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Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

for some fixed time horizon τ .

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τ , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .

E[µ̂n] = µ and Var[µ̂n] = 1
nVar[Yi ] = O(n−1).
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Example 1 (very simple, one-dimensional state)

Let Y = θU + (1− θ)V , where U,V indep. U(0, 1) and θ ∈ [0, 1).
This Y has cdf Gθ.

Markov chain is defined by

X0 = U0 ∼ U(0, 1);

Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

where Uj ∼ U(0, 1). Then, Xj ∼ U(0, 1).

We consider gj(Xj) = Xj − 1/2 and gj(Xj) = X 2
j − 1/3. E[gj(Xj)] = 0.
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Example 2: Asian Call Option (two-dim state)

Given observation times t1, t2, . . . , tτ suppose

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

Running average: S̄j = 1
j

∑j
i=1 S(ti ).

Payoff at step j = τ is Y = gτ (Xτ ) = max
[
0, S̄τ − K

]
.

State: Xj = (S(tj), S̄j) .

Transition:

Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.
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Plenty of applications:

Finance

Queueing systems

Inventory, distribution, logistic systems

Reliability models

MCMC in Bayesian statistics

Etc.
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Classical Randomized Quasi-Monte Carlo (RQMC)
for Markov Chains

One RQMC point for each sample path.

Put Vi = (Ui ,1, . . . ,Ui ,τ ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s satisfies:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn covers (0, 1)s very evenly (i.e., has low discrepancy).

The dimension s is often very large!
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Array-RQMC for Markov Chains
L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Earlier deterministic versions: Lécot et al.
Simulate an “array” of n chains in “parallel.”
At each step, use an RQMC point set Pn to advance all the chains by one
step, with global negative dependence across the chains.

Goal: Want small discrepancy (or “distance”) between empirical
distribution of Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj .

If we succeed, these (unbiased) estimators will have small variance:

µj = E[gj(Xj)] ≈ µ̂arqmc,j ,n =
1

n

n−1∑
i=0

gj(Xi ,j)

Var[µ̂arqmc,j ,n] =
Var[gj(Xi ,j)]

n
+

2

n2

n−1∑
i=0

n−1∑
k=i+1

Cov[gj(Xi ,j), gj(Xk,j)] .
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Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the
filtration F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance
sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2015]: Sequential QMC.
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Convergence results and applications

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc. Var in O(n−3/2).

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification,
Sudoku sampling, ...

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters). var in
o(n−1).
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This can be achieved (in principle) by a change of variable. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

(we take a single j here) by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
To construct the (randomized) Ui,j , select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).
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Key issues:

1. How can we preserve LD of Sn,j as j increases?

2. Can we prove that Var[µ̂arqmc,j ,n] = O(n−α) for some α > 1?
How? What α?

Intuition: Write discrepancy measure of Sn,j as the mean square
integration error (or variance) when integrating some function
ψ : [0, 1)`+d → R using Qn.
Use RQMC theory to show it is small if Qn has LD. Then use induction.

Examples of convergence-rate results:

For ` = d = 1, with stratified sampling, and smooth ϕj and gj , we proved
a variance bound with α = 3/2.

For general `, Gerber and Chopin (2015) have a proof that
Var[µ̂arqmc,j ,n] = o(n−1) when sorting the states with a Hilbert curve,
under certain conditions.
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Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

end for
Estimate µ by the average Ȳn = µ̂arqmc,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased
estimator of Var[Ȳn].
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The one-dimensional example

X0 = U0; Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

For array-RQMC, we take Xi ,0 = wi = (i − 1/2)/n.

We tried different RQMC methods, for n = 29 to n = 221.
We did m = 200 independent replications for each n.
We fitted a linear regression of log2Var[Ȳn,j ] vs log2 n.
We also looked at E[D2

j ] for the Cramer von Mises statistic:

D2
j =

1

12n2
+

1

n

n−1∑
i=0

((i + 0.5/n)− X(i),j)
2.

Some MC and RQMC point sets:
MC: Crude Monte Carlo
LHS: Latin hypercube sampling
SS: Stratified sampling
SSA: Stratified sampling with antithetic variates in each stratum
Sobol2: Sobol’ points with linear matrix scrambling and digital random shift
Korobov: Korobov lattice in 2 dim. with a random shift modulo 1
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Slope ... vs log2 n:

RQMC points log2 E[D2
j ] log2 Var[Ȳn,j ] Var[Ȳn,j ] for n = 221

Xj − 1/2 X 2
j − 1/3

j = 4
MC -1.01 -1.02 -1.01 4.50× 10−8

LHS -1.02 -1.05 -1.00 1.52× 10−9

SS -1.50 -2.00 -2.00 2.52× 10−14

SSA -1.50 -2.63 -2.60 6.73× 10−19

Sobol2 -1.51 -3.21 -3.16 4.22× 10−21

Korobov -1.87 -2.00 -1.99 2.52× 10−14

j = 20
MC -1.00 -1.00 -0.99

LHS -1.00 -1.00 -1.00
SS -1.50 -2.00 -2.01

SSA -1.50 -2.63 -2.58
Sobol2 -1.49 -3.17 -3.15

Korobov -1.88 -1.99 -1.98
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Mapping chains to points when ` > 2

1. Multivariate batch sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

· · ·
At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?
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A (4,4) mapping
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A (4,4) mapping
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A (16,1) mapping, sorting along first coordinate
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A (8,2) mapping
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A (1,16) mapping, sorting along second coordinate
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Mapping chains to points when ` > 2

1. Multivariate split sort:
n1 = n2 = · · · = 2.

Sort by first coordinate in 2 packets.

Sort each packet by second coordinate in 2 packets.

etc.
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Mapping by split sort

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions after
random digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

z
z

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s



D
ra

ft

24

Mapping by split sort
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Mapping by split sort
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Mapping by split sort
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Mapping by batch sort and split sort
Good news: The state space does not have to be [0, 1)d :

States of the chains
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Example: Asian Call Option
S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1
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Array-RQMC for Asian option, 2-dim. batch sort
Sort in n1 packets based on S(tj), then sort the packets based on S̄j .

log2 n
8 10 12 14 16 18 20

log2Var[µ̂arqmc,n]

-40

-30

-20

-10

n−2

n−1

n1 = n2/3

n1 = n1/3

n1 = n2 = n−1/2

sort on S̄j
sort on S(tj)
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Lowering the state dimension

For large `: Define a transformation v : X → [0, 1)c for c < `.
Sort the transformed points v(Xi ,j) in c dimensions.
Now we only need c + d dimensions for the RQMC point sets;
c for the mapping and d to advance the chain.

Choice of v : states mapped to nearby values should be nearly equivalent.

For c = 1, X is mapped to [0, 1), which leads to a one-dim sort.

The mapping v with c = 1 can be based on a space-filling curve:
Z-curve, in Wächter and Keller [2008];
Hilbert curve (also mentioned by W. and K.), is used in Gerber and
Chopin [2015], who prove o(n−1) convergence for the variance.

We only need a good pairing between states and RQMC points.
Any good way of doing this is welcome!
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Hilbert curve sort
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Sorting by a Hilbert curve

Suppose the state space is X = [0, 1)`.
Partition this cube into 2k` subcubes of equal size.
While any subcube contains more than one point, partition it in 2`.

The Hilbert curve defines a way to enumerate (order) the subcubes so
that successive subcubes are always adjacent.
This gives a way to sort the points.
Reasonable “traveling salesman” path!

Then we can map states to points as if the state had one dimension.
We use RQMC points in 1 + d dimensions, ordered by first coordinate,
which is used to match the states, and d (randomized) coordinates are
used to advance the chains.
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Hilbert curve sort

States of the chains
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Hilbert curve sort

States of the chains
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Hilbert curve sort

States of the chains
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Hilbert curve sort

States of the chains
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What if state space is not [0, 1)`?

Ex.: For the Asian option, X = [0,∞)2.

Then one must define a transformation ψ : X → [0, 1)` so that the
transformed state is approximately uniformly distributed over [0, 1)`.

Not easy to find a good ψ in general!
Gerber and Chopin [2015] propose basically trial and error.

A lousy choice can kill efficiency.
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Hilbert curve batch sort

Perform a multivariate batch sort, or a split sort, and then enumerate the
boxes as in the Hilbert curve sort.
Big advantage: the state space can be R`.
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Example: Asian Call Option

S(0) = 100, K = 100, r = ln(1.09), σ = 0.2, tj = (230 + j)/365,
j = 1, . . . , τ = 10.
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Example: Asian Call Option

Slope ... vs log2 n:

RQMC points log2 Var[Ȳn,j ] RQMC VRF for n = 218

Split sort
Sobol2 -1.86 2.7× 104

Korobov+baker -1.91 4.7× 105

Batch sort (equal)
Sobol2 -1.87 2.4× 104

Korobov+baker -1.91 4.7× 105

Hilbert batch sort
Stratif. -1.56 1.4× 103

Sobol2 -1.80 1.4× 104

Korobov+baker -1.89 4.6× 105
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Convergence results and proofs

L., Lécot, Tuffin [2008] + some extensions.

Simple case: suppose ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). Define

∆j = sup
x∈X
|F̂j(x)− Fj(x)| (discrepancy of states)

V (gj) =

∫ 1

0
|dgj(x)| (variation of gj)

Theorem.
∣∣Ȳn,j − E [gj(Xj)]

∣∣ ≤ ∆jV (gj).
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Convergence results and proofs
Assumption 1. ϕj(x , u) non-decreasing in u. That is, we use inversion to
generate next state from cdf Fj(z | · ) = P[Xj ≤ z | Xj−1 = · ].

Let Λj = sup
0≤z≤1

V (Fj(z | · ]).

Assumption 2. Each square of
√
n ×
√
n grid has one RQMC point.

Proposition. (Worst-case error.) Under Assumptions 1 and 2,

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)

j∏
i=k+1

Λi .

Corollary. If Λj ≤ ρ < 1 for all j , then

∆j ≤
1 + ρ

1− ρ
n−1/2.
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Conclusion

We have convergence proofs for special cases, but not yet for the rates we
observe in examples.

Many other sorting strategies remain to be explored.

Other examples and applications. Higher dimension.

Array-RQMC is good not only to estimate the mean more accurately, but
also to estimate the entire distribution of the state.


