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Pierre L’Ecuyer

DIRO, Université de Montréal
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I Requirements, applications, multiple streams and substreams.

I Design principles and quality criteria.

I Examples: linear recurrences modulo m (large) and modulo 2.

I Statistical tests. Empirical evaluation of widely-used generators.

Articles and software: http://www.iro.umontreal.ca/∼lecuyer
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What do we want?

Sequences of numbers that look random.

Example: Bit sequence (head or tail):

011110100110110101001101100101000111?...01111?100110?1?101001101100101000111...

Uniformity: each bit is 1 with probability 1/2.

Uniformity and independance:
Example: 8 possibilities for the 3 bits ? ? ?:

000, 001, 010, 011, 100, 101, 110, 111

Want a probability of 1/8 for each, independently of everything else.

For s bits, probability of 1/2s for each of the 2s possibilities.
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Sequence of integers from 1 to 6:

Sequence of integers from 1 to 100: 31, 83, 02, 72, 54, 26, ...
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Random permutation:

1 2 3 4 5 6 7

1 2 3 4 6 7 5
1 3 4 6 7 5 2
3 4 6 7 5 2 1

For n objets, choose an integer from 1 to n,
then an integer from 1 to n − 1, then from 1 to n − 2, ...
Each permutation should have the same probability.

To shuffle a deck of 52 cards: 52! ≈ 2226 possibilities.
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Uniform distribution over (0, 1)

For simulation in general, we want (to imitate) a sequence U0,U1,U2, . . .
of independent random variables uniformly distributed over (0, 1).

We want P[a ≤ Uj ≤ b] = b − a.

0 1a b

To generate X such that P[X ≤ x ] = F (x):

X = F−1(Uj) = inf{x : F (x) ≥ Uj}.
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Independence:

In s dimensions, we want

P[aj ≤ Uj ≤ bj for j = 1, . . . , s] = (b1 − a1) · · · (bs − as).

We want this for any s and any choice of box.

0 1

1
U2

U1a1 b1

a2
b2

This notion of independent uniform random variables is only a
mathematical abstraction. Perhaps it does not exist in the real world!



6

Independence:

In s dimensions, we want

P[aj ≤ Uj ≤ bj for j = 1, . . . , s] = (b1 − a1) · · · (bs − as).

We want this for any s and any choice of box.

0 1

1
U2

U1a1 b1

a2
b2

This notion of independent uniform random variables is only a
mathematical abstraction. Perhaps it does not exist in the real world!



7

Physical devices for computers

Photon trajectories (sold by id-Quantique):
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Thermal noise in resistances of electronic circuits

time

0 1 0 1 0 0 1 1 1 0 0 1

00010110010100110 · · ·

The signal is sampled periodically.
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Several commercial devices on the market (and hundreds of patents!).

None is perfect.

Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸
Physical devices are essential for cryptology, lotteries, etc.
But not for simulation.
Inconvenient, not reproducible, not always reliable, and no (or little)
mathematical analysis.
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Algorithmic (pseudorandom) generators
Baby-example: Want to imitate random numbers from 1 to 100.

1. Choose x0 at random in {1, . . . , 100}.
2. For n = 1, 2, 3, ..., return xn = 12 xn−1 mod 101 .

For example, if x0 = 1:

x1 = (12× 1 mod 101) = 12,
x2 = (12× 12 mod 101) = (144 mod 101) = 43,
x3 = (12× 43 mod 101) = (516 mod 101) = 11, etc.
xn = 12n mod 101.

Visits all numbers from 1 to 100 exactly once before returning to x0.

For real numbers between 0 and 1:

u1 = x1/101 = 12/101 ≈ 0.11881188...,
u2 = x2/101 = 43/101 ≈ 0.42574257...,
u3 = x3/101 = 11/101 ≈ 0.10891089..., etc.
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A Larger Linear Recurrence

Choose 3 integers x−2, x−1, x0 in {0, 1, . . . , 4294967086} (not all 0).
For n = 1, 2, . . . , let

xn = (1403580xn−2 − 810728xn−3) mod 4294967087,

un = [xn mod 4294967087]/4294967087.

The sequence x0, x1, x2, . . . is periodic, with cycle length
42949670873 − 1 ≈ 296, and (xn−2, xn−1, xn) visits each of the
42949670873 − 1 nonzero triples exactly once when n runs over a cycle.
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A better (recommended) generator: MRG32k3a

Choose 6 integers:
x−2, x−1, x0 in {0, 1, . . . , 4294967086} (not all 0) and
y−2, y−1, y0 in {0, 1, . . . , 4294944442} (not all 0). For n = 1, 2, . . . , let

xn = (1403580xn−2 − 810728xn−3) mod 4294967087,

yn = (527612yn−1 − 1370589yn−3) mod 4294944443,

un = [(xn − yn) mod 4294967087]/4294967087.

(xn−2, xn−1, xn) visits each of the 42949670873 − 1 possible values.
(yn−2, yn−1, yn) visits each of the 42949444433 − 1 possible values.

The sequence u0, u1, u2, . . . is periodic, with 2 cycles of period

≈ 2191 ≈ 3.1× 1057.

Robust and reliable generator for simulation.
Used by SAS, R, MATLAB, Arena, Automod, Witness, Spielo gaming, ...
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1. Computer games for kids: the “look” suffices.

2. Stochastic simulation (Monte Carlo):
Simulate a mathematical model of the behavior of a complex system
(hospital, call center, logistic system, financial market, etc.). Must
reproduce the relevant statistical properties of the mathematical model.
Algorithmic generators.

3. Lotteries, casino machines, Internet gambling, etc.
It should not be possible (or practical) to make an inference that provides
an advantage in guessing the next numbers. Stronger requirements than
for simulation.
Algorithmic generators + physical noise.

4. Cryptology: Even stronger requirements. Observing any part the
output should not help guessing (with reasonable effort) any other part.
Often: very limited computational power and memory.
Nonlinear algorithmic generators with random parameters.
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Algorithmic generator

S, finite state space; s0, germe (état initial);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.
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Goal: if we observe only (u0, u1, . . .), difficult to distinguish from a
sequence of independant random variables over (0, 1).

Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

With random seed s0, an RNG is a gigantic roulette wheel.
Selecting s0 at random and generating s random numbers means spinning
the wheel and taking u = (u0, . . . , us−1).

Number of possibilities cannot exceed card(S). Ex.: shuffling 52 cards.

Lottery machines: modify the state sn frequently.
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Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.

We want to approximate “u has the uniform distribution over [0, 1]s .”

Measure of quality: Ψs must cover [0, 1]s very evenly.

Design and analysis:
1. Define a uniformity measure for Ψs , computable

without generating the points explicitly. Linear RNGs.
2. Choose a parameterized family (fast, long period, etc.)

and search for parameters that “optimize” this measure.
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Myth 1. After 60 years of study and thousands of articles, this problem is
certainly solved and RNGs available in popular software must be reliable.

No.

Myth 2. I use a fast RNG with period length > 21000, so it is certainly
excellent!

No.

Example 1. un = (n/21000) mod 1 for n = 0, 1, 2, ....

Exemple 2. Subtract-with-borrow.
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A single RNG does not suffice.

One often needs several independent streams of random numbers, e.g., to:

I Run a simulation on parallel processors.

I Compare similar systems with well synchronized common random
numbers (for sensitivity analysis, derivative estimation, optimization).
The idea is to simulate the two configurations with the same uniform
random numbers Uj used at the same places, as much as possible.
This requires good synchronization of the random numbers. Can be
complicated to implement and manage when the two configurations
do not need the same number of Uj ’s.



19A solution: RNG with multiple streams and substreams.

We have developed software tools that permit one to create
RandomStream objects at will.
Integrated in the SSJ (“Stochastic Simulation in Java”) library.
Also adopted by MATLAB, SAS, Arena, Simul8, Automod, Witness, R, ...

Each stream is a virtual RNG, also partitioned in substreams.
Can create as many “independent’ streams as we want.

In SSJ, a stream (RandomStream object) can also be an iterator on a
RQMC point set.

1

Current
state
⇓ . . . . . . . .

start start next
stream substream substream
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Example of “poor” multiple streams: Image synthesis on GPUs.
(Thanks to Steve Worley, from Worley Laboratories).
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Linear multiple recursive generator (MRG)

xn = (a1xn−1 + · · ·+ akxn−k) mod m, un = xn/m.

State: sn = (xn−k+1, . . . , xn). Max. period: ρ = mk − 1.

Numerous variants and implementations.

For k = 1: classical linear congruential generator (LCG).

Structure of the points Ψs :

x0, . . . , xk−1 can take any value from 0 to m − 1, then xk , xk+1, . . . are
determined by the linear recurrence. Thus,
(x0, . . . , xk−1) 7→ (x0, . . . , xk−1, xk , . . . , xs−1) is a linear mapping.

It follows that Ψs is a linear space; it is the intersection of a lattice with
the unit cube.
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xn = 12 xn−1 mod 101; un = xn/101
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0 0.005

0.005

un

un−1

xn = 4809922 xn−1 mod 60466169 and un = xn/60466169
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1

un

un−1

xn = 51 xn−1 mod 101; un = xn/101.
Good uniformity in one dimension, but not in two!
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Example: lagged-Fibonacci

xn = (xn−r + xn−k) mod m.

Very fast, but bad. All points (un, un+k−r , un+k) belong to only two
parallel planes in [0, 1)3.
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Example: subtract-with-borrow (SWB)

State (xn−48, . . . , xn−1, cn−1) where xn ∈ {0, . . . , 231 − 1} and cn ∈ {0, 1}:

xn = (xn−8 − xn−48 − cn−1) mod 231,

cn = 1 if xn−8 − xn−48 − cn−1 < 0, cn = 0 otherwise,

un = xn/231,

Period ρ ≈ 21479 ≈ 1.67× 10445.

In Mathematica versions ≤ 5.2:
modified SWB with output ũn = x2n/262 + x2n+1/231.

Great generator? No, not at all; very bad...
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Too obvious dependence between successive values.
All points (un, un+40, un+48) belong to only two parallel planes in [0, 1)3.

Ferrenberg et Landau (1991). “Critical behavior of the three-dimensional
Ising model: A high-resolution Monte Carlo study.”

Ferrenberg, Landau et Wong (1992). “Monte Carlo simulations: Hidden
errors from “good” random number generators.”

Tezuka, L’Ecuyer, and Couture (1993). “On the Add-with-Carry and
Subtract-with-Borrow Random Number Generators.”

Couture and L’Ecuyer (1994) “On the Lattice Structure of Certain Linear
Congruential Sequences Related to AWC/SWB Generators.”
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Combined.

Two [or more] MRGs in parallel:

x1,n = (a1,1x1,n−1 + · · ·+ a1,kx1,n−k) mod m1,

x2,n = (a2,1x2,n−1 + · · ·+ a2,kx2,n−k) mod m2.

One possible combinaison:

zn := (x1,n − x2,n) mod m1; un := zn/m1;

L’Ecuyer (1996): the sequence {un, n ≥ 0} is also the output of an MRG
of modulus m = m1m2, with small added “noise”. The period can reach
(mk

1 − 1)(mk
2 − 1)/2.

Permits one to implement efficiently an MRG with large m and several
large nonzero coefficients.

Parameters: L’Ecuyer (1999); L’Ecuyer et Touzin (2000).
Implementations with multiple streams.
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1000 points generated by MRG32k3a
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Faster RNG: operations on blocks of bits.
Example: Choose x0 ∈ {2, . . . , 232 − 1} (32 bits). Evolution:

B = (

(xn−1 � 6) XOR xn−1

)� 13

xn = (((xn−1 with last bit at 0)� 18) XOR B).

xn−1 = 00010100101001101100110110100101

10010100101001101100110110100101

00111101000101011010010011100101

B = 00111101000101011010010011100101

xn−1 00010100101001101100110110100100

00010100101001101100110110100100

xn = 00110110100100011110100010101101

The first 31 bits of x1, x2, x3, . . . , visit all integers from 1 to 2147483647
(= 231 − 1) exactly once before returning to x0.

For real numbers in (0, 1): un = xn/(232 + 1).
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More realistic: LFSR113

Take 4 recurrences on blocks of 32 bits, in parallel.
The periods are 231 − 1, 229 − 1, 228 − 1, 225 − 1.

We add these 4 states by a XOR, then we divide by 232 + 1.
The output has period ≈ 2113 ≈ 1034.

Good generator, faster than MRG32k3a, although successive values of bit
i of the output obey a linear relationship or order 113, for each i .
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1000 points generated by LFSR113
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1

un

un−1

1000 points generated by MRG32k3a + LFSR113 (add mod 1)
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General linear recurrences modulo 2

xn = A xn−1 mod 2 = (xn,0, . . . , xn,k−1)t, (state, k bits)
yn = B xn mod 2 = (yn,0, . . . , yn,w−1)t, (w bits)
un =

∑w
j=1 yn,j−12−j = .yn,0 yn,1 yn,2 · · · , (output)

Clever choice of A: transition via shifts, XOR, AND, masks, etc., on
blocks of bits. Very fast.

Special cases: Tausworthe, LFSR, GFSR, twisted GFSR, Mersenne twister,
WELL, xorshift, etc.

Each coordinate of xn and of yn follows the recurrence

xn,j = (α1xn−1,j + · · ·+ αkxn−k,j),

with characteristic polynomial

P(z) = zk − α1z
k−1 − · · · − αk−1z − αk = det(A− zI).

Max. period: ρ = 2k − 1 reached iff P(z) is primitive.
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Uniformity measures based on equidistribution.

Example: we partition [0, 1)s in 2` equal intervals.
Gives 2s` cubic boxes.

The points are equidistributed for ` bits in s dimensions if each box
contains exactly 2k−s` points of Ψs .

For each s and `, the s` bits that determine the box can be written as
M x0 and equidistribution holds iff the matrix M has full rank.

If this holds for all s and ` such that s` ≤ k , the RNG is called maximally
equidistributed.

Can be generalized to rectangular boxes...

Examples: LFSR113, Mersenne twister (MT19937), the WELL family, ...
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Impact of a matrix A that changes the state too slowly.

Experiment: take an initial state with a single bit at 1.
Try all k possibilities and take the average of the k values of un obtained
for each n.

WELL19937 vs MT19937; moving average over 1000 iterations.
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Combined linear/nonlinear generators

All linear generators modulo 2 fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

I to eliminate this linear structure;

I to keep some theoretical guarantees for the uniformity;

I a fast implantation.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

Theorem: The combination has at least as much equidistribution as the
linear component.

Empirical tests: excellent behavior, more robust than linear generators.



40

Combined linear/nonlinear generators

All linear generators modulo 2 fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

I to eliminate this linear structure;

I to keep some theoretical guarantees for the uniformity;

I a fast implantation.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

Theorem: The combination has at least as much equidistribution as the
linear component.

Empirical tests: excellent behavior, more robust than linear generators.



40

Combined linear/nonlinear generators

All linear generators modulo 2 fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

I to eliminate this linear structure;

I to keep some theoretical guarantees for the uniformity;

I a fast implantation.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

Theorem: The combination has at least as much equidistribution as the
linear component.

Empirical tests: excellent behavior, more robust than linear generators.



40

Combined linear/nonlinear generators

All linear generators modulo 2 fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

I to eliminate this linear structure;

I to keep some theoretical guarantees for the uniformity;

I a fast implantation.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

Theorem: The combination has at least as much equidistribution as the
linear component.

Empirical tests: excellent behavior, more robust than linear generators.



40

Combined linear/nonlinear generators

All linear generators modulo 2 fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

I to eliminate this linear structure;

I to keep some theoretical guarantees for the uniformity;

I a fast implantation.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.

Theorem: The combination has at least as much equidistribution as the
linear component.

Empirical tests: excellent behavior, more robust than linear generators.



41

Speed of some generators in SSJ

gen. time: CPU time to generate 109 uniform random numbers.
jump time: time to get a new stream (jump ahead) 106 times.

Java JDK 1.5, 2.4 GHz 64-bit computer
RNG period gen. time jump time

LFSR113 2113 31 0.1
WELL512 2512 33 234
WELL1024 21024 34 917
LFSR258 2258 35 0.2
MT19937 219937 36 * 46
MRG31k3p 2185 51 0.9
MRG32k3a 2191 70 1.1
RandRijndael 2130 127 0.6
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Empirical statistical Tests

Hypothesis H0: “{u0, u1, u2, . . . } are i.i.d. U(0, 1) r.v.’s”.
We know that H0 is false, but can we detect it ?

Test:
— Define a statistic T , function of the ui , whose distribution under H0 is
known (or approx.).
— Reject H0 if value of T is too extreme. If suspect, can repeat.

Different tests detect different deficiencies.

Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an RNG that passes all the tests? Formally
impossible.

Compromise: Build an RNG that passes most reasonable tests.
Tests that fail are hard to find.
Formalization: computational complexity framework.
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Example: A collision test
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Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.
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Collision test

Partition [0, 1)s in k = d s cubic boxes of equal size.
Generate n points (uis , . . . , uis+s−1) in [0, 1)s .

C = number of collisions.

Under H0, C ≈ Poisson of mean λ = n2/(2k), if k is large and λ is small.

If we observe c collisions, we compute the p-values:

p+(c) = P[X ≥ c | X ∼ Poisson(λ)],

p−(c) = P[X ≤ c | X ∼ Poisson(λ)],

We reject H0 if p+(c) is too close to 0 (too many collisions)
or p−(c) is too close to 1 (too few collisions).
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45Example: LCG with m = 101 and a = 12:
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20 2 0 0.1304
40 8 1 0.0015
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46LCG with m = 101 and a = 51:
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10 1/2 1 0.3718

20 2 5 0.0177
40 8 20 2.2× 10−9
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SWB in Mathematica

For the unit cube [0, 1)3, divide each axis in d = 100 equal intervals. This
gives k = 1003 = 1 million boxes.

Generate n = 10 000 vectors in 25 dimensions: (U0, . . . ,U24).
For each, note the box where (U0,U20,U24) falls.
Here, λ = 50.

Results: C = 2070, 2137, 2100, 2104, 2127, ....

With MRG32k3a: C = 41, 66, 53, 50, 54, ....
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Other examples of tests

Nearest pairs of points in [0, 1)t .

Sorting card decks (poker, etc.).

Rank of random binary matrix.

Linear complexity of binary sequence.

Measures of entropy.

Complexity measures based on data compression.

Etc.
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The TestU01 software

[L’Ecuyer et Simard, ACM Trans. on Math. Software, 2007].

I Large variety of statistical tests.
For both algorithmic and physical RNGs.
Widely used. On my web page.

I Some predefined batteries of tests:
SmallCrush: quick check, 15 seconds;
Crush: 96 test statistics, 1 hour;
BigCrush: 144 test statistics, 6 hours;
Rabbit: for bit strings.

I Many widely-used generators fail these batteries unequivocally.



50Results of test batteries applied to some well-known RNGs

ρ = period length;
t-32 and t-64 gives the CPU time to generate 108 random numbers.

Number of failed tests (p-value < 10−10 or > 1− 10−10) in each battery.

Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

LCG in Microsoft VisualBasic 24 3.9 0.66 14 — —

LCG(232, 69069, 1), VAX 32 3.2 0.67 11 106 —

LCG(232, 1099087573, 0) Fishman 30 3.2 0.66 13 110 —

LCG(248, 25214903917, 11), Unix 48 4.1 0.65 4 21 —

Java.util.Random 47 6.3 0.76 1 9 21

LCG(248, 44485709377909, 0), Cray 46 4.1 0.65 5 24 —

LCG(259, 1313, 0), NAG 57 4.2 0.76 1 10 17

LCG(231–1, 16807, 0), Wide use 31 3.8 3.6 3 42 —

LCG(231–1, 397204094, 0), SAS 31 19.0 4.0 2 38 —

LCG(231–1, 950706376, 0), IMSL 31 20.0 4.0 2 42 —

LCG(1012–11, ..., 0), Maple 39.9 87.0 25.0 1 22 34
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Wichmann-Hill, MS-Excel 42.7 10.0 11.2 1 12 22

CombLec88, boost 61 7.0 1.2 1

Knuth(38) 56 7.9 7.4 1 2

ran2, in Numerical Recipes 61 7.5 2.5

CombMRG96 185 9.4 2.0

MRG31k3p 185 7.3 2.0

MRG32k3a SSJ + others 191 10.0 2.1

MRG63k3a 377 — 4.3

LFib(231, 55, 24, +), Knuth 85 3.8 1.1 2 9 14

LFib(231, 55, 24, −), Matpack 85 3.9 1.5 2 11 19

ran3, in Numerical Recipes 2.2 0.9 11 17

LFib(248, 607, 273, +), boost 638 2.4 1.4 2 2

Unix-random-32 37 4.7 1.6 5 101 —

Unix-random-64 45 4.7 1.5 4 57 —

Unix-random-128 61 4.7 1.5 2 13 19
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Knuth-ran_array2 129 5.0 2.6 3 4

Knuth-ranf_array2 129 11.0 4.5

SWB(224, 10, 24) 567 9.4 3.4 2 30 46

SWB(232 − 5, 22, 43) 1376 3.9 1.5 8 17

Mathematica-SWB 1479 — — 1 15 —

GFSR(250, 103) 250 3.6 0.9 1 8 14

TT800 800 4.0 1.1 12 14

MT19937, widely used 19937 4.3 1.6 2 2

WELL19937a 19937 4.3 1.3 2 2

LFSR113 113 4.0 1.0 6 6

LFSR258 258 6.0 1.2 6 6

Marsaglia-xorshift 32 3.2 0.7 5 59 —
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Matlab-rand, (until 2008) 1492 27.0 8.4 5 8

Matlab in randn (normal) 64 3.7 0.8 3 5

SuperDuper-73, in S-Plus 62 3.3 0.8 1 25 —

R-MultiCarry, (changed) 60 3.9 0.8 2 40 —

KISS93 95 3.8 0.9 1 1

KISS99 123 4.0 1.1

AES (OFB) 10.8 5.8

AES (CTR) 130 10.3 5.4

AES (KTR) 130 10.2 5.2

SHA-1 (OFB) 65.9 22.4

SHA-1 (CTR) 442 30.9 10.0
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Conclusion

I A flurry of computer applications require RNGs.
A poor generator can severely bias simulation results, or permit one
to cheat in computer lotteries or games, or cause important security
flaws.

I Don’t trust blindly the RNGs of commercial or other widely-used
software, especially if they hide the algorithm (proprietary software...).

I Some software products have good RNGs; check what it is.

I RNGs with multiple streams are available from my web page in Java,
C, and C++. Just Google “pierre lecuyer.”

I Examples of work in progress:
Fast nonlinear RNGs with provably good uniformity;
RNGs based on multiplicative recurrences;
RNGs with multiple streams for GPUs.


