Randomized Quasi-Monte Carlo Simulation of Multidimensional Markov Chains

Pierre L'Ecuyer, Université de Montréal Christian Lécot, Université de Savoie, Chambéry Adam L'Archevêque-Gaudet, Université de Montréal

<□> <@> < E> < E> E のQC

Monte Carlo for Markov Chains

Setting: A Markov chain with state space $\mathcal{X} \subseteq \mathbb{R}^{\ell}$, evolves as

$$X_0 = x_0, \qquad X_j = \varphi_j(X_{j-1}, \mathbf{U}_j), \ j \ge 1,$$

where the U_j are i.i.d. uniform r.v.'s over $(0,1)^d$. We want to estimate

$$\mu = \mathbb{E}[Y]$$
 where $Y = \sum_{j=1}^{7} c_j(X_j)$

and τ is a stopping time w.r.t. $\mathcal{F}\{(j, X_j), j \ge 0\}$.

Monte Carlo for Markov Chains

Setting: A Markov chain with state space $\mathcal{X} \subseteq \mathbb{R}^{\ell}$, evolves as

$$X_0 = x_0,$$
 $X_j = \varphi_j(X_{j-1}, \mathbf{U}_j), j \ge 1,$

where the U_j are i.i.d. uniform r.v.'s over $(0,1)^d$. We want to estimate

$$\mu = \mathbb{E}[Y]$$
 where $Y = \sum_{j=1}^{\gamma} c_j(X_j)$

and τ is a stopping time w.r.t. $\mathcal{F}\{(j, X_j), j \ge 0\}$.

Ordinary MC: For i = 0, ..., n-1, generate $X_{i,j} = \varphi_j(X_{i,j-1}, \mathbf{U}_{i,j})$, $j = 1, ..., \tau_i$, where the $\mathbf{U}_{i,j}$'s are i.i.d. $U(0,1)^d$. Estimate μ by

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^{\tau_i} c(X_{i,j}) = \frac{1}{n} \sum_{i=1}^n Y_i.$$

(ロト (個) (目) (目) (E) (0)(C)

Classical RQMC for Markov Chains

Put
$$\mathbf{V}_i = (\mathbf{U}_{i,1}, \mathbf{U}_{i,2}, \dots).$$

Estimate μ by

$$\hat{\mu}_{\mathrm{rqmc},n} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{\tau_i} c(X_{i,j})$$

where $P_n = {\mathbf{V}_0, ..., \mathbf{V}_{n-1}} \subset (0, 1)^s$ has the following properties: (a) each point \mathbf{V}_i has the uniform distribution over $(0, 1)^s$; (b) P_n has low discrepancy.

Dimension is $s = \inf\{s' : \mathbb{P}[d\tau \le s'] = 1\}$. For a Markov chain, the effective dimension often remains very large!

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004]

Simulate *n* chains in parallel. At each step, use an RQMC point set P_n to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $X_{0,j}, \ldots, X_{n-1,j}$, should be a very accurate approximation of the theoretical distribution of X_j , for each j. The discrepancy between these two distributions should be as small as possible.

<□> <@> < E> < E> E のQC

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004]

Simulate *n* chains in parallel. At each step, use an RQMC point set P_n to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $X_{0,j}, \ldots, X_{n-1,j}$, should be a very accurate approximation of the theoretical distribution of X_j , for each *j*. The discrepancy between these two distributions should be as small as possible.

Then, we will have small error in the estimates:

$$\mathbb{E}[c_j(X_j)] pprox rac{1}{n} \sum_{i=0}^{n-1} c_j(X_{i,j}) \quad ext{and} \quad \mu pprox rac{1}{n} \sum_{i=0}^{n-1} Y_i.$$

<□> <@> < E> < E> E のQC

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004]

Simulate *n* chains in parallel. At each step, use an RQMC point set P_n to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $X_{0,j}, \ldots, X_{n-1,j}$, should be a very accurate approximation of the theoretical distribution of X_j , for each *j*. The discrepancy between these two distributions should be as small as possible.

Then, we will have small error in the estimates:

$$\mathbb{E}[c_j(X_j)] pprox rac{1}{n} \sum_{i=0}^{n-1} c_j(X_{i,j}) \quad ext{and} \quad \mu pprox rac{1}{n} \sum_{i=0}^{n-1} Y_i.$$

How can we preserve low-discrepancy of $X_{0,j}, \ldots, X_{n-1,j}$ when j increases? Can we quantify the variance improvement?

Select some measure of discrepancy D for a point set in the unit cube, together with RKHS of functions, and corresponding variation V.

Let $D_j = D(X_{0,j}, ..., X_{n-1,j})$, the discrepancy of the states at step j and

$$\hat{\mu}_{\operatorname{rqmc},j,n} = \frac{1}{n} \sum_{i=1}^{n} c(X_{i,j})$$

<□> <@> < E> < E> E のQC

Select some measure of discrepancy D for a point set in the unit cube, together with RKHS of functions, and corresponding variation V.

Let $D_j = D(X_{0,j}, ..., X_{n-1,j})$, the discrepancy of the states at step j and

$$\hat{u}_{\mathrm{rqmc},j,n} = \frac{1}{n} \sum_{i=1}^{n} c(X_{i,j})$$

We have

$$\operatorname{Var}[\hat{\mu}_{\operatorname{rqmc},j,n}] \leq \mathbb{E}[D_j^2] V^2(c_j).$$

We would like to show, by induction on j, that

$$\mathbb{E}[D_j^2] \leq \kappa_j n^{-\alpha+\epsilon},$$

for some $\alpha \geq 1$, where κ_j does not depend on *n* and grows only very slowly (or not at all) with *j*.

Array-RQMC algorithm

For simplicity, assume $X_j \sim U[0,1)^{\ell}$; Roughly speaking, we will view $\mathbb{E}[D_j^2]$ as a $(\ell + d)$ -dimensional integral and estimate it by randomized quasi-Monte Carlo.

1. Select an $(\ell + d)$ -dimensional low-discrepancy point set

$$\tilde{Q}_n = \{(\mathbf{w}_0, \tilde{\mathbf{u}}_0), \dots, (\mathbf{w}_{n-1}, \tilde{\mathbf{u}}_{n-1})\},\$$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

where $\mathbf{w}_i \in [0,1)^{\ell}$ and $\tilde{\mathbf{u}}_i \in [0,1)^d$.

Define a randomization of $\tilde{P}_n = {\tilde{\mathbf{u}}_0, \dots, \tilde{\mathbf{u}}_{n-1}}$. Let $P_n = (\mathbf{u}_0, \dots, \mathbf{u}_{n-1})$ denote its realization and Q_n the randomized \tilde{Q}_n . This randomization must satisfy: (a) each \mathbf{u}_i is $U[0,1)^d$ and (b) Q_n has low discrepancy (in some sense). 2. Simulate (in parallel) *n* copies of the chain, as follows:

・ロット (四)・ (日)・ (日)・ 日

For j = 1, 2, ... until all stopping times are reached Randomize \tilde{P}_n afresh into $P_n = {\mathbf{u}_0, ..., \mathbf{u}_{n-1}};$ For i = 0, ..., n-1, do $X_{i,j} = \varphi_j(X_{i,j-1}, \mathbf{u}_i);$ **2**. Simulate (in parallel) *n* copies of the chain, as follows:

For
$$j = 1, 2, ...$$
 until all stopping times are reached
Randomize \tilde{P}_n afresh into $P_n = \{\mathbf{u}_0, ..., \mathbf{u}_{n-1}\}$;
For $i = 0, ..., n-1$, do $X_{i,j} = \varphi_j(X_{i,j-1}, \mathbf{u}_i)$;
Map the *n* chains to the *n* points, and renumber the chains
accordingly, so that $X_{i,j}$ is "close" to \mathbf{w}_i for each *i*
(more on this);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Simulate (in parallel) *n* copies of the chain, as follows:

For
$$j = 1, 2, ...$$
 until all stopping times are reached
Randomize \tilde{P}_n afresh into $P_n = \{\mathbf{u}_0, ..., \mathbf{u}_{n-1}\}$;
For $i = 0, ..., n-1$, do $X_{i,j} = \varphi_j(X_{i,j-1}, \mathbf{u}_i)$;
Map the *n* chains to the *n* points, and renumber the chains
accordingly, so that $X_{i,j}$ is "close" to \mathbf{w}_i for each *i*
(more on this);

3. Estimate μ by the average \overline{Y}_n of the *n* values of *Y*. Replicate *m* times to estimate variance and compute confidence interval on μ .

Idea: Would like to estimate $\mathbb{E}[c_j(X_j)] = \mathbb{E}[c_j(\varphi_j(X_{j-1}, \mathbf{U}))]$ by RQMC using Q_n . But we replace \mathbf{w}_i by $X_{i,j-1}$.

Proposition (unbiasedness):

(a) The average \overline{Y}_n is an unbiased estimator of μ and (b) the empirical variance of its *m* copies is an unbiased estimator of $\operatorname{Var}[\overline{Y}_n]$.

(ロ) (個) (目) (目) (日) (の)

Mapping chains to points

Multivariate sort:

. . .

Sort the states (the chains) by their first coordinate, in n_1 packets of size n/n_1 .

Then sort each packet by the second coordinate, in n_2 packets of size n/n_1n_2 .

At the last level, sort each packet of size n_{ℓ} by the last coordinate. Choice of $n_1, n_2, ...$

Mapping chains to points

Multivariate sort:

Sort the states (the chains) by their first coordinate, in n_1 packets of size n/n_1 .

Then sort each packet by the second coordinate, in n_2 packets of size n/n_1n_2 .

At the last level, sort each packet of size n_{ℓ} by the last coordinate. Choice of $n_1, n_2, ...$

Generalization:

. . .

Define a sorting function $\mathbf{v}: \mathcal{X} \to [0,1)^c$ and apply the multivariate sort (in *c* dimensions) to the transformed points $v(X_{i,j})$.

Choice of v: Two states mapped to nearby values of v should be approximately equivalent.

Mapping chains to points

Multivariate sort:

Sort the states (the chains) by their first coordinate, in n_1 packets of size n/n_1 .

Then sort each packet by the second coordinate, in n_2 packets of size n/n_1n_2 .

At the last level, sort each packet of size n_{ℓ} by the last coordinate. Choice of $n_1, n_2, ...$

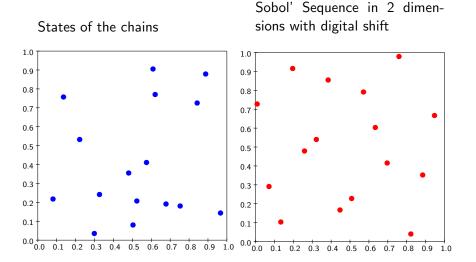
Generalization:

. . .

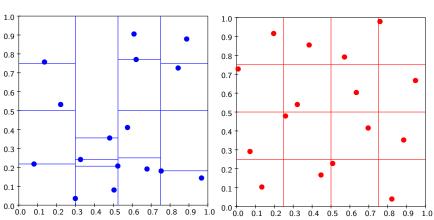
Define a sorting function $\mathbf{v}: \mathcal{X} \to [0,1)^c$ and apply the multivariate sort (in *c* dimensions) to the transformed points $v(X_{i,j})$.

Choice of v: Two states mapped to nearby values of v should be approximately equivalent.

In L. Lécot, Tuffin (2004, 2008), we had $\mathbf{v}: \mathcal{X} \to \mathbb{R}$.



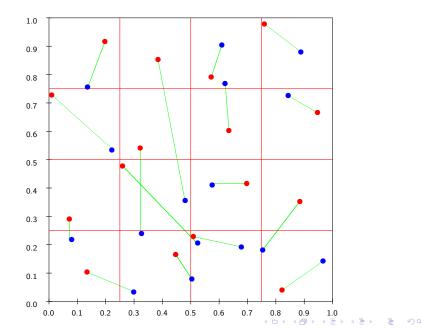
・ロト ・四ト ・ヨト ・ヨト ж



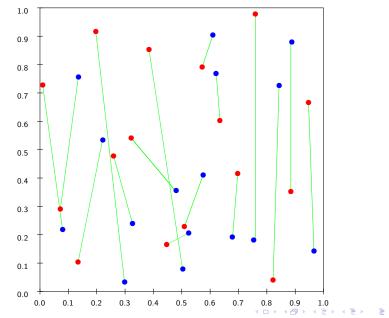
States of the chains

Sobol' Sequence in 2 dimensions with digital shift

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー めんの

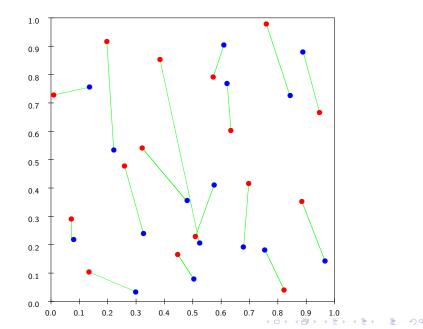


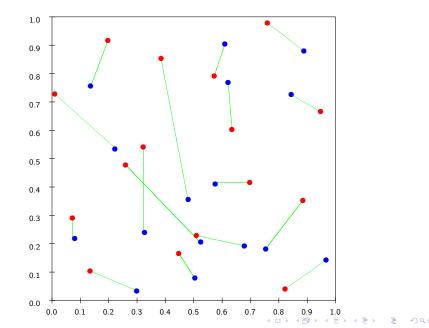
A (16,1) mapping, sorting along the first coordinate



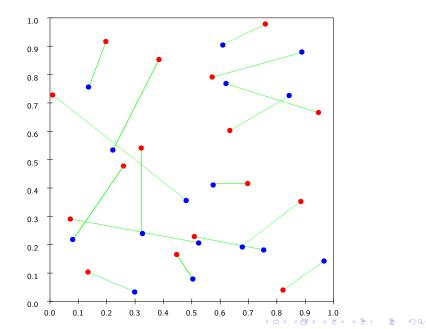
- nac

A (8,2) mapping

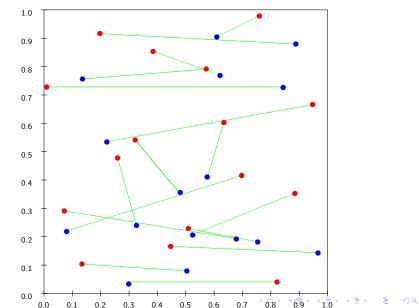




A (2,8) mapping



A (1,16) mapping, sorting along the second coordinate



$O(n^{-2})$ convergence for $\ell = d = 1$

Suppose D is the \mathcal{L}_2 star discrepancy, whose square is the CvM statistic

$$W^2 = \frac{1}{12n^2} + \frac{1}{n} \sum_{i=0}^{n-1} (w_i - x_i)^2$$

<□> <@> < E> < E> E のQC

where $w_i = (i + 1/2)/n$. At best, $W^2 = O(n^{-2})$.

$O(n^{-2})$ convergence for $\ell = d = 1$

Suppose D is the \mathcal{L}_2 star discrepancy, whose square is the CvM statistic

$$W^2 = \frac{1}{12n^2} + \frac{1}{n}\sum_{i=0}^{n-1}(w_i - x_i)^2$$

where $w_i = (i + 1/2)/n$. At best, $W^2 = O(n^{-2})$.

Suppose

$$\mathbb{E}\left[\sup_{x}|\partial\varphi(x,u)/\partial x|^{2}\right] \leq \mathcal{K}.$$

$O(n^{-2})$ convergence for $\ell = d = 1$

Suppose D is the \mathcal{L}_2 star discrepancy, whose square is the CvM statistic

$$W^2 = \frac{1}{12n^2} + \frac{1}{n}\sum_{i=0}^{n-1}(w_i - x_i)^2$$

where $w_i = (i + 1/2)/n$. At best, $W^2 = O(n^{-2})$.

Suppose

$$\mathbb{E}\left[\sup_{x}|\partial\varphi(x,u)/\partial x|^{2}\right] \leq K.$$

Induction proof: We assume that

$$\begin{split} & - \mathbb{E}[D_{j-1}^2] \leq \kappa_{j-1} n^{-2+\epsilon}, \\ & - \text{ the states at step } j-1 \text{ are sorted by increasing order,} \\ & - X_{i,j} = \varphi(X_{i,j-1}, U_{i,j}), \qquad \tilde{X}_{i,j} = \varphi(w_i, U_{i,j}), \\ & - \tilde{w}_0, \dots, \tilde{w}_{n-1} \text{ is a permutation of } w_0, \dots, w_{n-1} \\ & \text{ that matches the ordering of } \tilde{X}_{0,j}, \dots, \tilde{X}_{n-1,j}. \text{ Then,} \end{split}$$

$$\begin{split} \mathbb{E}[D_{j}^{2}] &\leq \frac{1}{n} \mathbb{E}\left[\sum_{i=0}^{n-1} (\tilde{w}_{i} - X_{i,j})^{2}\right] + \frac{1}{12n^{2}} \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}\left[(\tilde{w}_{i} - \tilde{X}_{i,j})^{2} + (\tilde{X}_{i,j} - X_{i,j})^{2} \right] + \frac{1}{12n^{2}} \\ &= \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}\left[(\tilde{w}_{i} - \tilde{X}_{i,j})^{2} + (\varphi(w_{i}, U_{i,j}) - \varphi(X_{i,j-1}, U_{i,j}))^{2} \right] + \frac{1}{12n^{2}} \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}\left[(\tilde{w}_{i} - \tilde{X}_{i,j})^{2} + K(w_{i} - X_{i,j-1})^{2} \right] + \frac{1}{12n^{2}} \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}\left[(\tilde{w}_{i} - \tilde{X}_{i,j})^{2} \right] + K\mathbb{E}[D_{j-1}^{2}] + \frac{1 - K}{12n^{2}} \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}\left[(\tilde{w}_{i} - \tilde{X}_{i,j})^{2} \right] + K\kappa_{j-1}n^{-2+\epsilon} + \frac{1 - K}{12n^{2}} \\ &\leq \mathbb{E}[\tilde{D}_{j}^{2}] + K\kappa_{j-1}n^{-2+\epsilon} - \frac{K}{12n^{2}}. \end{split}$$

Observe that $\mathbb{E}[\tilde{D}_j^2]$ is the mean square discrepancy obtained when we integrate $\varphi(w, u)$ over $[0, 1]^2$ by an RQMC point set.

If φ is smooth enough, we can find an RQMC point set $\{(w_i, U_{i,j}), 0 \le i < n\}$ such that $\mathbb{E}[\tilde{D}_j^2] = O(n^{-2+\epsilon})$.

Then, $\mathbb{E}[\tilde{D}_j^2] \leq \kappa n^{-2+\epsilon}$ for some κ , and therefore

$$\mathbb{E}[D_j^2] \le (\kappa + K\kappa_{j-1})n^{-2+\epsilon} = \kappa_j n^{-2+\epsilon}$$

with

$$\kappa_j = \kappa + K \kappa_{j-1} = (1 + K + \dots + K^{j-1}) \kappa = \frac{1 - K^j}{1 - K} \kappa.$$

For $j \to \infty$, this bound converges if and only if K < 1.

Example 1

Let $Y = \theta U + (1 - \theta)V$, where U, V indep. U(0, 1) and $\theta \in [0, 1)$. This Y has distribution function G_{θ} .

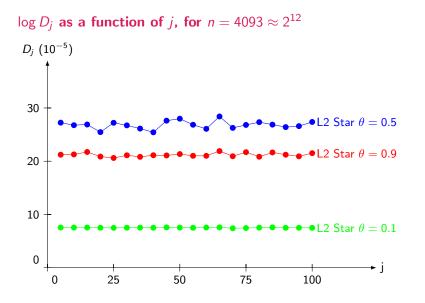
Our Markov chain is defined by

$$X_0 = U_0;$$
 $X_j = \varphi(X_{j-1}, U_j) = G_{\theta}(\theta X_{j-1} + (1-\theta)U_j), j \ge 1$

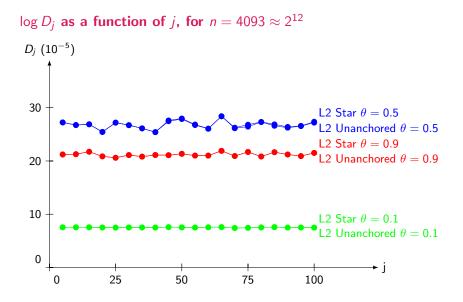
where $U_j \sim U(0, 1)$. Then, $X_j \sim (0, 1)$. We also define $c_i(X_i) = X_i$

Condition holds with K = 1 if $\theta \ge 1/2$,

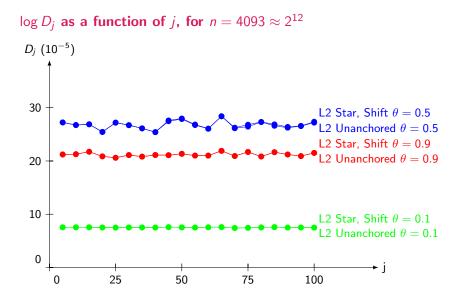
and $K = \theta^2/(1-\theta)^2 < 1$ if $\theta < 1/2$.



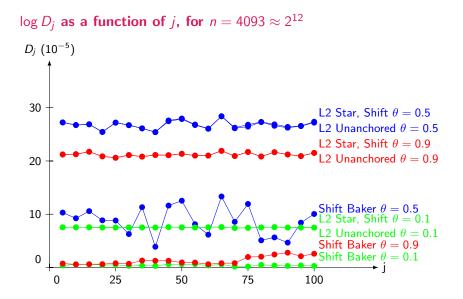
▲ロト ▲圖ト ▲注ト ▲注ト 三注 - 釣ん()



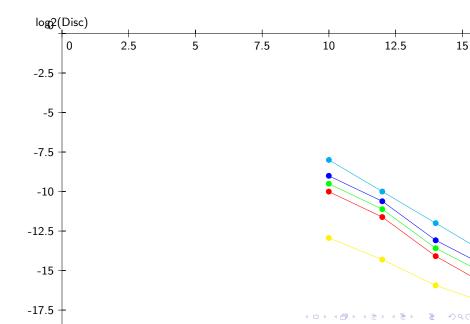
- < ロ > < 個 > < 注 > く注 > 注 の Q ()



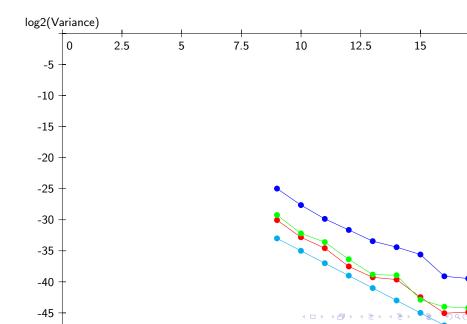
- ▲口 > ▲圖 > ▲ 画 > ▲ 画 > のの()



$\log_2 D_j$ as a function of $\log_2 n$



 $\log_2 \operatorname{Var}[\hat{\mu}_{\operatorname{rqmc},j,n}]$ as a function of $\log_2 n$



Example 2

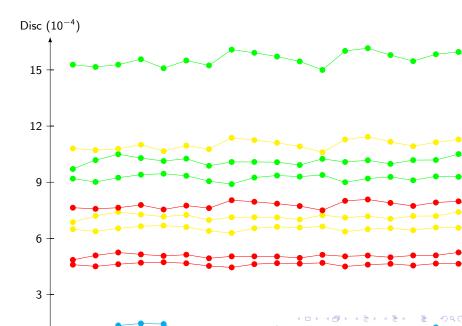
Markov chain:

$$Y_0 = Z_0, \qquad Y_j = (\rho Y_{j-1} + Z_j)/\sqrt{\rho^2 + 1}, j \ge 1,$$

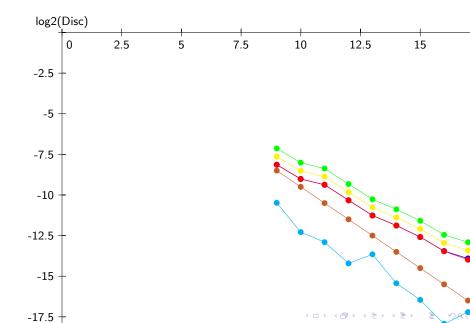
where $Z_j \sim N(0, 1)$. Then, $Y_j \sim N(0, 1)$ and $X_j = \Phi(Y_j) \sim U(0, 1)$.
We define also, $c_j(X_j) = X_j$.

<□▶ <□▶ < □▶ < □▶ < □▶ = ○ ○ ○ ○

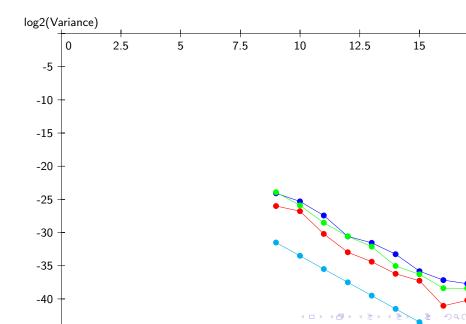
$\log_2 D_j$ as a function of *j*, for n = 4093



$\log_2 D_j$ as a function of $\log_2 n$



 $\log_2 \operatorname{Var}[\hat{\mu}_{\operatorname{rqmc},j,n}]$ as a function of $\log_2 n$



Example 3: Asian Option

Given observation times $t_1, t_2, \ldots, t_s = T$, we define

$$S(t_j) = S(t_{j-1}) \exp[(r - \sigma^2/2)(t_j - t_{j-1}) + \sigma(t_j - t_{j-1})^{1/2} \Phi^{-1}(U_j)]$$

where $U_j \sim U[0,1)$ and $S(t_0) = s_0$ is fixed.

State is $(S(t_j), \overline{S}_j)$, where $\overline{S}_j = \frac{1}{j} \sum_{i=1}^{j} S(t_i)$. Transition:

$$(S(t_j), \bar{S}_j) = \varphi(S(t_{j-1}), \bar{S}_{j-1}, U_j) = \left(S(t_j), \frac{(j-1)\bar{S}_{j-1} + S(t_j)}{j}\right),$$

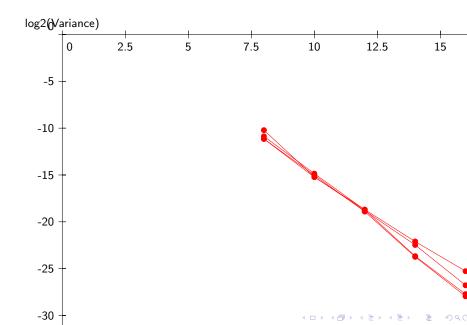
Payoff is

$$\max\left[0,\left(ar{S}_{s}
ight)-K
ight].$$

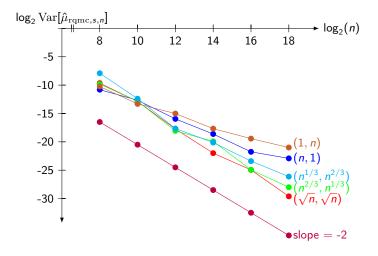
For the example, we used S(0) = 100, K = 90, T = 240/360, $t_j - t_{j-1} = 1/365$, $r = \ln 1.09$, $\sigma = 0.2$ and s = 10, 60.

Here, we use the two-dimensional sort at each step; we first sort in n_1 packets based on $S(t_j)$, then sort the packets based on \bar{S}_j .

 $\log_2 \operatorname{Var}[\hat{\mu}_{\operatorname{rqmc},j,n}]$ as a function of $\log_2 n$, for s=10



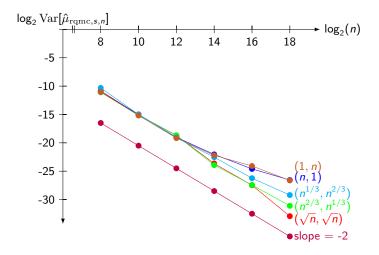
 $\log_2 \operatorname{Var}[\hat{\mu}_{\operatorname{rqmc},j,n}]$ as a function of $\log_2 n$, for s=60



æ

Linear regression slopes		
(1, n)	-1.29	
(\sqrt{n},\sqrt{n})	-2.00	

 $\log_2 \text{Var}$ as a function of $\log_2 n$, for s = 10, state = $(\bar{S}_j, S(t_j))$



æ

∃⇒

ヘロト ヘアト ヘリト・

line	ar regre	ession s	lones
LINC		5551011 5	iopcs.

(1, n)	-1.54
(\sqrt{n},\sqrt{n})	-2.18

Future Work

Convergence proof in the multidimensional case. Choice of discrepancy.

More experiments : larger examples, sorting strategies, etc. Applications.

(ロ) (個) (目) (目) (日) (の)