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Program

I Monte Carlo, Quasi-Monte Carlo, Randomized quasi-Monte Carlo

I QMC point sets and randomizations

I Error and variance bounds, convergence rates

I Transforming the integrand to make it more QMC friendly (smoother,
smaller effective dimension, etc.).

I Numerical illustrations

I RQMC for Markov chains

Focus on ideas, insight, and examples.
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Example: A stochastic activity network
Gives precedence relations between activities. Activity k has random
duration Yk (also length of arc k) with known cumulative distribution
function (cdf) Fk(y) := P[Yk ≤ y ].

Project duration T = (random) length of longest path from source to sink.

May want to estimate E[T ], P[T > x ], a quantile, density of T , etc.
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Monte Carlo (simulation)

Algorithm: Monte Carlo to estimate E[T ]

for i = 0, . . . , n − 1 do
for k = 0, . . . , 12 do

Generate Uk ∼ U(0, 1) and let Yk = F−1
k (Uk)

Compute Xi = T = h(Y0, . . . ,Y12) = f (U0, . . . ,U12)
Estimate E[T ] =

∫
(0,1)s f (u)du by X̄n = 1

n

∑n−1
i=0 Xi , etc.

Can also compute confidence interval on E[T ], a histogram to estimate
the distribution of T , etc.

Numerical illustration from Elmaghraby (1977):
Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Vk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

We may pay a penalty if T > 90, for example.
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Naive idea: replace each Yk by its expectation. Gives T = 48.2.

Results of an experiment with n = 100 000.
Histogram of values of T gives more information than confidence interval
on E[T ] or P[T > x ].

Values from 14.4 to 268.6; 11.57% exceed x = 90.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000
T = x = 90

T = 48.2

mean = 64.2

ξ̂0.99 = 131.8
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Sample path of hurricane Sandy for the next 5 days
8/13/16, 8:54 AMAs Forecasts Go, You Can Bet on Monte Carlo - WSJ

Page 1 of 5http://www.wsj.com/articles/as-forecasts-go-you-can-bet-on-monte-carlo-1470994203

When Hurricane Sandy began swirling off the coast of Florida in 2012, the earliest
forecasts suggested the gigantic storm was unlikely to hit land.

If it wasn’t headed for the coast, everyone could relax. But if landfall was imminent,
emergency workers would want as much time as possible to prepare.

Sandy, as we know, pummeled the Eastern Seaboard—especially New York and New
Jersey—with damage reaching west all the way to Wisconsin. But thanks to
computerized probability simulations, like the ones used for some financial forecasts,
meteorologists tracking the storm weren’t caught off guard.

This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or customers visit
http://www.djreprints.com.

http://www.wsj.com/articles/as-forecasts-go-you-can-bet-on-monte-carlo-1470994203

U.S.  THE NUMBERS

As Forecasts Go, You Can Bet on
Monte Carlo
From Super Bowls to hurricanes, this simulation method helps predict them all

|

Monte Carlo simulations helped give emergency workers advance warning that Hurricane Sandy would make landfall in
New Jersey and New York. Here, an Oct. 31, 2012 file photo of homes in Ortley Beach, N.J. destroyed by the storm.
PHOTO: MIKE GROLL/ASSOCIATED PRESS

Aug. 12, 2016 5:30 a.m. ET
By JO CRAVEN MCGINTY

–– ADVERTISEMENT ––
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Sample path of hurricane Sandy for the next 5 days
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Monte Carlo to estimate an expectation

Want to estimate µ = E[X ] where X = f (U) = f (U0, . . . ,Us−1), and the
Uj are i.i.d. U(0, 1) “random numbers.” We have

µ = E[X ] =

∫
[0,1)s

f (u)du.

Monte Carlo estimator:

X̄n =
1

n

n−1∑
i=0

Xi

where Xi = f (Ui ) and U0, . . . ,Un−1 i.i.d. uniform over [0, 1)s .

We have E[X̄n] = µ and Var[X̄n] = σ2/n = Var[X ]/n.
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Convergence

Theorem. Suppose σ2 <∞. When n→∞:
(i) Strong law of large numbers: limn→∞ µ̂n = µ with probability 1.

(ii) Central limit theorem (CLT):

√
n(µ̂n − µ)

Sn
⇒ N(0, 1),

where

S2
n =

1

n − 1

n−1∑
i=0

(Xi − X̄n)2.
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Confidence interval at level α (we want Φ(x) = 1− α/2):

(µ̂n ± zα/2Sn/
√
n), where zα/2 = Φ−1(1− α/2).

Example: zα/2 ≈ 1.96 for α = 0.05.

−3 −1.96 −1 0 1 1.96 3

α/2 α/21− α

−zα/2 zα/2

The width of the confidence interval is asymptotically proportional to
σ/
√
n, so it converges as O(n−1/2). Relative error: σ/(µ

√
n).

For one more decimal digit of accuracy, we must multiply n by 100.

Warning: If the Xi have an asymmetric law, these confidence intervals can
have very bad coverage (convergence to normal can be very slow).
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Alternative estimator of P[T > x ] = E[I(T > x)] for SAN.

Naive estimator: Generate T and compute X = I[T > x ].
Repeat n times and average.
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only for the 8 arcs that do not belong to the cut L = {4, 5, 6, 8, 9}, and
replace I[T > x ] by its conditional expectation given those Yj ’s,

Xe = P[T > x | {Yj , j 6∈ L}].

This makes the integrand continuous in the Uj ’s.

To compute Xe: for each l ∈ L, say from al to bl , compute the length αl

of the longest path from 1 to al , and the length βl of the longest path
from bl to the destination.

The longest path that passes through link l does not exceed x iff
αl + Yl + βl ≤ x , which occurs with probability
P[Yl ≤ x − αl − βl ] = Fl [x − αl − βl ].
Since the Yl are independent, we obtain

Xe = 1−
∏
l∈L

Fl [x − αl − βl ].

Can be faster to compute than X , and always has less variance.
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Example: Pricing a financial derivative.

Market price of some asset (e.g., one share of a stock) evolves in time as
stochastic process {S(t), t ≥ 0} with (supposedly) known probability law
(estimated from data).

A financial contract gives owner net payoff g(S(t1), . . . ,S(td)) at time T = td ,
where g : Rd → R, and 0 ≤ t1 < · · · < td are fixed observation times.

Under a no-arbitrage assumption, present value (fair price) of contract at time 0,
when S(0) = s0, can be written as

v(s0,T ) = E∗
[
e−rTg(S(t1), . . . ,S(td))

]
,

where E∗ is under a risk-neutral measure and e−rT is the discount factor.

This expectation can be written as an integral over [0, 1)s and estimated by the
average of n i.i.d. replicates of X = e−rTg(S(t1), . . . ,S(td)).
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A simple model for S : geometric Brownian motion (GBM):

S(t) = s0e
(r−σ2/2)t+σB(t)

where r is the interest rate, σ is the volatility, and B(·) is a standard Brownian
motion: for any t2 > t1 ≥ 0, B(t2)− B(t1) ∼ N(0, t2 − t1), and the increments
over disjoint intervals are independent.

Algorithm: Option pricing under GBM model

for i = 0, . . . , n − 1 do
Let t0 = 0 and B(t0) = 0
for j = 1, . . . , d do

Generate Uj ∼ U(0, 1) and let Zj = Φ−1(Uj)
Let B(tj) = B(tj−1) +

√
tj − tj−1Zj

Let S(tj) = s0 exp
[
(r − σ2/2)tj + σB(tj)

]
Compute Xi = e−rTg(S(t1), . . . ,S(td))

Return X̄n = 1
n

∑n−1
i=0 Xi , estimator of v(s0,T ).
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Example of contract: Discretely-monitored Asian call option:

g(S(t1), . . . ,S(td)) = max

0,
1

d

d∑
j=1

S(tj)− K

 .

Option price written as an integral over the unit hypercube:

Let Zj = Φ−1(Uj) where the Uj are i.i.d. U(0, 1). Here we have s = d and

v(s0,T ) =

∫
[0,1)s
e−rT max

(
0,

1

s

s∑
i=1

s0·

exp

(r − σ2/2)ti + σ

i∑
j=1

√
tj − tj−1Φ−1(uj)

− K

 du1 . . . dus

=

∫
[0,1)s

f (u1, . . . , us)du1 . . . dus .
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Numerical illustration: Bermudean Asian option with d = 12, T = 1 (one year),
tj = j/12 for j = 0, . . . , 12, K = 100, s0 = 100, r = 0.05, σ = 0.5.

We performed n = 106 independent simulation runs.
In 53.47% of cases, the payoff is 0.
Mean: 13.1. Max = 390.8
Histogram of the 46.53% positive values:

Payoff
0 50 100 15013.1

Frequency (×103)

0

10

20

30
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Reducing the variance by changing f

If we replace the arithmetic average by a geometric average in the payoff,
we obtain

C = e−rT max

0,
d∏

j=1

(S(tj))1/d − K

 ,

whose expectation ν = E[C ] has a closed-form formula.

When estimating the mean E[X ] = v(s0,T ), we can then use C as a
control variate (CV): Replace the estimator X by the “corrected” version

Xc = X − β(C − ν)

for some well-chosen constant β. Optimal β is β∗ = Cov[C ,X ]/Var[C ].

Using a CV makes the integrand f smoother. Can provide a huge variance
reduction, e.g., by a factor of over a million in some examples.
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Quasi-Monte Carlo (QMC)

Replace the independent random points Ui by a set of deterministic points
Pn = {u0, . . . ,un−1} that cover [0, 1)s more evenly.

Estimate

µ =

∫
[0,1)s

f (u)du by µ̄n =
1

n

n−1∑
i=0

f (ui ).

Integration error En = µ̄− µ.

Pn is called a highly-uniform point set or low-discrepancy point set if some
measure of discrepancy between the empirical distribution of Pn and the
uniform distribution converges to 0 faster than O(n−1/2) (the typical rate
for independent random points).

Main construction methods: lattice rules and digital nets
(Korobov, Hammersley, Halton, Sobol’, Faure, Niederreiter, etc.)
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Simple case: one dimension (s = 1)

Obvious solutions:

Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n} (left Riemann sum):

0 10.5

which gives µ̄n =
1

n

n−1∑
i=0

f (i/n), and En = O(n−1) if f ′ is bounded,

or P ′n = {1/(2n), 3/(2n), . . . , (2n − 1)/(2n)} (midpoint rule):

0 10.5

for which En = O(n−2) if f ′′ is bounded.
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If we allow different weights on the f (ui ), we have the trapezoidal rule:

0 10.5

1

n

[
f (0) + f (1)

2
+

n−1∑
i=1

f (i/n)

]
,

for which |En| = O(n−2) if f ′′ is bounded,

or the Simpson rule,

f (0) + 4f (1/n) + 2f (2/n) + · · ·+ 2f ((n − 2)/n) + 4f ((n − 1)/n) + f (1)

3n
,

which gives |En| = O(n−4) if f (4) is bounded, etc.

Here, for QMC and RQMC, we restrict ourselves to equal weight rules.
For the RQMC points that we will examine, one can prove that equal
weights are optimal.
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Simplistic solution for s > 1: rectangular grid
Pn = {(i1/d , . . . , is/d) such that 0 ≤ ij < d ∀j} where n = d s .

0 1

1

ui ,1

ui ,2

Midpoint rule in s dimensions.
Quickly becomes impractical when s increases.
Moreover, each one-dimensional projection has only d distinct points,
each two-dimensional projections has only d2 distinct points, etc.
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Lattice rules (Korobov, Sloan, etc.)

Integration lattice:

Ls =

v =
s∑

j=1

zjvj such that each zj ∈ Z

 ,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls
contains Zs . Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0, 1)s .

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s .

Korobov rule: a = (1, a, a2 mod n, . . . ).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.
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Example: lattice with s = 2, n = 101, v1 = (1, 12)/n

Pn = {ui = iv1 mod 1) : i = 0, . . . , n − 1}
= {(0, 0), (1/101, 12/101), (2/101, 43/101), . . . }.

0 1

1

ui ,1

ui ,2

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.
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Another example: s = 2, n = 1021, v1 = (1, 90)/n

Pn = {ui = iv1 mod 1 : i = 0, . . . , n − 1}
= {(i/1021, (90i/1021) mod 1) : i = 0, . . . , 1020}.

0 1

1

ui ,1

ui ,2

v1
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A bad lattice: s = 2, n = 101, v1 = (1, 51)/n

0 1

1

ui ,1

ui ,2

v1

Good uniformity in one dimension, but not in two!
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Digital net in base b (Niederreiter)
Gives n = bk points. For i = 0, . . . , bk − 1 and j = 1, . . . , s:

i = ai ,0 + ai ,1b + · · ·+ ai ,k−1b
k−1 = ai ,k−1 · · · ai ,1ai ,0,ui ,j ,1

...
ui ,j ,w

 = Cj

 ai ,0
...

ai ,k−1

 mod b,

ui ,j =
w∑
`=1

ui ,j ,`b
−`, ui = (ui ,1, . . . , ui ,s),

where the generating matrices Cj are w × k with elements in Zb.

In practice, w and k are finite, but there is no limit.
Digital sequence: infinite sequence. Can stop at n = bk for any k.

Can also multiply in some ring R, with bijections between Zb and R.

Each one-dim projection truncated to first k digits is
Zn/n = {0, 1/n, . . . , (n − 1)/n}. Each Cj defines a permutation of Zn/n.
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Small example: Hammersley in two dimensions

Let n = 28 = 256 and s = 2. Take the points (in binary):

i u1,i u2,i

0 .00000000 .0
1 .00000001 .1
2 .00000010 .01
3 .00000011 .11
4 .00000100 .001
5 .00000101 .101
6 .00000110 .011
...

...
...

254 .11111110 .01111111
255 .11111111 .11111111

Right side: van der Corput sequence in base 2.



D
ra

ft

28

Hammersley point set, n = 28 = 256, s = 2.

0 1

1

ui ,1

ui ,2
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In general, can take n = 2k points.

If we partition [0, 1)2 in rectangles of sizes 2−k1 by 2−k2 where
k1 + k2 ≤ k , each rectangle will contain exactly the same number of
points. We say that the points are equidistributed for this partition.

For a digital net in base b in s dimensions, we choose s permutations of
{0, 1, . . . , 2b − 1}, then divide each coordinate by bk .

Can also have s =∞ and/or n =∞ (infinite sequence of points).
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Suppose we divide axis j in bqj equal parts, for each j . This determines a
partition of [0, 1)s into 2q1+···+qs rectangles of equal sizes. If each
rectangle contains exactly the same number of points, we say that the
point set Pn is (q1, . . . , qs)-equidistributed in base b.

This occurs iff the matrix formed by the first q1 rows of C1, the first q2

rows of C2, . . . , the first qs rows of Cs , is of full rank (mod b). To verify
equidistribution, we can construct these matrices and compute their rank.

Pn is a (t, k , s)-net iff it is (q1, . . . , qs)-equidistributed whenever
q1 + · · ·+ qs = k − t. This is possible for t = 0 only if b ≥ s − 1.
t-value of a net: smallest t for which it is a (t, k , s)-net.

An infinite sequence {u0,u1, . . . , } in [0, 1)s is a (t, s)-sequence in base b
if for all k > 0 and ν ≥ 0, Q(k, ν) = {ui : i = νbk , . . . , (ν + 1)bk − 1}, is
a (t, k , s)-net in base b. This is possible for t = 0 only if b ≥ s.
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Sobol’ nets and sequences

Sobol’ (1967) proposed a digital net in base b = 2 where

Cj =


1 vj ,2,1 . . . vj ,c,1 . . .
0 1 . . . vj ,c,2 . . .
... 0

. . .
...

... 1

 .

Column c of Cj is represented by an odd integer

mj ,c =
c∑

l=1

vj ,c,l2
c−l = vj ,c,12c−1 + · · ·+ vj ,c,c−12 + 1 < 2c .

The integers mj ,c are selected as follows.
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fj(z) = zdj + aj,1z
dj−1 + · · ·+ aj,dj ,

and we choose dj integers mj,0, . . . ,mj,dj−1 (the first dj columns).

Then, mj,dj ,mj,dj+1, . . . are determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕ · · · ⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2djmj,c−dj ⊕mj,c−dj

Proposition. If the polynomials fj(z) are all distinct, we obtain a (t, s)-sequence
with t ≤ d0 + · · ·+ ds−1 + 1− s.

Sobol’ suggests to list all primitive polynomials over F2 by increasing order of
degree, starting with f0(z) ≡ 1 (which gives C0 = I), and to take fj(z) as the
(j + 1)-th polynomial in the list.

There are many ways of selecting the first mj,c ’s, which are called the direction
numbers. They can be selected to minimize some discrepancy (or figure of
merit). The values proposed by Sobol’ give an (s, `)-equidistribution for ` = 1
and ` = 2 (only the first two bits).

For n = 2k fixed, we can gain one dimension as for the Faure sequence.

Joe and Kuo (2008) tabulated direction numbers giving the best t-value for the
two-dimensional projections, for given s and k.
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Other constructions

Faure nets and sequences

Niederreiter-Xing point sets and sequences

Polynomial lattice rules (special case of digital nets)

Halton sequence

Etc.
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Worst-case error bounds
Koksma-Hlawka-type inequalities (Koksma, Hlawka, Hickernell, etc.):

|µ̂n,rqmc − µ| ≤ V (f ) · D(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f −µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn.

Lattice rules: For certain Hilbert spaces of smooth periodic functions f
with square-integrable partial derivatives of order up to α:

D(Pn) = O(n−α+ε) for arbitrary small ε.

Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must
have finite variation in the sense of Hardy and Krause (implies no
discontinuity not aligned with the axes). Popular constructions achieve

D(Pn) = O(n−1(ln n)s) = O(n−1+ε) for arbitrary small ε.
More recent constructions offer better rates for smooth functions.

Bounds are conservative and too hard to compute in practice.
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Randomized quasi-Monte Carlo (RQMC)

µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ),

with Pn = {U0, . . . ,Un−1} ⊂ (0, 1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0, 1)s ;

(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased).

Var[µ̂n,rqmc] =
Var[f (Ui )]

n
+

2

n2

∑
i<j

Cov[f (Ui ), f (Uj)].

We want to make the last sum as negative as possible.

Weaker attempts to do the same: antithetic variates (n = 2), Latin
hypercube sampling (LHS), stratification, ...
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Variance estimation:

Can compute m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then
estimate µ and Var[µ̂n,rqmc] by their sample mean X̄m and sample
variance S2

m. Could be used to compute a confidence interval.

Temptation: assume that X̄m has the normal distribution.
Beware: usually wrong unless m→∞.
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Stratification of the unit hypercube

Partition axis j in kj ≥ 1 equal parts, for j = 1, . . . , s.
Draw n = k1 · · · ks random points, one per box, independently.

Example, s = 2, k1 = 12, k2 = 8, n = 12× 8 = 96.

0 1

1

ui ,1

ui ,2
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Stratification of the unit hypercube

Example, s = 2, k1 = 24, k2 = 16, n = 384.

0 1

1

ui ,1

ui ,2
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Xs,n =
1

n

n−1∑
j=0

f (Uj).

The crude MC variance with n points can be decomposed as

Var[X̄n] = Var[Xs,n] +
1

n

n−1∑
j=0

(µj − µ)2

where µj is the mean over box j .

The more the µj differ, the more the variance is reduced.

If f ′ is continuous and bounded, and all kj are equal, then

Var[Xs,n] = O(n−1−2/s).

For large s, not practical. For small s, not really better than midpoint rule
with a grid when f is smooth. But can still be applied to a few important
random variables.
Also, gives an unbiased estimator, and variance can be estimated by
replicating m ≥ 2 times.
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Randomly-Shifted Lattice

Example: lattice with s = 2, n = 101, v1 = (1, 12)/101

0 1

1

ui ,1

ui ,2

U
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Random digital shift for digital net
Equidistribution in digital boxes is lost with random shift modulo 1,
but can be kept with a random digital shift in base b.

In base 2: Generate U ∼ U(0, 1)s and XOR it bitwise with each ui .

Example for s = 2:

ui = (0.01100100..., 0.10011000...)2

U = (0.01001010..., 0.11101001...)2

ui ⊕U = (0.00101110..., 0.01110001...)2.

Each point has U(0, 1) distribution.
Preservation of the equidistribution (k1 = 3, k2 = 5):

ui = (0.***, 0.*****)

U = (0.010, 0.11101)2

ui ⊕U = (0.***, 0.*****)
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U = (0.1270111220, 0.3185275653)10

= (0. 0010 0000100000111100, 0. 0101 0001100010110000)2.

Changes the bits 3, 9, 15, 16, 17, 18 of ui ,1
and the bits 2, 4, 8, 9, 13, 15, 16 of ui ,2.

0 1

1

un+1

un 0 1

1

un+1

un

Red and green squares are permuted (k1 = k2 = 4, first 4 bits of U).
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Random digital shift in base b

We have ui ,j =
∑w

`=1 ui ,j ,`b
−`.

Let U = (U1, . . . ,Us) ∼ U[0, 1)s where Uj =
∑w

`=1 Uj ,` b
−`.

We replace each ui ,j by Ũi ,j =
∑w

`=1[(ui ,j ,` + Uj ,`) mod b]b−`.

Proposition. P̃n is (q1, . . . , qs)-equidistributed in base b iff Pn is.
For w =∞, each point Ũi has the uniform distribution over (0, 1)s .
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Other permutations that preserve equidistribution and may help reduce
the variance further:

Linear matrix scrambling (Matoušek, Hickernell et Hong, Tezuka, Owen):
We left-multiply each matrix Cj by a random w × w matrix Mj ,
non-singular and lower triangular, mod b. Several variants.

We then apply a random digital shift in base b to obtain uniform
distribution for each point (unbiasedness).

Nested uniform scrambling (Owen 1995).
More costly. But provably reduces the variance to O(n−3(log n)s) when f
is sufficiently smooth!
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Asian option example

T = 1 (year), tj = j/d , K = 100, s0 = 100, r = 0.05, σ = 0.5.

s = d = 2. Exact value: µ ≈ 17.0958. MC Variance: 934.0.

Lattice: Korobov with a from old table + random shift.
Sobol: left matrix scramble + random digital shift.

Variance estimated from m = 1000 indep. randomizations.
VRF = (MC variance) / (nVar[Xs,n])

method n X̄m nS2
m VRF

stratif. 210 17.100 232.8 4
lattice 210 17.092 20.8 45
Sobol 210 17.094 1.66 563
stratif. 216 17.046 135.3 7
lattice 216 17.096 4.38 213
Sobol 216 17.096 0.037 25,330
stratif. 220 17.085 117.6 8
lattice 220 17.096 0.112 8,318
Sobol 220 17.096 0.0026 360,000
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s = d = 12. µ ≈ 13.122. MC variance: 516.3.

Lattice: Korobov + random shift.
Sobol: left matrix scramble + random digital shift.

Variance estimated from m = 1000 indep. randomizations.

method n X̄m nS2
m VRF

lattice 210 13.114 39.3 13
Sobol 210 13.123 5.9 88

lattice 216 13.122 6.61 78
Sobol 216 13.122 1.63 317

lattice 220 13.122 8.59 60
Sobol 220 13.122 0.89 579



D
ra

ft

47

Variance for randomly-shifted lattice rules

Suppose f has Fourier expansion

f (u) =
∑
h∈Zs

f̂ (h)e2π
√
−1htu.

For a randomly shifted lattice, the exact variance is always

Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂ (h)|2,

where L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls} ⊆ Zs is the dual lattice.

From the viewpoint of variance reduction, an optimal lattice for f
minimizes Var[µ̂n,rqmc].
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Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂ (h)|2.

Let α > 0 be an even integer. If f has square-integrable mixed partial
derivatives up to order α/2 > 0, and the periodic continuation of its
derivatives up to order α/2− 1 is continuous across the unit cube
boundaries, then

|f̂ (h)|2 = O((max(1, h1) · · ·max(1, hs))−α).

Moreover, there is a vector v1 = v1(n) such that

Pα :=
∑

06=h∈L∗s

(max(1, h1) · · ·max(1, hs))−α = O(n−α+ε).

This Pα has been proposed long ago as a figure of merit, often with
α = 2. It is the variance for a worst-case f having

|f̂ (h)|2 = (max(1, |h1|) · · ·max(1, |hs |))−α.

A larger α means a smoother f and a faster convergence rate.
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For even integer α, this worst-case f is

f ∗(u) =
∑

u⊆{1,...,s}

∏
j∈u

(2π)α/2

(α/2)!
Bα/2(uj).

where Bα/2 is the Bernoulli polynomial of degree α/2.
In particular, B1(u) = u − 1/2 and B2(u) = u2 − u + 1/6.
Easy to compute Pα and search for good lattices in this case!

However: This worst-case function is not necessarily representative of
what happens in applications. Also, the hidden factor in O increases
quickly with s, so this result is not very useful for large s.

To get a bound that is uniform in s, the Fourier coefficients must decrease
faster with the dimension and “size” of vectors h; that is, f must be
“smoother” in high-dimensional projections. This is typically what
happens in applications for which RQMC is effective!
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Baker’s (or tent) transformation
To make the periodic continuation of f continuous.

If f (0) 6= f (1), define f̃ by f̃ (1− u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance to O(n−4+ε) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.

In practice, we transform the points Ui instead of f

.
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One-dimensional case

Random shift followed by baker’s transformation.
Along each coordinate, stretch everything by a factor of 2 and fold.
Same as replacing Uj by min[2Uj , 2(1− Uj)].

0 10.5

U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.
Intuition: when f is smooth, it is well-approximated by a piecewise linear
function, which is integrated exactly, so the error is small.
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ANOVA decomposition
The Fourier expansion has too many terms to handle. As a cruder
expansion, we can write f (u) = f (u1, . . . , us) as:

f (u) =
∑

u⊆{1,...,s}

fu(u) = µ+
s∑

i=1

f{i}(ui ) +
s∑

i ,j=1

f{i ,j}(ui , uj) + · · ·

where

fu(u) =

∫
[0,1)|ū|

f (u)duū −
∑
v⊂u

fv(uv),

and the Monte Carlo variance decomposes as

σ2 =
∑

u⊆{1,...,s}

σ2
u , where σ2

u = Var[fu(U)].

The σ2
u ’s can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections Pn(u) are very uniform for
the important subsets u (i.e., with larger σ2

u).
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Weighted Pγ,α with projection-dependent weights γu
Denote u(h) = u(h1, . . . , hs) the set of indices j for which hj 6= 0.

Pγ,α =
∑

0 6=h∈L∗s

γu(h)(max(1, |h1|) · · ·max(1, |hs |))−α.

For α/2 integer > 0, with ui = (ui,1, . . . , ui,s) = iv1 mod 1,

Pγ,α =
∑

∅6=u⊆{1,...,s}

1

n

n−1∑
i=0

γu

[
−(−4π2)α/2

(α)!

]|u|∏
j∈u

Bα(ui,j),

and the corresponding variation is

V 2
γ (f ) =

∑
∅6=u⊆{1,...,s}

1

γu(4π2)α|u|/2

∫
[0,1]|u|

∣∣∣∣∂α|u|/2

∂uα/2
fu(u)

∣∣∣∣2 du,

for f : [0, 1)s → R smooth enough. Then,

Var[µ̂n,rqmc] =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤ V 2
γ (f )Pγ,α.
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Pγ,α with α = 2 and properly chosen weights γ is a good practical choice
of figure of merit.

Simple choices of weights: order-dependent or product.

Lattice Builder: Software to search for good lattices with arbitrary n, s,
weights, etc. See my web page.
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ANOVA Variances for estimator of P[T > x ] in
Stochastic Activity Network

0 20 40 60 80 100

x = 64

x = 100

CMC, x = 64

CMC, x = 100

% of total variance for each cardinality of u

Stochastic Activity Network
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Variance for estimator of P[T > x ] for SAN

28.66 211.54 214.43 217.31 220.2
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Stochastic Activity Network (x = 64)
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Lattice (P2) + baker

n−2

Variance decreases roughly as O(n−1.2). For E[T ], we observe O(n−1.4).
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Variance for estimator of P[T > x ] with CMC

28.66 211.54 214.43 217.31 220.2
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Histograms
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Histograms
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Effective dimension

(Caflisch, Morokoff, and Owen 1997).
A function f has effective dimension d in proportion ρ in the superposition
sense if ∑

|u|≤d

σ2
u ≥ ρσ2.

It has effective dimension d in the truncation sense if∑
u⊆{1,...,d}

σ2
u ≥ ρσ2.

High-dimensional functions with low effective dimension are frequent.
One may change f to make this happen.
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Example: Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the
values taken by a c-dimensional geometric Brownian motion (GMB) at d
observations times 0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate
Z = (Z1, . . . ,Zs) ∼ N(0, I) where the (independent) Zj ’s are generated by
inversion: Zj = Φ−1(Uj), and return Y = AZ.

Choice of A?

Cholesky factorization: A is lower triangular.
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Principal component decomposition (PCA) (Ackworth et al. 1998):
A = PD1/2 where D = diag(λs , . . . , λ1) (eigenvalues of Σ in decreasing
order) and the columns of P are the corresponding unit-length
eigenvectors.

With this A, Z1 accounts for the max amount of variance of
Y, then Z2 the max amount of variance cond. on Z1, etc.

Function of a Brownian motion (or other Lévy process):
Payoff depends on c-dimensional Brownian motion {X(t), t ≥ 0} observed
at times 0 = t0 < t1 < · · · < td = T .

Sequential (or random walk) method: generate X(t1), then X(t2)−X(t1),
then X(t3)− X(t2), etc.

Bridge sampling (Moskowitz and Caflisch 1996). Suppose d = 2m.
generate X(td), then X(td/2) conditional on (X(0),X(td)),
then X(td/4) conditional on (X(0),X(td/2)), and so on.

The first few N(0, 1) r.v.’s already sketch the path trajectory.

Each of these methods corresponds to some matrix A.
Choice has a large impact on the ANOVA decomposition of f .
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Example: Pricing an Asian basket option
We have c assets, d observation times. Want to estimate E[f (U)], where

f (U) = e−rT max

0,
1

cd

c∑
i=1

d∑
j=1

Si (tj)− K


is the net discounted payoff and Si (tj) is the price of asset i at time tj .

Suppose (S1(t), . . . ,Sc(t)) obeys a geometric Brownian motion.
Then, f (U) = g(Y) where Y = (Y1, . . . ,Ys) ∼ N(0,Σ) and s = cd .

Even with Cholesky decompositions of Σ, the two-dimensional projections
often account for more than 99% of the variance: low effective dimension
in the superposition sense.

With PCA or bridge sampling, we get low effective dimension in the
truncation sense. In realistic examples, the first two coordinates Z1 and Z2

often account for more than 99.99% of the variance!
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often account for more than 99% of the variance: low effective dimension
in the superposition sense.

With PCA or bridge sampling, we get low effective dimension in the
truncation sense. In realistic examples, the first two coordinates Z1 and Z2

often account for more than 99.99% of the variance!
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Numerical experiment with c = 10 and d = 25
This gives a 250-dimensional integration problem.

Let ρi ,j = 0.4 for all i 6= j , T = 1, σi = 0.1 + 0.4(i − 1)/9 for all i ,
r = 0.04, S(0) = 100, and K = 100. (Imai and Tan 2002).

Variance reduction factors for Cholesky (left) and PCA (right)
(experiment from 2003):

Korobov Lattice Rules

n = 16381 n = 65521 n = 262139

a = 5693 a = 944 a = 21876

Lattice+shift 18 878 18 1504 9 2643

Lattice+shift+baker 50 4553 46 3657 43 7553

Sobol’ Nets

n = 214 n = 216 n = 218

Sobol+Shift 10 1299 17 3184 32 6046

Sobol+LMS+Shift 6 4232 4 9219 35 16557

Note: The payoff function is not smooth and also unbounded!
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ANOVA Variances for ordinary Asian Option
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Total Variance per Coordinate for the Asian Option
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Coordinate 1

Coordinate 2

Coordinate 3

Coordinate 4

Coordinate 5

Coordinate 6



D
ra

ft

67

Variance with good lattices rules and Sobol points

26 28 210 212 214
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10−1
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n
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Asian Option (PCA) s = 12, S(0) = 100, K = 100, r = 0.05, σ = 0.5
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Lattice (P2) + baker

n−2
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Asian Option on a Single Asset, with control variate

Let c = 1, S(0) = 100, r = ln(1.09), σi = 0.2, T = 120/365,
tj = D1/365 + (T − D1/365)(j − 1)/(d − 1) for j = 1, . . . , d ,

We estimated the optimal CV coefficient by pilot runs for MC and for
each combination of sampling scheme, RQMC method, and n.

d D1 K µ σ2 VRF of CV

10 111 90 13.008 105 1.53× 106

10 111 100 5.863 61 1.07× 106

10 12 90 11.367 46 5400

10 12 100 3.617 23 3950

120 1 90 11.207 41 5050

120 1 100 3.367 20 4100
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VRFs (per run) for RQMC vs MC, with n ≈ 216.
Sequential sampling (left), bridge sampling (middle), and PCA (right).

d D1 K Pn without CV with CV

SEQ BBS PCA SEQ BBS PCA

10 111 90 Kor+S 5943 6014 13751 18 29 291

10 111 90 Kor+S+B 88927 256355 563665 90 177 668

10 111 90 Sob+DS 9572 12549 14279 63 183 4436

10 12 90 Kor+S 442 1720 13790 13 50 71

10 12 90 Kor+S+B 1394 26883 446423 31 66 200

10 12 90 Sob+DS 2205 9053 12175 27 67 434

120 1 90 Kor+S 192 2025 984 5 47 75

120 1 90 Kor+S+B 394 15575 474314 13 55 280

120 1 90 Sob+DS 325 7079 15101 3 48 483

For d = 10, Sobol’ with PCA combined with CV reduces the variance
approximately by a factor of 6.8× 109, without increasing the CPU time.

For d = 120, PCA is slower than SEQ by a factor of 2 or 3, but worth it.
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Array-RQMC for Markov Chains

Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj).

Ordinary MC: n i.i.d. realizations of Y . Requires τs uniforms.

Array-RQMC: L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Simulate an “array” (or population) of n chains in “parallel.”
Goal: Want small discrepancy between empirical distribution of states
Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj , at each step j .
At each step, use RQMC point set to advance all the chains by one step.
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We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
We select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).
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Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

Estimate µ by the average Ȳn = µ̂arqmc,n =
∑τ

j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased
estimator of Var[Ȳn].
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Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the
filtration F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance
sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2015]: Sequential QMC.
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Convergence results and applications
L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc. O(n−3/2) variance.

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.
O(n−1/(`+1)) worst-case error under some conditions.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification, Sudoku
sampling, ...

L., Lécot, Munger, and Tuffin [2016]: Survey, comparing sorts, and further
examples, some with O(n−3) empirical variance.

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested
scrambling and Hilbert sort. o(n−1) variance.
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A (4,4) mapping
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A (4,4) mapping
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Hilbert curve sort
Map the state to [0, 1], then sort.
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Example: Asian Call Option

S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1



D
ra

ft

80

Example: Asian Call Option

Sort RQMC points
log2 Var[Ȳn,j ]

log2 n
VRF CPU (sec)

Batch sort SS -1.38 2.0× 102 744
(n1 = n2) Sobol -2.03 4.2× 106 532

Sobol+NUS -2.03 2.8× 106 1035
Korobov+baker -2.04 4.4× 106 482

Hilbert sort SS -1.55 2.4× 103 840
(logistic map) Sobol -2.03 2.6× 106 534

Sobol+NUS -2.02 2.8× 106 724
Korobov+baker -2.01 3.3× 106 567

VRF for n = 220. CPU time for m = 100 replications.
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Conclusion, discussion, etc.
I RQMC can improve the accuracy of estimators considerably in some

applications.

I Cleverly modifying the function f can often bring huge statistical
efficiency improvements in simulations with RQMC.

I There are often many possibilities for how to change f to make it
smoother, periodic, and reduce its effective dimension.

I Point set constructions should be based on discrepancies that take
that into account. Can take a weighted average (or worst-case) of
uniformity measures over a selected set of projections.

I Nonlinear functions of expectations: RQMC also reduces the bias.

I RQMC for density estimation.

I RQMC for optimization.

I Array-RQMC for Markov chains. Sequential RQMC. Other QMC
methods for Markov chains.

I Still a lot to learn and do ...
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I Monte Carlo and Quasi-Monte Carlo Methods 2014, 2012, 2010, ...
Springer-Verlag, Berlin, 2016, 2014, 2012, ...

I J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy
Theory and Quasi-Monte Carlo Integration. Cambridge University Press,
Cambridge, U.K., 2010.

I P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance.
Finance and Stochastics, 13(3):307–349, 2009.

I C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling.
Springer-Verlag, New York, NY, 2009.

I H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in
Applied Mathematics. SIAM, Philadelphia, PA, 1992.

I I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration.
Clarendon Press, Oxford, 1994.
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I P. L’Ecuyer, V. Demers, and B. Tuffin. Rare-events, splitting, and
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Simulation, 17(2):Article 9, 2007.

I P. L’Ecuyer, C. Lécot, and A. L’Archevêque-Gaudet. On array-RQMC for
Markov chains: Mapping alternatives and convergence rates. Monte Carlo
and Quasi-Monte Carlo Methods 2008, pages 485–500, Berlin, 2009.
Springer-Verlag.

I P. L’Ecuyer, C. Lécot, and B. Tuffin. A randomized quasi-Monte Carlo
simulation method for Markov chains. Operations Research,
56(4):958–975, 2008.

I P. L’Ecuyer, D. Munger, C. Lécot, and B. Tuffin. Sorting methods and
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