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Context
Monte Carlo (MC) simulation is widely used to estimate the expectation E[X ] of an output
random variable X from a model, and compute a confidence interval on E[X ].

But simulation usually provides information to estimate the entire distribution of X , e.g., the
cumulative distribution function (cdf) F (x) = P[X ≤ x ], or its density f (x) = F ′(x). Here
we assume that X has a density f and we want to estimate f over a finite interval [a, b] ⊂ R.

Classical density estimation in statistics was developed in the context where X1, . . . ,Xn are
given independent observations of X and one estimates the density f of X from that.
Most popular methods: histogram: MSE[f̂n(x)] = O(n−2/3);
kernel density estimator (KDE); MSE[f̂n(x)] = O(n−4/5). Biased.

In this talk, we assume that X1, . . . ,Xn are generated by simulation from a model.
We can choose n and we have some freedom on how the simulation is performed.
Under certain conditions, unbiased density estimators can be obtained and can also be
combined with randomized quasi-Monte Carlo (RQMC).

This talk is mostly a review of recent papers listed on the last slide.
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Density estimation

Let f̂n(x) denote the density estimator at x , with sample size n, for x ∈ [a, b] ⊂ R.

We use simple error measures:

MISE = mean integrated squared error =

∫ b

a
E[(f̂n(x)− f (x))2]dx = IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx

To minimize the MISE, we may need to balance the IV and ISB.
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Classical density estimators
For given observations X1, . . . ,Xn:

Histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a+ (j − 1)h, a+ jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .
MISE = O(n−2/3) in the best case.

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered
at 0) and bandwidth h > 0 (horizontal stretching factor for the kernel).

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
.

MISE = O(n−4/5) in the best case.
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Why not take the stochastic derivative of an estimator of F?

An unbiased estimator of the cdf F is given by the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

Can we estimate the density f (x) = F ′(x) by taking the derivative of an estimator of F (x)?

Not with the empirical cdf, because dF̂n(x)/dx = 0 almost everywhere.

One way to get a smoother estimator of F : replace I[Xi ≤ x ] by a conditional probability
which is continuous in x and differentiable in x except perhaps at a denumerable set of
points. Then take its derivative (a conditional density) as a density estimator.
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Conditional Monte Carlo (CMC) for density estimation
Estimate the density f (x) by a conditional density estimator (CDE) f (x | G) , given
partial information G. This G must hide enough information so X | G has a density f (x | G)
(no mass point) and yet contain enough information so f (x | G) is easy to compute.

f (x) =
d

dx
F (x) =

d

dx
E[P[X ≤ x | G]] ?

= E
[
d

dx
P[X ≤ x | G]

]
= E[f (x | G)].

Assumption CDE. For all realizations of G, F (x | G) is a continuous function of x over
[a, b], differentiable except perhaps over a denumerable set of points D(G) ⊂ [a, b], and
f (x | G) = F ′(x | G) = dF (x | G)/dx (when it exists) is bounded uniformly in x by a random
variable Γ such that E[Γ2] <∞.
Proposition CDE: Then, for all x ∈ [a, b], E[f (x | G)] = f (x) and Var[f (x | G)] < E[Γ2].

The CDE is then unbiased with uniformly bounded variance, so MISE[f̂n] = O(n−1).

Finding a G that satisfies the CDE conditions is not always easy, but often doable.
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A likelihood ratio density estimator (LRDE)
Another way to construct a smooth estimator of the cdf F , that we can differentiate.
Suppose X = h(Y ) where Y has known density fY over R ⊆ Rd . We have

F (x) = P[h(Y ) ≤ x ] =

∫
R

I[h(y) ≤ x ] fY (y)dy .

To differentiate w.r.t. x , we want to make the indicator part independent of x .

Main idea: Move the x out of the indicator. Make a change of variable of the form y = φ(z ; x) , for

a family of bijections {φ(·; x), x ∈ [a, b]} such that {h(y) ≤ x} = {h(φ(z ; x)) ≤ x} ≡ {h̃(z) ≤ 1}
where the function h̃ is independent of x when z is given. We can then write

F (x) =

∫
R̃

I[h̃(z) ≤ 1] fY (φ(z ; x))|Jφ(z ; x)| dz ,

where |Jφ(z ; x)| is the Jacobian of the transformation y = φ(z ; x), assuming that the new integration

domain R̃ = φ−1(R; x) is independent of x .
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F (x) =

∫
R̃

I[h̃(z) ≤ 1] L(z ; x , x0) fY (φ(z ; x0))|Jφ(z ; x0)|dz

where

L(z ; x , x0) =
fY (φ(z ; x))|Jφ(z ; x)|
fY (φ(z ; x0))|Jφ(z ; x0)|

is the likelihood ratio between the density of z at x and at x0. Under appropriate conditions:

f (x) = F ′(x) =
d

dx

∫
R̃

I[h̃(z) ≤ 1]L(z ; x , x0)fY (φ(z ; x0))|Jφ(z ; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
L(z ; x , x0)

)
fY (φ(z ; x0))|Jφ(z ; x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
L(z ; x , x0)

)
fY (φ(z ; x))|Jφ(z ; x)|

L(z ; x , x0)
dz

=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
ln L(z ; x , x0)

)
fY (φ(z ; x))|Jφ(z ; x)|dz

=

∫
R

I[h(y) ≤ x ]S(y , x) fY (y)dy = E[I[h(Y ) ≤ x ]S(Y , x)]
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where

S(y , x) =
d

dx
ln L(z ; x , x0) =

(
(∇(ln fY )(y))t · ∇xφ(z ; x) +

d ln |Jφ(z ; x)|
dx

) ∣∣∣
z=φ−1(y ;x)

is the score function associated with L.

This gives the unbiased likelihood ratio density estimator (LRDE)

f̂ (x) = I[h(Y ) ≤ x ] S(Y , x)

where Y ∼ fY .

This LR approach is often used to estimate the derivative of E[h(Y )] with respect to a
parameter of the distribution of Y ; see, e.g., Glynn (1987), L’Ecuyer (1990), or Asmussen
and Glynn (2007). Here we add a change of variable to use it for density estimation.
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Assumption LRDE. For all x ∈ [a, b], the mapping φ(·; x) has continuous partial derivatives
and |Jφ(·; x)| ≠ 0. With probability 1 over the realizations of Y = φ(Z ; x),
fY (φ(Z ; x))|Jφ(Z ; x)| is a continuous function of x over [a, b], and is differentiable except
perhaps at a countable set of points D(Y ). There is also a random variable Γ defined over
the same probability space as Y with E[Γ2] <∞ and

sup
x∈[a,b]

|I[h(Y ) ≤ x ]S(Y , x)| ≤ Γ.

Theorem LRDE. Suppose R̃ = φ−1(R; x) is independent of x . Under Assumption LRDE,

the LRDE is unbiased for the density f (x) at x , and its variance is uniformly bounded by
E[Γ2], for all x ∈ [a, b]. This LRDE is then unbiased with uniformly bounded variance, so
again MISE[f̂n] = O(n−1).
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The LRDE with boundary terms

What if R̃(x) = φ−1(R; x) depends on x?
Let ∂R̃(x) be the boundary of R̃(x), and b(z(x), x) the rate of displacement of ∂R̃(x) as a
function of x at z(x) ∈ ∂R̃(x), in the normal direction pointing outward of R̃(x). We have

F ′(x) =
d

dx

∫
R̃(x)

[· · · ]dz =

∫
R̃(x)

d

dx
[· · · ]dz +

∫
∂R̃(x)

[· · · ]b(z(x), x)dz

=

∫
R̃(x)

d

dx
[· · · ]dz +

∫
∂R

I[h(y) ≤ x ]b(φ−1(y , x), x)fY (y)dy .

Common special case: R =
∏d

j=1(αj , βj), a rectangular box.

Let ∂R−
j and ∂R+

j denote the boundary panels on which yj = αj and yj = βj , respectively.

The rate of outward displacement at y ∈ ∂R+
j [y ∈ ∂R−

j ] is

rj(y , x)
def
= b(z(x), x) = [−1](∇xz(x)) · ej = [−1](∇xφ

−1(y ; x)) · ej .
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Let R−j =

∏
k ̸=j(αk , βk), y−j be y with its jth coordinate removed, and Y−

−j [Y
+
−j ] be Y

with Yj replaced by αj [βj ]. We then have∫
∂R+

j

I[h(y) ≤ x ]b(φ−1(y , x), x)fY (y)dy

=

∫
∂R+

j

I[h(y) ≤ x ]rj(y , x)fY−j (y−j)fYj |Y−j
(yj | y−j)dy

=

∫
R−j

I[h(y) ≤ x ]rj(y , x)fY−j (y−j)fYj |Y−j
(βj | y−j)dy−j

= E[I[h(Y +
−j) ≤ x ]rj(Y +

−j , x)fYj |Y−j
(βj | Y−j)]

and similarly for ∂R−
j with αj and Y−

−j .

By summing over all boundary panels, we get∫
∂R I[h(y) ≤ x ]b(φ−1(y , x), x)fY (y)dy = E[B(Y , x)] where

B(y , x) =
d∑

j=1

(
I[h(y+

−j) ≤ x ]rj(y+
−j , x)fYj |Y−j

(βj | y−j)− I[h(y−
−j) ≤ x ]rj(y−

−j , x)fYj |Y−j
(αj | y−j)

)
.
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The LRDE with boundary terms

Assumption LRDE-B. Let Assumption LRDE hold. Let R = (α,β) and suppose fY is
continuous on the closure of R. For each y ∈ R, φ−1(y ; x) is differentiable in x on [a, b],
and each term in B(y , x) is well-defined, w.p.1.

Theorem LRDE-B. Under Assumption LRDE-B,

f̂ (x) = I[h(Y ) ≤ x ]S(Y , x) + B(Y ; x).

is and unbiased estimator for f (x) for all x ∈ [a, b].
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GLR density estimators

Peng et al. (2020) proposed an adaptation of a generalized likelihood ratio (GLR) method of
Peng et al. (2018) to density estimation. Peng et al. (2021) give an improved version.

The estimators are often similar to our LRDEs, but the assumptions made in those papers
are generally stronger and harder to verify.

The cdf of X is assumed to have the form

F (x) = E[I[h(Y ) ≤ x ]] = E[ψ(g(Y , x))],

where g : Rd × [a, b] → Rd is smooth and ψ : Rd → R is independent of x but can be
discontinuous.
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Quasi-Monte Carlo Error and Variance Bounds

Let h(y) = g(u) where g : [0, 1)s → R.
Integration error with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du .

For certain classes of sufficiently smooth functions g , there are explicit RQMC constructions

for which E[En] = 0 and Var[En] = O(n−2+ϵ), ∀ϵ > 0 . Examples:
— randomly-shifted lattice rules;
— digital nets with left matrix scramble (LMS) + random digital shift.

With ordinary Monte Carlo (MC), one has Var[En] = O(n−1).
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Bounding the AIV under RQMC for a KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui )

h

)
=

1

n

n∑
i=1

g̃(Ui ).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] =
∫
[0,1)s g̃(u)du = E[f̂n(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV.

To get RQMC variance bounds, we need bounds on the variation of g̃ .

Partial derivatives:
∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)

h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .
By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h → 0.
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By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h → 0.
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An AIV upper bound proved in Ben Abdellah et al. (2021)

Assumptions. Let g : [0, 1]s → R be piecewise monotone in each coordinate uj when the
other coordinates are fixed, with at most Mj pieces. Assume that all first-order partial
derivatives of g are continuous and that ∥gw1gw2 · · · gwℓ

∥1 <∞ for all selections of
non-empty, mutually disjoint index sets w1, . . . ,wℓ ⊆ S = {1, . . . , s}.

For each j ∈ S, let Gj =
∥∥∥∏ℓ∈S\{j} g{ℓ}

∥∥∥
1
and cj = Mj ∥k(s)∥∞

(
Gj + I(s = 2) ∥g{1,2}∥1

)
.

Proposition Then the Hardy-Krause variation of g̃ satisfies

VHK(g̃) ≤ cjh
−s +O(h−s+1) for each j .

Corollary. With RQMC point sets having D∗(Pn) = O(n−1+ϵ) for all ϵ > 0 when n → ∞,
using KH and squaring gives the bound

AIV = O(n−2+ϵh−2s) for all ϵ > 0.

By picking h to minimize the AMISE bound, we obtain AMISE = O(n−4/(2+s)+ϵ) .

Worst than MC when s ≥ 3. The factor h−2s hurts, although this is only an upper bound.
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Combining RQMC with the CDE or the LRDE

In these cases, we are applying RQMC to unbiased estimators.
No banwidth h to select, much more RQMC-friendly.

When the CDE or LRDE estimator is sufficiently smooth as a function of the underlying
uniform random numbers, RQMC can improve the convergence rate beyond O(1/n).
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Example: displacement of cantilever beam (Bingham 2017)

X = h(Y1,Y2,Y3) =
κ

Y1

√
Y2

2

w4
+

Y3
2

t4

where κ = 5× 105, w = 4, t = 2, Y1, Y2, Y3 independent normal, Yj ∼ N (µj , σ
2
j ),

Description Symbol µj σj
Young’s modulus Y1 2.9× 107 1.45× 106

Horizontal load Y2 500 100
Vertical load Y3 1000 100

We estimate the density of X over [3.1707, 5.6675], which covers about 99% of the density
(it clips 0.5% on each side).
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CDE estimator for cantilever beam

Conditioning on G−1 = {Y2,Y3} means hiding Y1. We have

X =
κ

Y1

√
Y 2
2

w4
+

Y 2
3

t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2
2

w4
+

Y 2
3

t4
def
= W1(x).

For x > 0,

F (x | G−1) = P[Y1 ≥ W1(x) | W1(x)] = 1− Φ((W1(x)− µ1)/σ1)

and

f (x | G−1) = F ′(x | G−1) = −ϕ((W1(x)− µ1)/σ1)W
′
1(x)

σ1
=
ϕ((W1(x)− µ1)/σ1)W1(x)

xσ1
.

The MISE rate improves from O(n−4/5) to O(n−1) with the CDE.
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We can also hide Y2 or Y3 instead of Y1.

4 5

0

1

2

hide Y1

4 5

0

10

20

30

hide Y2

4 5

0

0.5

1

hide Y3

Five realizations of conditional density f (· | G−k),
their average (the estimator), and true density.
Hiding Y3 gives the best CDE estimator.

We can also take a linear combination of the three estimators (CDE-c).
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LRDE estimator: we can use for example Y1 = φ(Z1; x) = Z1/x and (Y2,Y3) = (Z2,Z3).

X =
κ

Y1

√
Y 2
2

w4
+

Y 2
3

t4
≤ x if and only if

κ

Z1

√
Y 2
2

w4
+

Y 2
3

t4
≤ 1.
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Cantilever beam

Estimated MISE = Kn−ν̂ . MISE with n = 219 is 2−e19.

ν̂ e19
KDE G−3 CDE-c LRDE KDE G−3 CDE-c LRDE

MC 0.76 0.99 0.98 1.03 15.8 22.8 22.5 16.8
Lat+s 1.03 2.06 2.04 1.55 21.9 41.6 41.9 26.4
Lat+s+b 0.93 2.27 2.25 1.25 21.0 46.8 47.0 24.7
Sob+LMS 0.97 2.21 2.21 1.31 21.5 45.7 46.1 25.6

The MISE decreases roughly as O(n−2) or better for CDE+RQMC.

For n = 219, the MISE is about 2−15.8 for KDE+MC and 2−47 for CDE+RQMC;
i.e., MISE is divided by more than 231 ≈ 2 billions.
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Example: a stochastic activity network (SAN)

Precedence relations between activities. Activity k has random duration Yk (length of arc k)
with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.

Specific case (Avramidis and Wilson 1998):
Yk ∼ N(µk , σ

2
k) for k = 1, 2, 4, 11, 12;

Yk ∼ Expon(1/µk) otherwise;
µ1, . . . , µ13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7,
10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5;
σk = µk/4.

0

source

1
Y1

2

Y2
Y3

3
Y4

4

Y8

5

Y10

Y5

Y6

6
Y7

7

Y12

Y9

8

sink

Y13

Y11
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CMC for the SAN Example

X = length of longest path
Hiding a single Yj does not work: it does not make the conditional cdf of X continuous.

One working solution:
Pick a minimal cut L between source and sink, and let F (x | G) = P[X ≤ x | {Yj , j ̸∈ L}] .

Ex.: L = {5, 6, 7, 9, 10} and Yj = F−1
j (Uj). This estimator continuous in the Uj ’s and in x .

0source 1
Y1

2

Y2
Y3

3
Y4

4

Y8

5

Y10

Y5

Y6

6
Y7

7

Y12

Y9

8 sink

Y13

Y11
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Another minimal cut: L = {2, 3, 5, 8, 12}.

0source 1
Y1

2

Y2
Y3

3
Y4

4

Y8
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Y10
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Y6
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Y7
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Y9

8 sink
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For each j ∈ L, let Pj be the length of the longest path that goes through arc j when we
exclude Yj from that length. Then

F (x | G) = P [X < x | {Yj : j ̸∈ L}] =
∏
j∈L

Fj(x − Pj)

and
f (x | G) =

∑
j∈L

fj(x − Pj)
∏

l∈L, l ̸=j

Fl(x − Pj),

if fj exists for all j ∈ L.
Under this conditioning, the cdf of every path length is continuous in x , and so is F (· | G),
and Assumption 1 holds, so f (x | G) is an unbiased density estimator.
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LRDE for the SAN
One possible change of variable (LRDE-1): y = φ(z ; x) = xz .

Then h(y) = h(φ(z ; x)) = xh(z) ≤ x iff h̃(z) def
= h(z) ≤ 1.

Here, φ−1(R; x) = (0,∞)11 is independent of x and this gives the unbiased estimator

f̂ (x) =
I[h(Y ) ≤ x ]

x

11 +
11∑
j=1

Yj f
′
j (Yj)/fj(Yj)

 .

Another change of variable (LRDE-2): y = φC(z ; x) = z + x
∑

j∈C ej where C is a

minimal cut such as C = {10, 11}, or C = {3, 4, 5, 6}, etc.
We have h(y) = h(z) + x ≤ x iff h̃(z) def

= h(z) + 1 ≤ 1.
This gives ∇xφC(z ; x) =

∑
j∈C ej and |Jφ| = 1, so S(y ; x) =

∑
j∈C f

′
j (yj)/fj(yj). Here,

φ−1
C (y ; x) = y − x

∑
j∈C ej , so R̃(x) = φ−1

C (R; x) depends on x in the dimensions j ∈ C.
We have rj(y , x) = −1 for j ∈ C and y ∈ ∂R−

j , rj(y , x) = 0 otherwise.
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Results for SAN Example

ν̂ e19

KDE
MC 0.78 20.9
Lat+s 0.95 22.7
Sob+LMS 0.74 21.9

CDE
MC 0.96 25.6
Lat+s 1.31 30.9
Sob+LMS 1.27 29.9

LRDE-1
MC 1.00 20.5
Lat+s 1.22 23.5
Sob+LMS 1.16 24.6

With CDE+RQMC, we observe a convergence rate near O(n−1.3) for the MISE.

For n = 219, by using CDE+RQMC rather than KDE+MC,
the MISE is divided by about 500 to 1000.

LRDE does not perform as well as the CDE in this case.
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Conclusion

▶ Combining a KDE with RQMC can reduce the MISE and sometimes improve its
convergence rate, even though the MISE bounds converge faster only when the
dimension is very small.

▶ The CDE is an unbiased density estimator with better convergence rate. Combining it
with RQMC can provide an even better rate, and sometimes huge MISE reductions.

▶ When we cannot find G for which Assumption 1 holds and f (x | G) is easy to compute,
the LRDE may provide a good unbiased alternative.

▶ The LRDE is often discontinuous in U , in which case it does not combine well with
RQMC. Sometimes, one can apply CMC to the LRDE to make it smoother, and then
combine with RQMC. We found that this can provide large variance reductions.

▶ Extensions: Density estimation for a function of the state of a Markov chain, using
Array-RQMC. Generalization to multivariate output.
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