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Software libraries from my lab

Lattice Tester: Base tools to mesure the uniformity of integral lattices in general, in terms

of spectral test in primal or dual lattice, with L2 or L1 norm, figures of merit that account

for many projections, etc.

LatMRG: Software to analyze the lattice structure of linear random number generators

(multiple recursive generators (MRGs), matrix MRGs, multiply-with-carry generators

(MWC)) and search for good ones in terms of certain figures of merit. Since about 1986.

LatNet Builder: A tool to search for good good lattice rules, polynomial lattice rules, and

digital nets in base 2, in terms of figures of merit specified by the user.

Both LatMRG and LatNet Builder use Lattice Tester.

These tools/libraries are in C++ and use the NTL library for arbitrary-precision

calculations, and some polynomial, matrix, and lattice operations.

Other software on my table: F2LinearGen, TestU01-64, SSJ.
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LatMRG: Lattice structure of linear generators

Linear congruential generator (LCG): xn = axn−1 mod m; un = xn/m.

Examples with m = 101, for a = 12 (left) and a = 51 (right).
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More general
Multiple recursive generator (MRG):

xn = (a1xn−1 + · · ·+ akxn−k) mod m, un = xn/m.

Matrix linear congruential generator:

xn = Axn−1 mod m, yn = Bxn mod m, un = yn/m = (unw , . . . , unw+w−1)
t,

where A and B are k × k and w × k matrices.

Set of all possible vectors of t successive outputs,

Ψt = {u = (u0, . . . , ut−1), x0 ∈ Zkm}.

We want the set Ψt to cover [0, 1]
t very evenly, for all t up to (say) 50 or so.

In fact, Ψt = Lt ∩ [0, 1)t where mLt is an integral lattice in t dimensions (Zt ⊂ Lt).

Combined linear generators (e.g., sum mod 1) also have a lattice structure.
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Is it good or bad to have a lattice structure? Discuss.

How to measure the quality of the lattice structure?

Lattice rules used for quasi-Monte Carlo (QMC) have exactly the same type of structure.

The most popular figure of merit (FOM) used to measure their quality and to select

specific parameters is a weighted Pα.

This weighted Pα is very relevant because it provides error bounds for QMC and variance
bounds for RQMC, for certain classes of smooth functions. But its computation time

increases at least linearly with the cardinality of Ψt , which is the number n of points in the

lattice rule.

For RNGs, this cardinality is huge, usually more than 2200 and often much more, so Pα
cannot be used. Then what can we do? We use the spectral test instead.
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6A basis for the lattice Lt is a set of t independent vectors v1, . . . , vt such that

Lt =

t∑
j=1

Zvj =

v =
t∑
j=1

zjvj | each zj ∈ Z

 .
The dual basis is the set of (integer) vectors w1, . . . ,wt such that wi · vi = δi ,j = I[i = j ].
It is a basis of the dual lattice L∗t .

In our software, we work with the rescaled lattice Λt = mLt , so all coordinates of all vectors are

integer and can be represented exactly. The lattices Λt and L
∗
t are m-dual to each other.

Spectral test. The (Euclidean) length ℓt of a shortest nonzero vector in the dual lattice is the

inverse of the distance between successive hyperplanes that contain all the points of Lt . With the

L1-norm, the shortest dual vector length gives the minimal number of hyperplanes that contain all

the points of Ψt . We may also look at the length dt of the shortest vector in the primal lattice.

We want all these lengths to be not too small. But there are upper bounds on the best possible

values: for a lattice of density η in t dimensions, dt ≤ d∗t (η) := γ
1/2
t η

−1/t where the γt are the

Hermite constants (known exactly for t ≤ 8 and approximately otherwise).

To compare across different densities and dimensions, we standardize the lengths to values in (0, 1]

by taking dt/d
∗
t (η) in the primal lattice and ℓt/d

∗
t (1/η) in the dual.
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Non-successive outputs

In addition to vectors of successive outputs (u0, . . . , ut−1), we can also look at vectors of

outputs (ui1 , . . . , uis ) for arbitrary lags I = {i1, . . . , is} ⊆ {1, . . . , t}. These vectors generate
a lattice LI which is the projection of Lt over the set of coordinates in I.

To define a figure of merit (FOM), we can select a class J of subsets I, compute the
normalized uniformity measure for each, and take the (possibly weighted) worst case

(minimum) as a figure of merit (FOM):

MJ = min
I∈J
ωIℓI/d

∗
|I|(1/ηI).

The set J can contain pairs, triples, etc., whose indices are not no far apart, e.g.:

Mt1,...,td = min

[
min
I∈S(t1)

ωIℓI/ℓ
∗
I , min
2≤s≤d

min
I∈S(s,ts)

ωIℓI/ℓ
∗
I

]
,

where

S(t1) = {I = {1, . . . , s} | d + 1 ≤ s ≤ t1},
S(s, ts) = {I = {i1, . . . , is} | 1 = i1 < · · · < is ≤ ts}.
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Multiply-with-carry (MWC) generators

Let b ≥ 2 and a0, . . . , ak arbitrary integers such that gcd(a0, b) = 1, a∗0 = a−10 mod b.
MWC of order k in base b: if current state is xn−1 = (xn−1, . . . , xn−k , cn−1), we put

τn = a1xn−1 + · · ·+ akxn−k + cn−1, xn = a
∗
0τn mod b, cn = ⌊(τn − a0xn)/b⌋,

xn = (xn, . . . , xn−k+1, cn), un =
∑∞
ℓ=1 xn+ℓ−1b

−ℓ.

We take b as a power of 2 (for speed) and truncate the last sum to one term or two.

The MWC is equivalent to an LCG with modulus m = −a0 +
∑k
ℓ=1 aℓb

ℓ and multiplier

b∗ = b−1 mod m. It is as a clever way to implement an LCG with a very large modulus.

We can analyze their lattice structure by analyzing the corresponding (large) LCG.

The largest possible period length is m − 1, reached when m is prime and b∗ is primitive
mod m. Goresky and Klapper (2003) have listed such max-period generators, but their

lattice structure was never examined.
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If a0 = 1, then b
∗ = (m+1)/b, xn = τn mod b and cn = τn div b. Easier to implement, but

then the max period is (m − 1)/2, attained iff (m − 1)/2 is odd and 2 is primitive mod m.
This holds for instance when (m − 1)/2 is prime. We want to search for good parameters
of this type, say for b = 232 and b = 264.

Marsaglia and Zaman (1991) initially proposed add-with-carry and subtract-with-borrow

generators, which are MWC with a0 = ±ar = ±ak = 1 for some r < k and the other
aj = 0. But then it was shown that the nonzero points (un−k , un−r , un) for the equivalent

LCG lie in only two parallel planes!

Better MWC generators can be constructed by selecting more general coefficients.

Goal: search for MWC constructions that are fast and have good uniformity properties.

These RNGs can be very fast on recent hardware, by taking either b = 232 or b = 264.

In particular, most GPUs support only 32-bit integers, but one can multiply two 32-bit

integers and extract the low32 and high32 parts separately, in one instruction. This can

compute xn and cn efficiently when b = 2
32.
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What LatMRG is supposed to do

Testing a given generator. We may want to check if the RNG has maximal period, or apply

the spectral test in some way, compute a FOM, etc.

Searching for good parameters. For a given type of construction, given modulus m and

order k , perhaps with constraints on the coefficients, we want to search for RNGs that

minimize a given FOM.

There is a very flexible executable program that can analyze an RNG or make a search.

The input parameters are given in a xml file.

At a lower level, LatMRG is a C++ library that contains a few dozen classes that can

construct the appropriate lattices for selected classes of linear RNGs, and search for good

RNGs. It uses NTL and Lattice Tester.
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History of LatMRG

First version written in Modula-2 around 1988. (Earlier Pascal program in 1985.)

We used our own package (SENTIERS) for arithmetic with arbitrary large integers.

Paper on LatMRG in INFORMS JOC (1997). Was used for many of my RNG papers.

Modula-2 compilers became too hard to find. Richard Simard started translating in C++

around 2000, and several students did further pieces. SENTIERS was replaced by NTL.

We use templates for flexible types of integers and real numbers.

In 2014, David Munger split the old LatMRG in two parts: the current Lattice Tester

(initially called latcommon) which provides facilities to analyze arbitrary integer lattices, and

the new LatMRG built over Lattice Tester to test the lattice structure of linear RNGs.

Lattice Tester is also used by LatNet Builder.

Several students made changes to all this software until recently. Some algorithms have

changed along the way. When I got into the code recently, I found it rather messy.

I am currently working on Lattice Tester and LatMRG intensively.
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Lattice Tester

Basic objects: Integral lattices and their m-dual (also integral).

Main tasks:
A. Basis Construction. Given a set of vectors, find a basis for the generated lattice.

B. Find m-Dual Basis. Given a lattice basis, compute the corresponding m-dual basis.

C. Lattice Basis Reduction. Given a basis, find another basis whose vectors are nearly

orthogonal or as short as possible in some sense. LLL-reduction, BKZ-reduction,

Minkowski-reduction, etc.

D. Shortest Vector. Find shortest nonzero vector in the lattice, with L2 or L1 norm.

Design: Lattice Tester is a C++ library that contains several dozen classes to manipulate

and reduce lattice bases, find shortest nonzero vectors, compute FOMs, etc. Also a lot of

basic facilities of all kinds to operate on flexible (integer and float) types, vectors, matrices,

interface NTL, etc.
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Alternative algorithms

Example: When computing the FOM Mt1,...,td for the dual lattice, for a large collection of

projections, one must construct a basis for the projection from a set of generating vectors,

then compute the m-dual basis, then find a shortest vector in it, for each projection.

We have a method that constructs a triangular basis, and a faster method that constructs

an LLL-reduced (but not triangular) basis. But computing the m-dual is faster for the

triangular basis than for the other one.

Timings for different methods, in basic clock units, for LCG with m = 1048573:

dim: 10 20 30 40 50

UppTri 859 857 1439 2064 2776

LLL, δ = 0.5 62 201 424 653 1001

LLL, δ = 0.8 212 1489 2977 4671 5342

LLL, δ = 0.9999 115 1291 3088 4388 8208

mDualUT 212 1022 2971 6173 10785

mDual 1813 3444 8105 18546 29830
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Also, computing a shortest vector using the branch-and-bound algorithm is faster if we

apply more intensive pre-reductions via LLL or BKZ, but the latter takes time.

The optimal compromise depends on the dimension: in higher dimensions, we should work

more on pre-reductions.

Timings for different methods, in basic clock units, for LCG with m = 1073741827:

pre-red.: None pairwise LLL, 0.5 LLL, 0.8 LLL, 0.99999 BKZ

dim.

10 2279295 103743 260 238 518 401

20 5937701 1934427 2523 1331 1595 3100

30 584351 90625 16362 18358

40 239600527 15685520 2797533 3390653

With no (or too weak) pre-reductions, the BB takes much more time and often just fails.
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XML Input for LatMRG Executable
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Conclusion

▶ This software is for (few) specialists who construct and analyze RNGs, not really for
the general users of RNGs. I would like it to be useful for them.

▶ I am open to suggestions on how to make it better.

▶ If you want to contribute, let me know!
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