

12

Baker’s (or tent) transformation
In applications, the periodic continuation of f is often not continuous at the boundary of

[0,1)s (i.e., over the torus). A simple transformation can make it continuous:
If f (0) /= f (1), define f̃ by f̃ (1 − u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance from O(n−2+ϵ) to O(n−4+ϵ) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.
In practice, we transform the points Ui instead of f

.



D
ra
ft

12

Baker’s (or tent) transformation
In applications, the periodic continuation of f is often not continuous at the boundary of

[0,1)s (i.e., over the torus). A simple transformation can make it continuous:
If f (0) /= f (1), define f̃ by f̃ (1 − u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance from O(n−2+ϵ) to O(n−4+ϵ) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.
In practice, we transform the points Ui instead of f

.



D
ra
ft

12

Baker’s (or tent) transformation
In applications, the periodic continuation of f is often not continuous at the boundary of

[0,1)s (i.e., over the torus). A simple transformation can make it continuous:
If f (0) /= f (1), define f̃ by f̃ (1 − u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance from O(n−2+ϵ) to O(n−4+ϵ) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.
In practice, we transform the points Ui instead of f .



D
ra
ft

13

One-dimensional case

Random shift mod 1 followed by baker’s transformation.

Along each coordinate, stretch everything by a factor of 2 and fold back.

Same as replacing Uj by min[2Uj ,2(1 − Uj)].

0 10.5

U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.

Intuition: when f is smooth, it is well-approximated by a piecewise linear function which is

integrated exactly, so the error is small.



D
ra
ft

13

One-dimensional case

Random shift mod 1 followed by baker’s transformation.

Along each coordinate, stretch everything by a factor of 2 and fold back.

Same as replacing Uj by min[2Uj ,2(1 − Uj)].

0 10.5
U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.

Intuition: when f is smooth, it is well-approximated by a piecewise linear function which is

integrated exactly, so the error is small.



D
ra
ft

13

One-dimensional case

Random shift mod 1 followed by baker’s transformation.

Along each coordinate, stretch everything by a factor of 2 and fold back.

Same as replacing Uj by min[2Uj ,2(1 − Uj)].

0 10.5

U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.

Intuition: when f is smooth, it is well-approximated by a piecewise linear function which is

integrated exactly, so the error is small.



D
ra
ft

13

One-dimensional case

Random shift mod 1 followed by baker’s transformation.

Along each coordinate, stretch everything by a factor of 2 and fold back.

Same as replacing Uj by min[2Uj ,2(1 − Uj)].

0 10.5

U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.

Intuition: when f is smooth, it is well-approximated by a piecewise linear function which is

integrated exactly, so the error is small.



D
ra
ft

14

High dimension: ANOVA decomposition
For large s, covering the hypercube [0,1)s evenly requires an astronomical number of points.
Just to have one point in each “quadrant”, we need 2s points, which is unrealistic.

Fortunately, RQMC can still be effective if f is well approximated by a sum of low-dimensional

functions, because it suffices to have low error or variance for these low-dimensional functions.

In general, we can write

f (u) = ∑
u⊆{1,...,s}

fu(u) = µ +
s

∑
i=1

f{i}(ui) +
s

∑
i ,j=1

f{i ,j}(ui , uj) +⋯

in a way that the Monte Carlo variance decomposes as

Var[f (U)] = σ2 = ∑
u⊆{1,...,s}

σ2u = ∑
u⊆{1,...,s}

Var[fu(U)].

The σ2u’s can be estimated by MC or RQMC (I skip the details here). Idea: Make sure the

projections Pn(u) of Pn over u are very uniform for the important subsets u (those with a large σ2u).
When they are mostly lower-dim. projections, then it is much easier to make RQMC effective.



D
ra
ft

14

High dimension: ANOVA decomposition
For large s, covering the hypercube [0,1)s evenly requires an astronomical number of points.
Just to have one point in each “quadrant”, we need 2s points, which is unrealistic.

Fortunately, RQMC can still be effective if f is well approximated by a sum of low-dimensional

functions, because it suffices to have low error or variance for these low-dimensional functions.

In general, we can write

f (u) = ∑
u⊆{1,...,s}

fu(u) = µ +
s

∑
i=1

f{i}(ui) +
s

∑
i ,j=1

f{i ,j}(ui , uj) +⋯

in a way that the Monte Carlo variance decomposes as

Var[f (U)] = σ2 = ∑
u⊆{1,...,s}

σ2u = ∑
u⊆{1,...,s}

Var[fu(U)].

The σ2u’s can be estimated by MC or RQMC (I skip the details here). Idea: Make sure the

projections Pn(u) of Pn over u are very uniform for the important subsets u (those with a large σ2u).
When they are mostly lower-dim. projections, then it is much easier to make RQMC effective.



D
ra
ft

14

High dimension: ANOVA decomposition
For large s, covering the hypercube [0,1)s evenly requires an astronomical number of points.
Just to have one point in each “quadrant”, we need 2s points, which is unrealistic.

Fortunately, RQMC can still be effective if f is well approximated by a sum of low-dimensional

functions, because it suffices to have low error or variance for these low-dimensional functions.

In general, we can write

f (u) = ∑
u⊆{1,...,s}

fu(u) = µ +
s

∑
i=1

f{i}(ui) +
s

∑
i ,j=1

f{i ,j}(ui , uj) +⋯

in a way that the Monte Carlo variance decomposes as

Var[f (U)] = σ2 = ∑
u⊆{1,...,s}

σ2u = ∑
u⊆{1,...,s}

Var[fu(U)].

The σ2u’s can be estimated by MC or RQMC (I skip the details here). Idea: Make sure the

projections Pn(u) of Pn over u are very uniform for the important subsets u (those with a large σ2u).
When they are mostly lower-dim. projections, then it is much easier to make RQMC effective.



D
ra
ft

15

Weighted Pγ,α with projection-dependent weights γu
Denote u(h) = u(h1, . . . , hs) the set of indices j for which hj /= 0.

Pγ,α = ∑
000/=h∈L∗s

γu(h)(max(1, ∣h1∣)⋯max(1, ∣hs ∣))−α.

For α integer > 0, with ui = (ui ,1, . . . , ui ,s) = iv1 mod 1,

Pγ,2α = ∑
∅≠u⊆{1,...,s}

γu
1

n

n−1

∑
i=0

[−(−4π
2)α

(2α)! ]
∣u∣

∏
j∈u

B2α(ui ,j),

and the corresponding variation is

V2γ,α(f ) = ∑
∅≠u⊆{1,...,s}

1

γu(4π2)α∣u∣ ∫[0,1]∣u∣
∣∂
α∣u∣

∂uα
fu(u)∣

2

du,

for f ∶ [0,1)s → R smooth enough. Then, we have the variance bound

Var[µ̂n,rqmc] = ∑
u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤ V2γ,α(f ) ⋅Pγ,2α .



D
ra
ft

16

This Pγ,2α is the RQMC variance for the worst-case function with V2γ,α(f ) ≤ 1:

f ∗(u) = ∑
u⊆{1,...,s}

√
γu∏
j∈u

(2π)α
(α)! Bα(uj),

whose Fourier coefficients are

f̂ ∗(h) = γu(h)(max(1, ∣h1∣)⋯max(1, ∣hs ∣))−α.

For this worst-case function, we have

σ2u = γu [Var[Bα(U)]
(4π2)α
((α)!)2 ]

∣u∣

= γu [∣B2α(0)∣
(4π2)α
(2α)! ]

∣u∣

.

For α = 1, we should take γu = (3/π2)∣u∣σ2u ≈ (0.30396)∣u∣σ2u .
For α = 2, we should take γu = [45/π4]∣u∣σ2u ≈ (0.46197)∣u∣σ2u .
For α→∞, we have γu → (0.5)∣u∣σ2u .
The ratios weight / variance should decrease exponentially with ∣u∣.



D
ra
ft

17

Heuristics for choosing the weights

Firstly, note that all one-dimensional projections (before random shift) are the same. So

the weights γu for ∣u∣ = 1 are irrelevant.

For f ∗, take γu = ρ∣u∣σ2u for a constant ρ, but there are 2s − 1 subsets u to consider!

One could define a simple parametric model and estimate the parameters by matching the

ANOVA variances σ2u . Some popular model types for the weights:

Order-dependent weights: γu = Γ∣u∣ depends only on ∣u∣.
It suffices to select Γ1,Γ2,Γ3, etc.

Often, one would take Γj = 0 for j > k for some integer k (k parameters to select).
Or Γj = ρj−1 for all j (a single parameter to select).
Product weights: γu =∏j∈u γj where γj ≥ 0 is the weight for coordinate j .
Mixture: POD weights γu = Γ∣u∣∏j∈u γj , SPOD weights, etc.



D
ra
ft

17

Heuristics for choosing the weights

Firstly, note that all one-dimensional projections (before random shift) are the same. So

the weights γu for ∣u∣ = 1 are irrelevant.

For f ∗, take γu = ρ∣u∣σ2u for a constant ρ, but there are 2s − 1 subsets u to consider!

One could define a simple parametric model and estimate the parameters by matching the

ANOVA variances σ2u . Some popular model types for the weights:

Order-dependent weights: γu = Γ∣u∣ depends only on ∣u∣.
It suffices to select Γ1,Γ2,Γ3, etc.

Often, one would take Γj = 0 for j > k for some integer k (k parameters to select).
Or Γj = ρj−1 for all j (a single parameter to select).
Product weights: γu =∏j∈u γj where γj ≥ 0 is the weight for coordinate j .
Mixture: POD weights γu = Γ∣u∣∏j∈u γj , SPOD weights, etc.



D
ra
ft

17

Heuristics for choosing the weights

Firstly, note that all one-dimensional projections (before random shift) are the same. So

the weights γu for ∣u∣ = 1 are irrelevant.

For f ∗, take γu = ρ∣u∣σ2u for a constant ρ, but there are 2s − 1 subsets u to consider!

One could define a simple parametric model and estimate the parameters by matching the

ANOVA variances σ2u . Some popular model types for the weights:

Order-dependent weights: γu = Γ∣u∣ depends only on ∣u∣.
It suffices to select Γ1,Γ2,Γ3, etc.

Often, one would take Γj = 0 for j > k for some integer k (k parameters to select).
Or Γj = ρj−1 for all j (a single parameter to select).
Product weights: γu =∏j∈u γj where γj ≥ 0 is the weight for coordinate j .
Mixture: POD weights γu = Γ∣u∣∏j∈u γj , SPOD weights, etc.



D
ra
ft

18

Notion of effective dimension

(Caflisch, Morokoff, and Owen 1997).

A function f has effective dimension d in proportion ρ in the superposition sense if

∑
∣u∣≤d
σ2u ≥ ρσ2.

It has effective dimension d in proportion ρ in the truncation sense if

∑
u⊆{1,...,d}

σ2u ≥ ρσ2.

High-dimensional functions with low effective dimension are frequent.

One may change f to make this happen.



D
ra
ft

19

ANOVA for estimator of P[T > x] in Stochastic Activity Network

0 20 40 60 80 100

x = 64

x = 100

CMC, x = 64

CMC, x = 100

% of total variance for each cardinality of u

Stochastic Activity Network



D
ra
ft

20

Searching for good parameters

Korobov lattices. Search over all admissible a, for a = (1, a, a2, . . . , ...).
Random Korobov. Try r random values of a.

Rank 1, exhaustive search. Try all possibilities for a = (1, a2, . . . , as).
Pure random search. Try admissible vectors a at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let a1 = 1;
For j = 2,3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z, n) = 1, such that
(a1, a2, . . . , aj = z) minimizes D(Pn({1, . . . , j})).

Fast CBC construction for Pγ,α: use FFT. (Nuyens, Cools).
Randomized CBC construction.

Let a1 = 1;
For j = 2, . . . , s, try r random z ∈ {1, . . . , n − 1}, gcd(z, n) = 1,
and retain (a1, a2, . . . , aj = z) that minimizes D(Pn({1, . . . , j})).



D
ra
ft

20

Searching for good parameters

Korobov lattices. Search over all admissible a, for a = (1, a, a2, . . . , ...).
Random Korobov. Try r random values of a.

Rank 1, exhaustive search. Try all possibilities for a = (1, a2, . . . , as).
Pure random search. Try admissible vectors a at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let a1 = 1;
For j = 2,3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z, n) = 1, such that
(a1, a2, . . . , aj = z) minimizes D(Pn({1, . . . , j})).

Fast CBC construction for Pγ,α: use FFT. (Nuyens, Cools).
Randomized CBC construction.

Let a1 = 1;
For j = 2, . . . , s, try r random z ∈ {1, . . . , n − 1}, gcd(z, n) = 1,
and retain (a1, a2, . . . , aj = z) that minimizes D(Pn({1, . . . , j})).



D
ra
ft

20

Searching for good parameters

Korobov lattices. Search over all admissible a, for a = (1, a, a2, . . . , ...).
Random Korobov. Try r random values of a.

Rank 1, exhaustive search. Try all possibilities for a = (1, a2, . . . , as).
Pure random search. Try admissible vectors a at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let a1 = 1;
For j = 2,3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z, n) = 1, such that
(a1, a2, . . . , aj = z) minimizes D(Pn({1, . . . , j})).

Fast CBC construction for Pγ,α: use FFT. (Nuyens, Cools).

Randomized CBC construction.

Let a1 = 1;
For j = 2, . . . , s, try r random z ∈ {1, . . . , n − 1}, gcd(z, n) = 1,
and retain (a1, a2, . . . , aj = z) that minimizes D(Pn({1, . . . , j})).



D
ra
ft

20

Searching for good parameters

Korobov lattices. Search over all admissible a, for a = (1, a, a2, . . . , ...).
Random Korobov. Try r random values of a.

Rank 1, exhaustive search. Try all possibilities for a = (1, a2, . . . , as).
Pure random search. Try admissible vectors a at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let a1 = 1;
For j = 2,3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z, n) = 1, such that
(a1, a2, . . . , aj = z) minimizes D(Pn({1, . . . , j})).

Fast CBC construction for Pγ,α: use FFT. (Nuyens, Cools).
Randomized CBC construction.

Let a1 = 1;
For j = 2, . . . , s, try r random z ∈ {1, . . . , n − 1}, gcd(z, n) = 1,
and retain (a1, a2, . . . , aj = z) that minimizes D(Pn({1, . . . , j})).



D
ra
ft

21

Quantiles of figure of merit
We computed Pγ,2 for order-dependent weights with Γj = 0.3j/2 for all j , for n = 26, ...,219, for all
admissible vectors a = (1, a2, . . . , as) with odd aj .
For s = 2, a linear regression of logPγ,2 vs logn for 212 ≤ n ≤ 219 gives a decreasing rate near
O(n−1.9) for the best and O(n−1) for the mean. The worst value is with a = (1,1) for all n.
The median is close to the best, which means that the majority of vectors a are quite good!

26 28 210 212 214 216 218

10−10

10−7

10−4

10−1

n

m
er
it
va
lu
e

s = 2

worst
mean

90%

median

10%

best



D
ra
ft

22

For s = 3, a linear regression logPγ,2 vs logn for 210 ≤ n ≤ 215 gives decreasing rates near
O(n−1.75) for the best and O(n−1) for the mean.
Again, the median is better than the mean.

26 28 210 212 214 216

10−6

10−4

10−2

100

n

m
er
it
va
lu
e

s = 3

worst
mean

90%

median

10%

best



D
ra
ft

23

Example: Playing with the Weights

To see the effect of weights selection on RQMC variance, when choosing a lattice rule, we

shall integrate the worst-case function

f ∗α (u) = ∑
u⊆{1,...,s}

√
vu∏
j∈u

(2π)α
(α)! Bα(uj),

whose RQMC variance is Pγ,2α.
The ideal weights are γu = vu. In our experiments, we measure the inflation factor of RQMC
variance when we use a lattice rule constructed via fast CBC with different weights γu ≠ vu.
We start with s = 10 and vu = Γ∣u∣ for ∣u∣ ≤ k , for a given integer k and a given constant
Γ > 0. We select the weights as γu = Γ̃∣u∣ for ∣u∣ ≤ k̃ , where Γ̃ and k̃ may differ from Γ and k .



D
ra
ft

24

Ratio of RQMC variances for modified vs ideal weights

n A1 A2 B1 B2 C1 C2

28 1.11 1.21 1.13 4.08 3.82 6.80

29 1.21 1.10 1.42 10.5 2.93 7.25

210 1.36 1.38 2.04 4.64 2.86 5.94

211 1.24 1.43 2.40 6.18 2.15 5.14

212 1.42 1.66 3.79 13.2 2.47 5.94

213 1.30 2.38 5.51 9.09 2.66 5.97

214 1.51 2.54 30.5 8.66 9.11 29.1

215 1.46 1.93 25.6 13.3 3.52 9.71

216 1.80 2.55 3.13 12.9 2.73 10.2

A1: k = k̃ = s, Γ2 = 0.1 and Γ̃2 = 0.001. Not too bad.
A2: k = k̃ = s, Γ2 = 0.001 and Γ̃2 = 0.1. More impact.



D
ra
ft

25

B1: Γ2 = Γ̃2 = 0.1, k = 4 and k̃ = 2. Criterion is blind on projections of order 3 and 4. This
has unpredictable (sometimes dramatic) impact on RQMC variance.

B2: Γ2 = Γ̃2 = 0.5, k = 2 and k̃ = 4. Gives weight to irrelevant projections. Stronger
degradation on average.



D
ra
ft

26

C1: Γ2 = Γ̃2 = 0.1 and k = k̃ = 4, but increase the variation of f by replacing v2u with
v2u + ṽ2u , with
ṽ2u = 1.0 for u = {1,3},{3,5},{5,7},{7,9},
ṽ2u = 0.5 for u = {2,3,4},{4,5,6},{6,7,8},{8,9,10},
ṽ2u = 0.25 for u = {1,2,3,4},{4,5,6,7},{7,8,9,10},
and ṽu = 0 for all other u.
Important projections are not given enough weight relative to others.

C2: Like C1, but v2u is replaced with only ṽ
2
u , as defined above. Many irrelevant projections,

with ṽu = 0, now have nonzero weights.
In all cases, the variance ratio increases (non-monotonically) with n.

The worst degradations are usually observed when we give too much weight to irrelevant

projections!



D
ra
ft

27

Discrepancies and Bounds with Projection-Dependent Weights

There are many other ways of defining the variation and the discrepancy. This is usually

done by selecting a Reproducing-Kernel Hilbert Space of functions. The choice of kernel

determines D and V.

In general, we can obtain RQMC variance bounds via Hölder-type inequality:

Var[µ̂n,rqmc] ≤ (D(Pn) ⋅ V(f ))2 where

V(f ) =
⎛
⎝ ∑
∅/=u⊆{1,2,...,s}

(V(fu)/γu)p
⎞
⎠

1/p

, D(Pn) =
⎛
⎝ ∑
∅/=u⊆{1,2,...,s}

(γuDu(Pn))q
⎞
⎠

1/q

,

1/p + 1/q = 1, γu ≥ 0 is a weight assigned to the subset u, V(fu) is the variation of fu, and
Du(Pn) is the discrepancy of the projection of Pn(u).
Common choice: p = q = 2. Sometimes q =∞ with p = 1.



D
ra
ft

28

Form of discrepancies commonly used in constructions

Many discrepancies that are typically used to search for good parameters efficiently (e.g., in

LatNet Builder) are as in the previous slide, with

Dqu(Pn) =
1

n

n−1
∑
i=0
∏
j∈u
φ(ui ,j)

for some function φ ∶ [0,1)→ R, usually with q = 2. When computing the products for all
subsets u, we can start with the smaller subsets u, then save and re-use the partial products.

For the weighted P2α, we take q = 2 and

φ(ui ,j) = −(−4π2)αB2α(ui ,j)/(2α)!

For digital nets, we have other choices of φ.

We need software to support (1) search for good point set parameters and

(2) to generate and randomize the points, for these various constructions.



D
ra
ft

29

LatNet Builder Software

A C++ library offering tools to search for good parameters for lattice rules, polynomial

lattice rules, and digital nets.

Various choices of figures of merit, arbitrary weights, construction methods, etc. Easily

extensible.

For better run-time efficiency, uses static polymorphism, via templates, rather than dynamic

polymorphism. Several techniques to reduce computations and improve speed.

Offers a pre-compiled program with Unix-like command line interface.

Also a graphical interface implemented in Python.

Available for download on GitHub, with source code and documentation.

Show graphical interface



D
ra
ft

30

Error and variance expressions for digital nets
Similar development as for lattice rules, but instead of using trigonometric Fourier series,

we use Walsh series for the expansion of f .

Let N0 = {0,1,2, . . .}. For k = (k1, . . . , ks) ∈ Ns0 and u = (u1, . . . , us) ∈ [0,1)s , where

kj =
ℓj

∑
ℓ=1
kj,ℓb

ℓ−1 ∈ N0 and uj =∑
ℓ≥1
uj,ℓb

−ℓ ∈ [0,1), define ⟨k ,u⟩ =
s

∑
j=1

ℓj

∑
ℓ=1
kj,ℓuj,ℓ mod b.

The Walsh expansion in base b of f ∶ [0,1)s → R is

f (u) = ∑
k∈Ns0

f̃ (k)e2πi⟨k,u⟩/b,

with Walsh coefficients

f̃ (k) = ∫
[0,1)s

f (u)e−2πi⟨k,u⟩/bdu.

For b = 2, e−2πi⟨k,u⟩/b is either e0 = 1 or e−πi = cosπ = −1.
The Walsh functions are square waves that take values only in {−1,1}.



D
ra
ft

30

Error and variance expressions for digital nets
Similar development as for lattice rules, but instead of using trigonometric Fourier series,

we use Walsh series for the expansion of f .

Let N0 = {0,1,2, . . .}. For k = (k1, . . . , ks) ∈ Ns0 and u = (u1, . . . , us) ∈ [0,1)s , where

kj =
ℓj

∑
ℓ=1
kj,ℓb

ℓ−1 ∈ N0 and uj =∑
ℓ≥1
uj,ℓb

−ℓ ∈ [0,1), define ⟨k ,u⟩ =
s

∑
j=1

ℓj

∑
ℓ=1
kj,ℓuj,ℓ mod b.

The Walsh expansion in base b of f ∶ [0,1)s → R is

f (u) = ∑
k∈Ns0

f̃ (k)e2πi⟨k,u⟩/b,

with Walsh coefficients

f̃ (k) = ∫
[0,1)s

f (u)e−2πi⟨k,u⟩/bdu.

For b = 2, e−2πi⟨k,u⟩/b is either e0 = 1 or e−πi = cosπ = −1.
The Walsh functions are square waves that take values only in {−1,1}.



D
ra
ft

30

Error and variance expressions for digital nets
Similar development as for lattice rules, but instead of using trigonometric Fourier series,

we use Walsh series for the expansion of f .

Let N0 = {0,1,2, . . .}. For k = (k1, . . . , ks) ∈ Ns0 and u = (u1, . . . , us) ∈ [0,1)s , where

kj =
ℓj

∑
ℓ=1
kj,ℓb

ℓ−1 ∈ N0 and uj =∑
ℓ≥1
uj,ℓb

−ℓ ∈ [0,1), define ⟨k ,u⟩ =
s

∑
j=1

ℓj

∑
ℓ=1
kj,ℓuj,ℓ mod b.

The Walsh expansion in base b of f ∶ [0,1)s → R is

f (u) = ∑
k∈Ns0

f̃ (k)e2πi⟨k,u⟩/b,

with Walsh coefficients

f̃ (k) = ∫
[0,1)s

f (u)e−2πi⟨k,u⟩/bdu.

For b = 2, e−2πi⟨k,u⟩/b is either e0 = 1 or e−πi = cosπ = −1.
The Walsh functions are square waves that take values only in {−1,1}.



D
ra
ft

31

Dual net

Suppose we estimate µ = E[f (U)] using a digital net in base b with point set
Pn = {ui , i = 0, . . . , n − 1}. The dual net is

C∗s = {k ∈ Ns0 ∶ ⟨k ,ui⟩ = 0 for all ui ∈ Pn}.

One can show that
1

n

n−1
∑
i=0
e2πi⟨k,ui ⟩/b =

⎧⎪⎪⎨⎪⎪⎩

1 if k ∈ C∗s ;
0 otherwise.

The nonzero digits kj,ℓ of a vector k select a specific set of digits ui ,j,ℓ of the points. The

points are equidistributed for those specific digits iff the above sum is 0 for this k , iff k /∈ C∗s .



D
ra
ft

32

Error and variance expressions

For a deterministic digital net, if ∑
k∈Ns0

∣f̃ (k)∣ <∞, then En = ∑
000/=k∈C∗s

f̃ (k).

For a digital net with a random digital shift, Var[µ̂n,rqmc] = ∑
000/=k∈C∗s

∣f̃ (k)∣2.

From a variance reduction viewpoint, an optimal digital net for f minimizes this

Var[µ̂n,rqmc]. Roughly, the dual net should not contain vectors k that correspond to large
square Walsh coefficients.



D
ra
ft

32

Error and variance expressions

For a deterministic digital net, if ∑
k∈Ns0

∣f̃ (k)∣ <∞, then En = ∑
000/=k∈C∗s

f̃ (k).

For a digital net with a random digital shift, Var[µ̂n,rqmc] = ∑
000/=k∈C∗s

∣f̃ (k)∣2.

From a variance reduction viewpoint, an optimal digital net for f minimizes this

Var[µ̂n,rqmc]. Roughly, the dual net should not contain vectors k that correspond to large
square Walsh coefficients.



D
ra
ft

33
Bounds on Walsh coefficients

In the following, we assume for simplicity that b = 2.
For a integer α > 0, a function f has smoothness α (roughly) if it has square-integrable
mixed partial derivatives up to order α.

For an integer k = 2a1 +⋯ + 2aν > 0 with a1 > ⋅ ⋅ ⋅ > aν , we put
µα(k) = (a1 + 1) +⋯ + (amin(α,ν) + 1), and µα(0) = 0.
Equivalently, if kj = ∑

ℓj
ℓ=1 kj,ℓ2

ℓ−1, µα(kj) = ∑
min(α,ℓj)
ℓ=1 ℓI[kj,ℓ > 0].

For a vector k = (k1, . . . , ks), let µα(k) = µα(k1) +⋯ + µα(ks).
Dick (2007, 2008) has shown that if f has smoothness α, then ∣f̂ (k)∣ ≤ KṼ2α(f )2−µα(k)

approximately, where K is a constant and Ṽα(f ) is the variation of f , which depends on the
integrals of the mixed partial derivatives of f of order up to α.

This suggests using the FOM ∑000/=k∈C∗s 2
−µα(k) for QMC and ∑000/=k∈C∗s 2

−2µα(k) for RQMC,

for a given α. But these sums have an infinite number of terms!

Dick replaced the sum by a max and showed how to construct digital nets for which

max000/=k∈C∗s 2
−µα(k) = O(n−α(logn)αs), for any integer α > 0, using an interlacing technique.



D
ra
ft

33
Bounds on Walsh coefficients

In the following, we assume for simplicity that b = 2.
For a integer α > 0, a function f has smoothness α (roughly) if it has square-integrable
mixed partial derivatives up to order α.

For an integer k = 2a1 +⋯ + 2aν > 0 with a1 > ⋅ ⋅ ⋅ > aν , we put
µα(k) = (a1 + 1) +⋯ + (amin(α,ν) + 1), and µα(0) = 0.
Equivalently, if kj = ∑

ℓj
ℓ=1 kj,ℓ2

ℓ−1, µα(kj) = ∑
min(α,ℓj)
ℓ=1 ℓI[kj,ℓ > 0].

For a vector k = (k1, . . . , ks), let µα(k) = µα(k1) +⋯ + µα(ks).
Dick (2007, 2008) has shown that if f has smoothness α, then ∣f̂ (k)∣ ≤ KṼ2α(f )2−µα(k)

approximately, where K is a constant and Ṽα(f ) is the variation of f , which depends on the
integrals of the mixed partial derivatives of f of order up to α.

This suggests using the FOM ∑000/=k∈C∗s 2
−µα(k) for QMC and ∑000/=k∈C∗s 2

−2µα(k) for RQMC,

for a given α. But these sums have an infinite number of terms!

Dick replaced the sum by a max and showed how to construct digital nets for which

max000/=k∈C∗s 2
−µα(k) = O(n−α(logn)αs), for any integer α > 0, using an interlacing technique.



D
ra
ft

34
Figures of Merit for Digital Nets

A variety of discrepancies of the form

D(Pn) =
⎛
⎝ ∑
∅/=u⊆{1,2,...,s}

(γuDu(Pn))q
⎞
⎠

1/q

with (Du(Pn))q =
1

n

n−1
∑
i=0
∏
j∈u
φ(ui ,j)

for some function φ ∶ [0,1)→ R have been defined recently for digital nets, based on
various assumptions on the rate of decrease of the Walsh coefficients, which often follow

from an assumption on the smoothness level α of f .

Some of them can be seen as counterparts of the Pα used for lattices.
They can be used in the same way to make CBC constructions

One popular choice of φ for b = 2 and α = 1:

φ(u) = 2 − I[u > 0] ⋅ 6 ⋅ 2⌊log2(u)⌋

where −⌊log2 u⌋ is the index of the first nonzero digit in the binary expansion of u.
Latnet Builder can make searches for good point sets based on such discrepancies.



D
ra
ft

35

Polynomial lattice rules (in base b = 2)

Similar to lattice rules, except that:

Replace Z by F2[z], the ring of polynomials over finite field F2 ≡ {0,1};
Replace R by L2 = F2((z−1)), the field of formal Laurent series over F2, of the form
∑∞ℓ=ω xℓz−ℓ, where xℓ ∈ F2. Define ϕ ∶ L→ R by

ϕ(
∞
∑
ℓ=ω
xℓz
−ℓ) =

∞
∑
ℓ=ω
xℓb
−ℓ.

We select a polynomial modulus Q(z) ∈ Z2[z] of degree k and a generating vector
a(z) = (a1(z), . . . , as(z)) ∈ Z2[z]s , whose coordinates are polynomials of degrees less than
k having no common factor with Q(z). The point set of cardinality n = 2k is

Pn = {(ϕ(
h(z)a1(z)
Q(z) ) , . . . , ϕ(h(z)as(z)

Q(z) )) ∶ h(z) ∈ Z2[z] and deg(h(z)) < k} .



D
ra
ft

36

Most of the properties of ordinary lattice rules have counterparts for the polynomial rules.

The Fourier expansion is replaced by a Walsh expansion, the weighted Pγ,α has a
counterpart Pγ,α,PRL, CBC constructions can provide good parameters, fast CBC also
works, etc.

A PLR is actually a special case of a digital net in base b. This can be used to generate

the points efficiently: compute the generating matrices and use the digital net

implementation. This is particularly fast in base b = 2.
Random shift in space of formal series: equivalent to a random digital shift in base b,

applied to all the points. It preserves equidistribution.



D
ra
ft

36

Most of the properties of ordinary lattice rules have counterparts for the polynomial rules.

The Fourier expansion is replaced by a Walsh expansion, the weighted Pγ,α has a
counterpart Pγ,α,PRL, CBC constructions can provide good parameters, fast CBC also
works, etc.

A PLR is actually a special case of a digital net in base b. This can be used to generate

the points efficiently: compute the generating matrices and use the digital net

implementation. This is particularly fast in base b = 2.

Random shift in space of formal series: equivalent to a random digital shift in base b,

applied to all the points. It preserves equidistribution.



D
ra
ft

36

Most of the properties of ordinary lattice rules have counterparts for the polynomial rules.

The Fourier expansion is replaced by a Walsh expansion, the weighted Pγ,α has a
counterpart Pγ,α,PRL, CBC constructions can provide good parameters, fast CBC also
works, etc.

A PLR is actually a special case of a digital net in base b. This can be used to generate

the points efficiently: compute the generating matrices and use the digital net

implementation. This is particularly fast in base b = 2.
Random shift in space of formal series: equivalent to a random digital shift in base b,

applied to all the points. It preserves equidistribution.



D
ra
ft

37

More Examples



D
ra
ft

38

Example: Pricing a financial derivative.

Market price of some asset (e.g., one share of a stock) evolves in time as stochastic

process {S(t), t ≥ 0} with (supposedly) known probability law (estimated from data).
A financial contract gives owner net payoff g(S(t1), . . . , S(td)) at time T = td , where
g ∶ Rd → R, and 0 ≤ t1 < ⋯ < td are fixed observation times.
Under a no-arbitrage assumption, present value of contract at time 0, when S(0) = s0, is

v(s0, T ) = E∗ [e−rT g(S(t1), . . . , S(td))] ,

where E∗ is under a risk-neutral measure and e−rT is the discount factor.

This expectation can be written as an integral over [0,1)s for some s, and estimated by the
average of n i.i.d. replicates of X = e−rT g(S(t1), . . . , S(td)).



D
ra
ft

39

A simple model for S: geometric Brownian motion (GBM):

S(t) = s0eX(t) where X(t) = (r − σ2/2)t + σB(t),

r is the interest rate, σ is the volatility, and B(⋅) is a standard Brownian motion: for any t2 > t1 ≥ 0,
B(t2) −B(t1) ∼ N(0, t2 − t1), and the increments over disjoint intervals are independent.

Here, the vector Y = (X(t1), . . . ,X(td)) has a multivariate normal distribution with some mean
vector µ and covariance matrix ΣΣΣ.

To generate Y , we decompose ΣΣΣ = AAt, and put Y = AZ where Z ∼ N (000, I).
Possible decompositions: Cholesky, Brownian bridge, PCA, etc.

Choice does not matter for MC but does matter for RQMC.

More general: X(t) can also be a vector in c dimensions, so s = cd .
This can apply more generally to a function of a multinormal vector, in many areas.



D
ra
ft

39

A simple model for S: geometric Brownian motion (GBM):

S(t) = s0eX(t) where X(t) = (r − σ2/2)t + σB(t),

r is the interest rate, σ is the volatility, and B(⋅) is a standard Brownian motion: for any t2 > t1 ≥ 0,
B(t2) −B(t1) ∼ N(0, t2 − t1), and the increments over disjoint intervals are independent.
Here, the vector Y = (X(t1), . . . ,X(td)) has a multivariate normal distribution with some mean
vector µ and covariance matrix ΣΣΣ.

To generate Y , we decompose ΣΣΣ = AAt, and put Y = AZ where Z ∼ N (000, I).
Possible decompositions: Cholesky, Brownian bridge, PCA, etc.

Choice does not matter for MC but does matter for RQMC.

More general: X(t) can also be a vector in c dimensions, so s = cd .
This can apply more generally to a function of a multinormal vector, in many areas.



D
ra
ft

39

A simple model for S: geometric Brownian motion (GBM):

S(t) = s0eX(t) where X(t) = (r − σ2/2)t + σB(t),

r is the interest rate, σ is the volatility, and B(⋅) is a standard Brownian motion: for any t2 > t1 ≥ 0,
B(t2) −B(t1) ∼ N(0, t2 − t1), and the increments over disjoint intervals are independent.
Here, the vector Y = (X(t1), . . . ,X(td)) has a multivariate normal distribution with some mean
vector µ and covariance matrix ΣΣΣ.

To generate Y , we decompose ΣΣΣ = AAt, and put Y = AZ where Z ∼ N (000, I).
Possible decompositions: Cholesky, Brownian bridge, PCA, etc.

Choice does not matter for MC but does matter for RQMC.

More general: X(t) can also be a vector in c dimensions, so s = cd .
This can apply more generally to a function of a multinormal vector, in many areas.



D
ra
ft

40

Example of contract: Discretely-monitored Asian call option:

g(S(t1), . . . , S(td)) = max
⎛
⎝
0,
1

d

d

∑
j=1
S(tj) −K

⎞
⎠
.

Numerical illustration: s = d = 12, T = 1 (one year), tj = j/12 for j = 0, . . . ,12, K = 100,
s0 = 100, r = 0.05, σ = 0.5.



D
ra
ft

41

ANOVA Variances for ordinary Asian Option

0 20 40 60 80 100

d = 3, seq.

d = 3, BB

d = 3, PCA

d = 6, seq.

d = 6, BB

d = 6, PCA

d = 12, seq.

d = 12, BB

d = 12, PCA

% of total variance for each cardinality of u

Asian Option with S(0) = 100, K = 100, r = 0.05, σ = 0.5



D
ra
ft

42

Variance with good lattices rules and Sobol points

102 103 104
10−6

10−3

100

n

va
ri
a
n
ce

Asian Option (PCA) d = 12, S(0) = 100, K = 100, r = 0.05, σ = 0.5 MC

Sobol

Lattice (P2) + baker
n−2



D
ra
ft

43

Example: Pricing an Asian basket financial option

We have c assets, d observation times. Want to estimate E[f (U)], where

f (U) = e−rT max
⎡⎢⎢⎢⎢⎣
0,
1

cd

c

∑
i=1

d

∑
j=1
Si(tj) −K

⎤⎥⎥⎥⎥⎦
.

Suppose S(t) = (S1(t), . . . , Sc(t)) obeys a geometric Brownian motion.
Then, f (U) = g(Y ) where Y = (Y1, . . . , Ys) ∼ N(000,ΣΣΣ) and s = cd .



D
ra
ft

43

Example: Pricing an Asian basket financial option

We have c assets, d observation times. Want to estimate E[f (U)], where

f (U) = e−rT max
⎡⎢⎢⎢⎢⎣
0,
1

cd

c

∑
i=1

d

∑
j=1
Si(tj) −K

⎤⎥⎥⎥⎥⎦
.

Suppose S(t) = (S1(t), . . . , Sc(t)) obeys a geometric Brownian motion.
Then, f (U) = g(Y ) where Y = (Y1, . . . , Ys) ∼ N(000,ΣΣΣ) and s = cd .



D
ra
ft

44

Numerical experiment with c = 10 and d = 25
This gives a 250-dimensional integration problem.

Let ρi ,j = 0.4 for all i /= j (correlations between assets), T = 1, σi = 0.1 + 0.4(i − 1)/9 for all
i , r = 0.04, S(0) = 100, and K = 100. (Imai and Tan 2002; see L. 2009 for more details).

Variance reduction factors for Cholesky (left) and PCA (right) (experiment from 2003):

Korobov Lattice Rules

n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Lattice+shift 18 878 18 1504 9 2643

Lattice+shift+baker 50 4553 46 3657 43 7553

Sobol’ Nets

n = 214 n = 216 n = 218

Sobol+Shift 10 1299 17 3184 32 6046

Sobol+LMS+Shift 6 4232 4 9219 35 16557

Note: The payoff function is not smooth and also unbounded. So Koksma-Hlawka does not apply.



D
ra
ft

44

Numerical experiment with c = 10 and d = 25
This gives a 250-dimensional integration problem.

Let ρi ,j = 0.4 for all i /= j (correlations between assets), T = 1, σi = 0.1 + 0.4(i − 1)/9 for all
i , r = 0.04, S(0) = 100, and K = 100. (Imai and Tan 2002; see L. 2009 for more details).
Variance reduction factors for Cholesky (left) and PCA (right) (experiment from 2003):

Korobov Lattice Rules

n = 16381 n = 65521 n = 262139
a = 5693 a = 944 a = 21876

Lattice+shift 18 878 18 1504 9 2643

Lattice+shift+baker 50 4553 46 3657 43 7553

Sobol’ Nets

n = 214 n = 216 n = 218

Sobol+Shift 10 1299 17 3184 32 6046

Sobol+LMS+Shift 6 4232 4 9219 35 16557

Note: The payoff function is not smooth and also unbounded. So Koksma-Hlawka does not apply.



D
ra
ft

45

Many other types of successful applications of RQMC, for

example:

Statistics: estimate and optimize the likelihood function for given data.

Computer graphics: estimate the color of a pixel.

Service systems with random arrival rates.

Stochastic differential equations (e.g., in finance).

PDEs with random coefficients.

Etc.



D
ra
ft

46

RQMC for Markov chains



D
ra
ft

47

Array-RQMC for Markov Chains

Setting: A Markov chain with state space X ⊆ Rℓ, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0,1)d . Want to estimate

µ = E[Y ] where Y =
τ

∑
j=1
gj(Xj).

Ordinary MC: n i.i.d. realizations of Y . Requires s = τd uniforms.

Array-RQMC: L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]

Simulate an “array” (or population) of n chains in “parallel.”

Goal: Want small discrepancy between empirical distribution of states

Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj , at each step j .
At each step, use RQMC point set to advance all the chains by one step.



D
ra
ft

47

Array-RQMC for Markov Chains

Setting: A Markov chain with state space X ⊆ Rℓ, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0,1)d . Want to estimate

µ = E[Y ] where Y =
τ

∑
j=1
gj(Xj).

Ordinary MC: n i.i.d. realizations of Y . Requires s = τd uniforms.
Array-RQMC: L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]

Simulate an “array” (or population) of n chains in “parallel.”

Goal: Want small discrepancy between empirical distribution of states

Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj , at each step j .
At each step, use RQMC point set to advance all the chains by one step.



D
ra
ft

48

Array-RQMC insight: To simplify, suppose Xj ∼ U(0,1)ℓ. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] = ∫
[0,1)ℓ+d

gj(ϕj(x ,u))dxdu by

µ̂arqmc,j,n =
1

n

n−1
∑
i=0
gj(Xi ,j) =

1

n

n−1
∑
i=0
gj(ϕj(Xi ,j−1,Ui ,j)).

This is (roughly) RQMC with the point set Qn = {(Xi ,j−1,Ui ,j), 0 ≤ i < n} .
We want Qn to have low discrepancy (LD) over [0,1)ℓ+d .

However, we do not choose the Xi ,j−1’s in Qn: they come from the simulation.

Idea: select RQMC point set Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} , where the wi ∈ [0,1)ℓ

are fixed and each Ui ,j ∼ U(0,1)d .
Permute the states Xi ,j−1 so that Xπj(i),j−1 is “close” to wi for each i and compute

Xi ,j = ϕj(Xπj(i),j−1,Ui ,j) for each i .
Example: If ℓ = 1, can take wi = (i + 0.5)/n and just sort the states.
For ℓ > 1, there are various ways to define the matching (multivariate sort).



D
ra
ft

48

Array-RQMC insight: To simplify, suppose Xj ∼ U(0,1)ℓ. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] = ∫
[0,1)ℓ+d

gj(ϕj(x ,u))dxdu by

µ̂arqmc,j,n =
1

n

n−1
∑
i=0
gj(Xi ,j) =

1

n

n−1
∑
i=0
gj(ϕj(Xi ,j−1,Ui ,j)).

This is (roughly) RQMC with the point set Qn = {(Xi ,j−1,Ui ,j), 0 ≤ i < n} .
We want Qn to have low discrepancy (LD) over [0,1)ℓ+d .
However, we do not choose the Xi ,j−1’s in Qn: they come from the simulation.

Idea: select RQMC point set Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} , where the wi ∈ [0,1)ℓ

are fixed and each Ui ,j ∼ U(0,1)d .
Permute the states Xi ,j−1 so that Xπj(i),j−1 is “close” to wi for each i and compute

Xi ,j = ϕj(Xπj(i),j−1,Ui ,j) for each i .
Example: If ℓ = 1, can take wi = (i + 0.5)/n and just sort the states.
For ℓ > 1, there are various ways to define the matching (multivariate sort).



D
ra
ft

48

Array-RQMC insight: To simplify, suppose Xj ∼ U(0,1)ℓ. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] = ∫
[0,1)ℓ+d

gj(ϕj(x ,u))dxdu by

µ̂arqmc,j,n =
1

n

n−1
∑
i=0
gj(Xi ,j) =

1

n

n−1
∑
i=0
gj(ϕj(Xi ,j−1,Ui ,j)).

This is (roughly) RQMC with the point set Qn = {(Xi ,j−1,Ui ,j), 0 ≤ i < n} .
We want Qn to have low discrepancy (LD) over [0,1)ℓ+d .
However, we do not choose the Xi ,j−1’s in Qn: they come from the simulation.

Idea: select RQMC point set Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} , where the wi ∈ [0,1)ℓ

are fixed and each Ui ,j ∼ U(0,1)d .
Permute the states Xi ,j−1 so that Xπj(i),j−1 is “close” to wi for each i and compute

Xi ,j = ϕj(Xπj(i),j−1,Ui ,j) for each i .
Example: If ℓ = 1, can take wi = (i + 0.5)/n and just sort the states.
For ℓ > 1, there are various ways to define the matching (multivariate sort).



D
ra
ft

49

Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1,2, . . . , τ do
Compute the permutation πj of the states (for matching);

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj(i),j−1,Ui ,j), for i = 0, . . . , n − 1;
µ̂arqmc,j,n = Ȳn,j = 1n ∑

n−1
i=0 g(Xi ,j);

Estimate µ by the average Ȳn = µ̂arqmc,n = ∑τj=1 µ̂arqmc,j,n.

Proposition: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by making m independent replications.



D
ra
ft

49

Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1,2, . . . , τ do
Compute the permutation πj of the states (for matching);

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj(i),j−1,Ui ,j), for i = 0, . . . , n − 1;
µ̂arqmc,j,n = Ȳn,j = 1n ∑

n−1
i=0 g(Xi ,j);

Estimate µ by the average Ȳn = µ̂arqmc,n = ∑τj=1 µ̂arqmc,j,n.

Proposition: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by making m independent replications.



D
ra
ft

50

Example of 2-dim batch sort: a (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s

s sss ss

s s
s

s

Sobol’ net in 2 dimensions af-

ter random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0 s

s
s

s

s

s

s

s
s

s

s

s

s

s
s

s



D
ra
ft

51

Example of 2-dim batch sort: a (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions af-

ter random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s



D
ra
ft

52

Example of 2-dim batch sort: a (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions af-

ter random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s



D
ra
ft

52

Example of 2-dim batch sort: a (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions af-

ter random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s



D
ra
ft

53

Hilbert curve sort
Map the states to [0,1], then sort.

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra
ft

53

Hilbert curve sort
Map the states to [0,1], then sort.

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra
ft

53

Hilbert curve sort
Map the states to [0,1], then sort.

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra
ft

53

Hilbert curve sort
Map the states to [0,1], then sort.

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra
ft

54

Convergence results and proofs

For ℓ = 1, O(n−3/2) variance has been proved under some conditions.

For ℓ > 1, worst-case error of O(n−1/(ℓ+1)) has been proved in deterministic settings under
strong conditions on ϕj , using a batch sort (El Haddad, Lécot, L’Ecuyer 2008, 2010).

Gerber and Chopin (2015) proved o(n−1) variance, for Hilbert sort and digital net with
nested scrambling.



D
ra
ft

55

A very simple example, one-dimensional state

Let Y = θU + (1 − θ)V , where U, V indep. U(0,1) and θ ∈ [0,1). This Y has cdf Gθ.
Markov chain is defined by

X0 = U0 ∼ U(0,1);
Xj = ϕj(Xj−1, Uj) = Gθ(θXj−1 + (1 − θ)Uj), j ≥ 1

where Uj ∼ U(0,1). Then, Xj ∼ U(0,1).

We consider various functions gj :

gj(x) = x − 1/2, gj(x) = x2 − 1/3,
gj(x) = sin(2πx), gj(x) = ex − e + 1,
gj(x) = (x − 1/2)+ − 1/8, gj(x) = I[x ≤ 1/3] − 1/3.
They all have E[gj(Xj)] = 0.
Also discrepancies of states X0,j , . . . ,Xn−1,j .



D
ra
ft

56

For array-RQMC, we take Xi ,0 = wi = (i − 1/2)/n.

We have

E[D2j ] ≤
n−3/2

4(1 − ρ) =
1 − θ
4(1 − 2θ)n

−3/2.

We tried different RQMC methods, for n = 29 to n = 221.
We did m = 200 independent replications for each n.
We fitted a linear regression of log2Var[Ȳn,j] vs log2 n, for various gj

We also looked at E[D2j ] and E[Pα] for α = 2, 4, 6.



D
ra
ft

57

Some MC and RQMC point sets:

MC: Crude Monte Carlo

LHS: Latin hypercube sampling

SS: Stratified sampling

SSA: Stratified sampling with antithetic variates in each stratum

Sobol: Sobol’ points, left matrix scrambling + digital random shift

Sobol+baker: Add baker transformation

Sobol+NUS: Sobol’ points with Owen’s nested uniform scrambling

Korobov: Korobov lattice in 2 dim. with a random shift modulo 1

Korobov+baker: Add a baker transformation



D
ra
ft

58
slope vs log2 n log2E[D2j ] log2Var[Ȳn,j ]

Xj − 12 X2j − 13 (Xj − 12)
+ − 1

8
I[Xj ≤ 13 ] −

1
3

MC -1.01 -1.02 -1.01 -1.00 -1.02

LHS -1.02 -0.99 -1.00 -1.00 -1.00

SS -1.50 -1.98 -2.00 -2.00 -1.49

SSA -1.50 -2.65 -2.56 -2.50 -1.50

Sobol -1.51 -3.22 -3.14 -2.52 -1.49

Sobol+baker -1.50 -3.41 -3.36 -2.54 -1.50

Sobol+NUS -1.50 -2.95 -2.95 -2.54 -1.52

Korobov -1.87 -2.00 -1.98 -1.98 -1.85

Korobov+baker -1.92 -2.01 -2.02 -2.01 -1.90

− log10Var[Ȳn,j ] for n = 221 CPU time (sec)

X2j − 13 (Xj − 12)
+ − 1

8
I[Xj ≤ 13 ] −

1
3

MC 7.35 7.86 6.98 270

LHS 8.82 8.93 7.61 992

SS 13.73 14.10 10.20 2334

SSA 18.12 17.41 10.38 1576

Sobol 19.86 17.51 10.36 443

Korobov 13.55 14.03 11.98 359

Summarize behavior of Pα for the states, for α = 2,4,6.



D
ra
ft

59

Example: Pricing an Asian Call Option
S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.

Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1



D
ra
ft

60

Example: Asian Call Option

Var[Ȳn,j] ≈ O(nα).
VRF compared with MC, for n = 220.
CPU time for m = 100 replications.

Sort RQMC points α VRF CPU (sec)

Batch sort SS -1.38 2.0 × 102 744

(n1 = n2) Sobol -2.03 4.2 × 106 532

Sobol+NUS -2.03 2.8 × 106 1035

Korobov+baker -2.04 4.4 × 106 482

Hilbert sort SS -1.55 2.4 × 103 840

(logistic map) Sobol -2.03 2.6 × 106 534

Sobol+NUS -2.02 2.8 × 106 724

Korobov+baker -2.01 3.3 × 106 567



D
ra
ft

61

Array-RQMC for a system of biological and chemical reactions

[Puchhammer, Ben Abdellah, and L. 2022]

We have d types of molecules and K types of reactions:

α1,kS1 +⋯ +αd,kSd
ckÐ→ β1,kS1 +⋯ + βd,kSd , αi ,k , βi ,k ∈ N0, k = 1, . . . ,K.

Let X(t) = (X1(t), . . . ,Xd(t)) where Xk(t) is the number of molecules of type k at time
t. The process {X(t), t ≥ 0} is modeled as a continuous-time Marlov chain (CTMC).
The propensity (or occurrence rate) of reaction k at time t is ak(X(t)) = ckhk(X(t)).

We discretize the time and simulate the discrete-time chain to estimate say E[g(X(T )] for
a given time T .

For Array-RQMC, finding good sorting methods is an important issue.



D
ra
ft

61

Array-RQMC for a system of biological and chemical reactions

[Puchhammer, Ben Abdellah, and L. 2022]

We have d types of molecules and K types of reactions:

α1,kS1 +⋯ +αd,kSd
ckÐ→ β1,kS1 +⋯ + βd,kSd , αi ,k , βi ,k ∈ N0, k = 1, . . . ,K.

Let X(t) = (X1(t), . . . ,Xd(t)) where Xk(t) is the number of molecules of type k at time
t. The process {X(t), t ≥ 0} is modeled as a continuous-time Marlov chain (CTMC).
The propensity (or occurrence rate) of reaction k at time t is ak(X(t)) = ckhk(X(t)).

We discretize the time and simulate the discrete-time chain to estimate say E[g(X(T )] for
a given time T .

For Array-RQMC, finding good sorting methods is an important issue.



D
ra
ft

62

Example with 6 molecule types and 6 reactions types

PKA + 2cAMP
c1Ð→←Ð
c2
PKA-cAMP2,

PKA-cAMP2 + 2cAMP
c3Ð→←Ð
c4
PKA-cAMP4,

PKA-cAMP4

c5Ð→←Ð
c6
PKAr + 2PKAc.

We simulate 256 time steps.

The state has 6 dimensions, and we need 6 random numbers per step.

Classical RQMC requires 256 × 6 = 1536-dimensional points.
Array-RQMC requires 7 or 12-dimensional RQMC points.



D
ra
ft

63

Example with 6 molecule types and 6 reactions types

Here we estimate the expected number of PKAr molecules at time T .

Estimated convergence rate β̂ and variance reduction factor for n = 219 points:

Sort Sampling β̂ vrf19 eif19

MC 1.03 1 1

RQMC 1.17 39 45

OSLAIF
Latice+shift 1.42 3634 1550

Sobol+LMS+ds 1.47 2062 1059

Batch-sort-6
Latice+shift 1.62 3026 1560

Sobol+LMS+ds 1.46 2753 1749



D
ra
ft

64

Array-RQMC: Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the filtration

F{(j,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting techniques (multilevel and

without levels), combination with importance sampling and weight windows. Covers particle

filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact sampling.

Dion and L. [2010]: Combination with approximate dynamic programming and for optimal

stopping problems.

Gerber and Chopin [2015]: Sequential QMC.



D
ra
ft

65

Array-RQMC: Convergence results

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate, one-dimensional,

stratification, etc. O(n−3/2) variance.

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional. O(n−1/(ℓ+1)) worst-case error
under some conditions.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification, Sudoku sampling, ...

L., Lécot, Munger, and Tuffin [2016]: Survey, comparing sorts, and further examples, some with

O(n−3) empirical variance.



D
ra
ft

66

Array-RQMC: Some applications and examples

L., Lécot, and Tuffin [2008]: Several examples.

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested scrambling and Hilbert

sort. o(n−1) variance.

Ben Abdellah, L., Puchhammer [2019]: Option Pricing Under Stochastic Volatility Models.

Puchhammer, Ben Abdellah, L. [2020]: Simulation of Biological and Chemical Reactions.

Arnold, Chen, Sha [2021]: Policy Gradient Methods for Reinforcement Learning.



D
ra
ft

67

Conclusion, discussion, etc.

▸ RQMC can improve the accuracy of estimators considerably in some applications.
▸ Cleverly modifying the function f can often bring huge statistical efficiency
improvements in simulations with RQMC.

▸ There are often many possibilities for how to change f to make it smoother, periodic,
and reduce its effective dimension.

▸ Point set constructions should be based on discrepancies that take that into account.
▸ Nonlinear functions of expectations: RQMC also reduces the bias.
▸ RQMC for density estimation.
▸ RQMC for optimization.
▸ Array-RQMC and other QMC methods for Markov chains. Sequential RQMC.
▸ Still a lot to learn and do ...
▸ Software support still very limited in general!


