Randomized Quasi-Monte Carlo: Theory, Choice of Discrepancy, and Applications

Pierre L'Ecuyer and David Munger

Informatique et Recherche Opérationnelle, Université de Montréal

Randomized Quasi-Monte Carlo: Theory, Choice of Discrepancy, and Applications featuring randomly-shifted lattice rules

Pierre L'Ecuyer and David Munger

Informatique et Recherche Opérationnelle, Université de Montréal

- 1. Monte Carlo (MC), quasi-MC (QMC), randomized QMC (RQMC).
- 2. Lattice rules and RQMC variance.
- 3. Weighted discrepancies and choice of weights.
- 4. Several examples.

Basic Monte Carlo setting

Want to estimate

$$
\mu = \mu(f) = \int_{[0,1)^s} f(\mathbf{u}) d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]
$$

where $f:[0,1)^s\to\mathbb{R}$ and $\boldsymbol{\mathsf{U}}$ is a uniform r.v. over $[0,1)^s.$ Standard Monte Carlo:

- Generate *n* independent copies of **U**, say $\mathbf{U}_1, \ldots, \mathbf{U}_n$;
- ightharpoonup testimate μ by $\hat{\mu}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n f(\mathbf{U}_i)$.

Basic Monte Carlo setting

Want to estimate

$$
\mu = \mu(f) = \int_{[0,1)^s} f(\mathbf{u}) d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]
$$

where $f:[0,1)^s\to\mathbb{R}$ and $\boldsymbol{\mathsf{U}}$ is a uniform r.v. over $[0,1)^s.$ Standard Monte Carlo:

Generate *n* independent copies of U, say U_1, \ldots, U_n ;

• estimate
$$
\mu
$$
 by $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{U}_i)$.

Almost sure convergence as $n \to \infty$ (strong law of large numbers). For confidence interval of level $1 - \alpha$, can use central limit theorem:

$$
\mathbb{P}\left[\mu\in\left(\hat{\mu}_n-\frac{c_\alpha S_n}{\sqrt{n}},\ \hat{\mu}_n+\frac{c_\alpha S_n}{\sqrt{n}}\right)\right]\approx 1-\alpha,
$$

where S_n^2 is any consistent estimator of $\sigma^2 = \text{Var}[f(\mathbf{U})]$.

Quasi-Monte Carlo (QMC)

Replace the random points U_i by a set of deterministic points $P_n = \{u_0, \ldots, u_{n-1}\}\$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

Quasi-Monte Carlo (QMC)

Replace the random points U_i by a set of deterministic points $P_n = \{u_0, \ldots, u_{n-1}\}\$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

If infinite sequence of points: low-discrepancy sequence. For P_n , take the first *n* points, for any *n*.

Quasi-Monte Carlo (QMC)

Replace the random points U_i by a set of deterministic points $P_n = \{u_0, \ldots, u_{n-1}\}\$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

If infinite sequence of points: low-discrepancy sequence. For P_n , take the first *n* points, for any *n*.

Main construction methods: lattice rules and digital nets (Korobov, Hammersley, Halton, Sobol', Faure, Niederreiter, etc.)

Simplistic solution: rectangular grid

 $P_n = \{(i_1/d, \ldots, i_s/d) \text{ such that } 0 \leq i_j < d \ \ \forall j\}$ where $n = d^s$.

Simplistic solution: rectangular grid

 $P_n = \{(i_1/d, \ldots, i_s/d) \text{ such that } 0 \leq i_j < d \ \ \forall j\}$ where $n = d^s$.

Quickly becomes impractical when s increases.

And each one-dimensional projection has only d distinct points, each two-dimensional projections has only d^2 distinct points, etc.

$$
P_n = \{(x/m, (ax/m) \text{ mod } 1) : x = 0, ..., m-1\}
$$

= {(x/101, (12x/101) mod 1) : x = 0, ..., 100}

Here, each one-dimensional projection is $\{0, 1/n, ..., (n-1)/n\}.$

$$
P_n = \{(x/m, (ax/m) \text{ mod } 1) : x = 0, ..., m-1\}
$$

= {(x/101, (12x/101) mod 1) : x = 0, ..., 100}

Here, each one-dimensional projection is $\{0, 1/n, ..., (n-1)/n\}.$

$$
P_n = \{(x/m, (ax/m) \text{ mod } 1) : x = 0, ..., m-1\}
$$

= {(x/101, (12x/101) mod 1) : x = 0, ..., 100}

Here, each one-dimensional projection is $\{0, 1/n, ..., (n-1)/n\}.$

$$
P_n = \{(x/m, (ax/m) \text{ mod } 1) : x = 0, ..., m-1\}
$$

= {(x/101, (12x/101) mod 1) : x = 0, ..., 100}

Here, each one-dimensional projection is $\{0, 1/n, ..., (n-1)/n\}.$

$$
P_n = \{(x/m, (ax/m) \text{ mod } 1) : x = 0, ..., m-1\}
$$

= {(x/101, (12x/101) mod 1) : x = 0, ..., 100}

Here, each one-dimensional projection is $\{0, 1/n, ..., (n-1)/n\}.$ Two problems: (1) point at $(0, 0)$ and (2) how to estimate the error?

Randomized quasi-Monte Carlo (RQMC)

An RQMC estimator of μ has the form

$$
\hat{\mu}_{n,\text{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{U}_i),
$$

with $P_n = {\bf{U}}_0, \ldots, {\bf{U}}_{n-1} \} \subset (0,1)^s$ an RQMC point set:

(i) each point \mathbf{U}_i has the uniform distribution over $(0,1)^s$; (ii) P_n as a whole is a low-discrepancy point set.

$$
\mathbb{E}[\hat{\mu}_{n,\text{rqmc}}] = \mu \quad (\text{unbiased}).
$$

Can perform m independent realizations X_1, \ldots, X_m of $\hat{\mu}_{n,\text{rome}}$, then estimate μ and $\text{Var}[\hat{\mu}_{n,\text{rqmc}}]$ by their sample mean \bar{X}_m and sample variance S_m^2 (also unbiased).

 $u_{i,2}$

Generalized antithetic variates and RQMC

$$
\operatorname{Var}[\hat{\mu}_{n,\text{rqmc}}] = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)]
$$

=
$$
\frac{\operatorname{Var}[f(\mathbf{U}_i)]}{n} + \frac{2}{n^2} \sum_{i < j} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)].
$$

We want to make the last sum as negative as possible.

Special cases: antithetic variates $(n = 2)$, Latin hypercube sampling (LHS), randomized quasi-Monte Carlo (RQMC).

Koksma-Hlawka-type inequalities (worst-case error):

 $|\hat{\mu}_{n,\text{rome}} - \mu| \leq V(f) \cdot D(P_n)$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n .

Koksma-Hlawka-type inequalities (worst-case error):

$$
|\hat{\mu}_{n,\text{rqmc}} - \mu| \leq V(f) \cdot D(P_n)
$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC $(P_n$ is random):

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].
$$

Koksma-Hlawka-type inequalities (worst-case error):

$$
|\hat{\mu}_{n,\text{rqmc}} - \mu| \leq V(f) \cdot D(P_n)
$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC $(P_n$ is random):

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].
$$

With MC: $D(P_n) \approx O(n^{-1/2})$.

Koksma-Hlawka-type inequalities (worst-case error):

$$
|\hat{\mu}_{n,\text{rqmc}} - \mu| \leq V(f) \cdot D(P_n)
$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC $(P_n$ is random):

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].
$$

With MC: $D(P_n) \approx O(n^{-1/2})$.

"Classical" Koksma-Hlawka (worst-case) inequality for QMC: f must have finite variation in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes), and several known constructions achieve $D(P_n) = O(n^{-1}(\ln n)^s) = O(n^{-1+\delta}).$

For certain Hilbert spaces of smooth functions f with square-integrable partial derivatives of order up to α : $D(P_n) = O(n^{-\alpha+\delta}).$

Integration lattice:

$$
L_s = \left\{ \mathbf{v} = \sum_{j=1}^s z_j \mathbf{v}_j \text{ such that each } z_j \in \mathbb{Z} \right\},
$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over $\mathbb R$ and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0,1)^s$.

Integration lattice:

$$
L_s = \left\{ \mathbf{v} = \sum_{j=1}^s z_j \mathbf{v}_j \text{ such that each } z_j \in \mathbb{Z} \right\},
$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over $\mathbb R$ and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0,1)^s$.

Lattice rule of rank 1: $u_i = iv_1 \mod 1$ for $i = 0, \ldots, n - 1$. Korobov rule: $v_1 = z/n = (1, a, a^2 \mod n, \dots)/n$.

Integration lattice:

$$
L_s = \left\{ \mathbf{v} = \sum_{j=1}^s z_j \mathbf{v}_j \text{ such that each } z_j \in \mathbb{Z} \right\},
$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over $\mathbb R$ and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1$ mod 1 for $i = 0, \ldots, n - 1$. Korobov rule: $v_1 = z/n = (1, a, a^2 \mod n, \dots)/n$.

For any $\mathfrak{u}\subset \{1,\ldots,s\}$, the projection $L_{\pmb{s}}(\mathfrak{u})$ of $L_{\pmb{s}}$ is also a lattice, with point set $P_n(u)$.

Integration lattice:

$$
L_s = \left\{ \mathbf{v} = \sum_{j=1}^s z_j \mathbf{v}_j \text{ such that each } z_j \in \mathbb{Z} \right\},
$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over $\mathbb R$ and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1$ mod 1 for $i = 0, \ldots, n - 1$. Korobov rule: $v_1 = z/n = (1, a, a^2 \mod n, \dots)/n$.

For any $\mathfrak{u}\subset \{1,\ldots,s\}$, the projection $L_{\pmb{s}}(\mathfrak{u})$ of $L_{\pmb{s}}$ is also a lattice, with point set $P_n(u)$.

Random shift modulo 1: generate a single point **U** uniformly over $(0,1)^s$ and add it to each point of P_n , modulo 1, coordinate-wise: $\mathbf{U}_i = (\mathbf{u}_i + \mathbf{U})$ mod 1. Each \mathbf{U}_i is uniformly distributed over $[0, 1)^s$.

 $u_{i,2}$

Example of a poor lattice: $s = 2$, $n = 101$, $a = 51$

Good uniformity in one dimension, but not in two!

Variance expression

Suppose f has Fourier expansion

$$
f(\mathbf{u}) = \sum_{\mathbf{h}\in\mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi\sqrt{-1}\mathbf{h}^t \mathbf{u}}.
$$

For a randomly shifted lattice, the exact variance is (always)

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_{\mathbf{s}}^*} |\hat{f}(\mathbf{h})|^2,
$$

where $L_s^* = \{ h \in \mathbb{R}^s : h^t v \in \mathbb{Z} \text{ for all } v \in L_s \} \subseteq \mathbb{Z}^s$ is the dual lattice.

From the viewpoint of variance reduction, an optimal lattice for f minimizes the square discrepancy $D^2(P_n) = \text{Var}[\hat{\mu}_{n,\text{rqmc}}].$

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2.
$$

If f has square-integrable mixed partial derivatives up to order α , and the periodic continuation of its derivatives up to order $\alpha - 1$ is continuous across the unit cube boundaries, then

$$
|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}).
$$

Moreover, there is a $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$
\mathcal{P}_{2\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_{\mathbf{s}}^*} (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha} = \mathcal{O}(n^{-2\alpha + \delta}).
$$

This is the variance for a worst-case f having

$$
|\hat{f}(\mathbf{h})|^2 = (max(1, h_1), \ldots, max(1, h_s))^{-2\alpha}.
$$
$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_{s}^{*}} |\hat{f}(\mathbf{h})|^{2}.
$$

If f has square-integrable mixed partial derivatives up to order α , and the periodic continuation of its derivatives up to order $\alpha - 1$ is continuous across the unit cube boundaries, then

$$
|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}).
$$

Moreover, there is a $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$
\mathcal{P}_{2\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_{\mathbf{s}}^*} (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha} = \mathcal{O}(n^{-2\alpha + \delta}).
$$

This is the variance for a worst-case f having

$$
|\hat{f}(\textbf{h})|^2=(\text{max}(1,h_1),\ldots,\text{max}(1,h_s))^{-2\alpha}.
$$

Beware of hidden factor in $\mathcal O$ when s is large.

This worst-case function may be far from representative in applications.

Want to make the periodic continuation continuous. If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1 - u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

Want to make the periodic continuation continuous. If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1 - u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

Want to make the periodic continuation continuous. If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1 - u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

Want to make the periodic continuation continuous. If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1 - u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

For smooth f, can reduce the variance to $O(n^{-4+\delta})$ (Hickernell 2002). The resulting \tilde{f} also symmetric with respect to $u = 1/2$. In practice, we transform the points \mathbf{U}_i instead of f .

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1+U)/n, \ldots, (n-1+U)/n\}$.

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1+U)/n, \ldots, (n-1+U)/n)\}.$

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1 + U)/n, ..., (n - 1 + U)/n\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing $\mathit{U_j}$ by min $[2\mathit{U_j}, 2(1-\mathit{U_j})]$.

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1 + U)/n, ..., (n - 1 + U)/n\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing $\mathit{U_j}$ by min $[2\mathit{U_j}, 2(1-\mathit{U_j})]$.

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1 + U)/n, ..., (n - 1 + U)/n\}$.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing $\mathit{U_j}$ by min $[2\mathit{U_j}, 2(1-\mathit{U_j})]$.

Here the random shift can be seen as uniform over $[0, 1/n)$ and the shifted points become $\{U/n, (1 + U)/n, ..., (n - 1 + U)/n\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing $\mathit{U_j}$ by min $[2\mathit{U_j}, 2(1-\mathit{U_j})]$. Gives locally antithetic points in intervals of size $2/n$.

Searching for a lattice that minimizes 17

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L^*_{\mathcal{S}}} |\hat{f}(\mathbf{h})|^2
$$

is unpractical, because:

- \blacktriangleright the Fourier coefficients are usually unknown,
- \blacktriangleright there are infinitely many,
- \blacktriangleright must do it for each f.

We nevertheless want to see how far we can go in that direction.

Searching for a lattice that minimizes Searching for a lattice that minimizes

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L^*_{\mathcal{S}}} |\hat{f}(\mathbf{h})|^2
$$

is unpractical, because:

- \blacktriangleright the Fourier coefficients are usually unknown,
- \blacktriangleright there are infinitely many,
- \blacktriangleright must do it for each f.

We nevertheless want to see how far we can go in that direction.

Let us start with a simple function for which we know the Fourier expansion.

Even then, the discrepancy involves an infinite number of terms!

Possible ideas: Truncate the sum to a finite subset B :

$$
\sum_{\mathbf{0}\neq\mathbf{h}\in L^*_s\cap B}|\hat{f}(\mathbf{h})|^2,
$$

or to the largest q square coefficients $|\hat{f}(\mathsf{h})|^2.$ But hard to implement!

Dual-space exploration

The following makes sense if the $|\hat{f}(\textbf{h})|^2$ tend to decrease with each $|h_j|.$ Start with a large set $\mathcal L$ of lattices (or generating vectors $\mathbf v_1$, for given *n*). Search for vectors ${\sf h}$ with large weights $w({\sf h})=|\hat{f}({\sf h})|^2$, via a neighborhood search starting at $h = 0$, keeping a sorted list (as in Dijkstra's shortest path algorithm), and eliminate (successively) from $\mathcal L$ the lattices whose dual contains **h** for the next largest $w(h)$, until a single lattice remains.

Example of neighborhood $\mathcal{N}(\mathbf{h})$: only one coordinate differs, by one unit.

Dual-space exploration

The following makes sense if the $|\hat{f}(\textbf{h})|^2$ tend to decrease with each $|h_j|.$ Start with a large set $\mathcal L$ of lattices (or generating vectors $\mathbf v_1$, for given n). Search for vectors ${\sf h}$ with large weights $w({\sf h})=|\hat{f}({\sf h})|^2$, via a neighborhood search starting at $h = 0$, keeping a sorted list (as in Dijkstra's shortest path algorithm), and eliminate (successively) from $\mathcal L$ the lattices whose dual contains **h** for the next largest $w(h)$, until a single lattice remains.

Example of neighborhood $\mathcal{N}(\mathbf{h})$: only one coordinate differs, by one unit.

Component-by-component version: For $j = 1, 2, \ldots, s$, we apply the algorithm for a set $\mathcal L$ of *j*-dimensional lattices with common (fixed) $j - 1$ first coordinates, and determine the jth coordinate by visiting the i -dimensional vectors **h**.

```
Algorithm Dual-Space-Exploration(lattice set \mathcal{L}, weights w);
```
 $Q \leftarrow \mathcal{N}(\mathbf{0})$ // vectors **h** to be visited, sorted by weight w(**h**); $\mathcal{M} \leftarrow \mathcal{N}(\mathbf{0})$ // vectors **h** who already entered \mathcal{Q}_i while $|\mathcal{L}| > 1$ do

```
h \leftarrow remove first from \mathcal{Q};
for all lattices L_{\pmb{s}} \in \mathcal{L} such that \mathbf{h} \in L_{\pmb{s}}^* do
```

```
remove L_s from \mathcal{L};
```

```
if |\mathcal{L}| = 1 then
```

```
return the single lattice L_s \in \mathcal{L} and exit;
```
end if

```
end for
```

```
for all \mathsf{h}' \in \mathcal{N}(\mathsf{h}) \setminus \mathcal{M} do
```

```
add \mathsf{h}' to \mathcal M and to \mathcal Q with priority (weight) w(\mathsf{h}');end for
```
end while

An example

Take the product V-shaped function

$$
f(\mathbf{u}) = \prod_{j=1}^{s} \frac{|4u_j - 2| + c_j}{1 + c_j},
$$

so

$$
\hat{f}(\mathbf{h}) = \prod_{\{j \,:\, h_j \text{ is odd}\}} \frac{4}{(1+c_j)\pi^2h_j^2}.
$$

Dimensions $s = 5$ and 10. Constants $c_j = 1, j, j^2, j^3$.

Estimated variance vs n for $s = 5$

n

n

Estimated variance vs n for $s = 10$

n

n

ANOVA decomposition

The Fourier expansion has too many terms to handle. As a cruder expansion, we can write $f(\mathbf{u}) = f(u_1, \dots, u_s)$ as:

$$
f(\mathbf{u}) = \sum_{u \subseteq \{1,\ldots,s\}} f_u(\mathbf{u}) = \mu + \sum_{i=1}^s f_{\{i\}}(u_i) + \sum_{i,j=1}^s f_{\{i,j\}}(u_i, u_j) + \cdots
$$

where

$$
f_{\mathfrak{u}}(u)=\int_{[0,1)^{|\bar{\mathfrak{u}}|}}f(u)\,\mathrm{d} u_{\bar{\mathfrak{u}}}-\sum_{\mathfrak{v}\subset \mathfrak{u}}f_{\mathfrak{v}}(u_{\mathfrak{v}}),
$$

and the Monte Carlo variance decomposes as

$$
\sigma^2 = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \sigma_{\mathfrak{u}}^2, \quad \text{ where } \sigma_{\mathfrak{u}}^2 = \text{Var}[f_{\mathfrak{u}}(\mathbf{U})].
$$

Sensitivity indices: $S_{\mathfrak{u}} = \sigma_{\mathfrak{u}}^2/\sigma^2$. Can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections of P_n are very uniform for the important subsets μ (i.e., with large S_{μ}).

Shift-invariant discrepancy

In a reproducing kernel Hilbert space (RKHS) with kernel K , and randomly-shifted points, the relevant discrepancy corresponds to the shift-invariant kernel

$$
\mathcal{K}_{sh}(\mathbf{u}_i, \mathbf{u}_j) := \mathbb{E}[\mathcal{K}(\mathbf{U}_i, \mathbf{U}_j)] = \mathbb{E}[\mathcal{K}(\mathbf{u}_i + \mathbf{U}, \mathbf{u}_j + \mathbf{U})] = \mathbb{E}[\mathcal{K}(\mathbf{u}_i - \mathbf{u}_j + \mathbf{U}, \mathbf{U})].
$$

The mean square discrepancy can be written as

$$
\mathbb{E}[D^2(P_n)] = \frac{1}{n} \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} w(\mathbf{h}) \sum_{i=0}^{n-1} e^{2\pi \sqrt{-1} \mathbf{h}^t \mathbf{u}_i}.
$$

and the corresponding square variation is

$$
V^2(f)=\sum_{\mathbf{0}\neq\mathbf{h}\in\mathbb{Z}^s}\frac{|\hat{f}(\mathbf{h})|^2}{w(\mathbf{h})}.
$$

Key issue: choice of the weights $w(h)$.

Regrouping by projections

Denote $u(h) = u(h_1, \ldots, h_s)$ the set of indices *j* for which $h_i \neq 0$. We have

$$
\mathbb{E}[D^2(P_n)] = \sum_{u \subseteq \{1,\ldots,s\}} \sum_{\mathbf{h}: u(\mathbf{h})=u} w(\mathbf{h}) \frac{1}{n} \sum_{i=0}^{n-1} e^{2\pi \sqrt{-1} \mathbf{h}^t u_i} = \sum_{u \subseteq \{1,\ldots,s\}} D_u^2(P_n)
$$

and

$$
V^2(f)=\sum_{\mathfrak{u}\subseteq \{1,\ldots,s\}}\sum_{\mathbf{h}:\mathfrak{u}(\mathbf{h})=\mathbf{h}}\frac{|\hat{f}(\mathbf{h})|^2}{w(\mathbf{h})}\ =\sum_{\mathfrak{u}\subseteq \{1,\ldots,s\}}V^2(f_{\mathfrak{u}}).
$$

The RKHS decomposes as a direct sum and the RQMC variance has a corresponding decomposition. Variance bound:

$$
\text{Var}[\hat{\mu}_{n,\text{rqmc}}] = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \text{Var}[\hat{\mu}_{n,\text{rqmc}}(f_{\mathfrak{u}})] \leq \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} V^2(f_{\mathfrak{u}}) \cdot \mathbb{E}[D_{\mathfrak{u}}^2(P_n(\mathfrak{u}))].
$$

The mean square discrepancy for each $\mathfrak u$ should be weighted by $\mathcal V^2(f_\mathfrak u),$ which is typically unknown. The problem of choosing K remains.

Example: a weighted Sobolev space

Space of functions with integrable partial derivatives. RKHS with kernel

$$
K(\mathbf{u}, \mathbf{x}) = \sum_{\mathbf{u} \subseteq \{1, ..., s\}} \gamma_{\mathbf{u}} \prod_{j \in \mathbf{u}} 2\pi^2 \left[B_2((u_j - x_j) \text{ mod } 1)/2 + (u_j - 0.5)(x_j - 0.5) \right]
$$

where $B_2(u)=u^2-u+1/6.$ The shift-invariant kernel is

$$
K_{\mathrm{sh}}(\mathbf{u},\mathbf{x})=\sum_{\mathbf{u}\subseteq\{1,\ldots,s\}}\gamma_{\mathbf{u}}\prod_{j\in\mathbf{u}}2\pi^2B_2((u_j-x_j)\bmod 1)
$$

and the corresponding mean square discrepancy for a randomly-shifted lattice rule with $\mathbf{v}_1 = (v_1, \ldots, v_s)$ is

$$
\mathbb{E}[D^2(P_n)] = \frac{1}{n} \sum_{i=1}^n \sum_{u \subseteq \{1,\ldots,s\}} \gamma_u \prod_{j \in u} 2\pi^2 B_2((i \, v_j/n) \bmod 1).
$$

From the Fourier expansion of B_2 , we also have

$$
\mathbb{E}[D^{2}(P_{n})] = \frac{1}{n} \sum_{i=1}^{n} \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} \sum_{h_{j} \neq 0} h_{j}^{-2} e^{2\pi \sqrt{-1}i h_{j} v_{j}/n}
$$

=
$$
\sum_{0 \neq h \in L_{s}^{*}} \gamma_{\mathfrak{u}(h)} \prod_{j \in \mathfrak{u}(h)} h_{j}^{2} = \sum_{0 \neq h \in L_{s}^{*}} w(h).
$$

For those weights, we have $w(\textbf{h})=|\hat{f}(\textbf{h})|^2$ for the function

$$
f(\mathbf{u}) = \sum_{\mathbf{u} \subseteq \{1,\ldots,s\}} (2\pi)^{|\mathbf{u}|} \gamma_{\mathbf{u}}^{1/2} \prod_{j \in \mathbf{u}} B_1(u_j),
$$

so $\mathbb{E}[D^2(P_n)]$ is the RQMC variance for this $f.$

On the other hand, the ANOVA variance components for this f are

$$
\sigma_{\mathfrak{u}}^2 = (4\pi^2)^{|\mathfrak{u}|}\gamma_{\mathfrak{u}}\prod_{j\in\mathfrak{u}}\mathrm{Var}[B_1(U)] = (3/\pi^2)^{-|\mathfrak{u}|}\gamma_{\mathfrak{u}},
$$

because $Var[B_1(U)] = 1/12$. The optimal weights are then

$$
\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2,
$$

if we believe that this worst-case function is representative of our f .

Using the same kernel and a different heuristic argument, Wang and Sloan (2006) come up with weights that generalize to (they do this for product weights only):

$$
\gamma_{\mathfrak{u}}^2 = (45/\pi^4)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2,
$$

that is,

$$
\gamma_u=(\sqrt{45}/\pi^2)^{|u|}\sigma_u\approx 0.6797^{|u|}\sigma_u,
$$

Using the same kernel and a different heuristic argument, Wang and Sloan (2006) come up with weights that generalize to (they do this for product weights only):

$$
\gamma_{\mathfrak{u}}^2 = (45/\pi^4)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2,
$$

that is,

$$
\gamma_u=(\sqrt{45}/\pi^2)^{|u|}\sigma_u\approx 0.6797^{|u|}\sigma_u,
$$

With $\gamma_{\mathfrak{u}} = 1$, we obtain the classical (unweighted) \mathcal{P}_2 .

Weighted $\mathcal{P}_{2\alpha}$:

$$
\mathcal{P}_{2\alpha} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}
$$

Variance for a worst-case function whose square Fourier coefficients are

$$
|\hat{f}(\mathbf{h})|^2 = \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}.
$$

This is the RQMC variance for a function of the form

$$
f(\mathbf{u})=\sum_{\mathbf{u}\subseteq\{1,\ldots,s\}}\sqrt{\gamma_\mathbf{u}}\prod_{j\in\mathbf{u}}\frac{(2\pi)^{\alpha}}{\alpha!}B_{\alpha}(u_j).
$$

We also have

$$
\sigma_{\mathfrak{u}}^2 = \gamma_{\mathfrak{u}} \left[\mathrm{Var}[B_{\alpha}(U)] \frac{(4\pi^2)^{\alpha}}{(\alpha!)^2} \right]^{\mathfrak{u}\mathfrak{l}} = \gamma_{\mathfrak{u}} \left[|B_{2\alpha}(0)| \frac{(4\pi^2)^{\alpha}}{(2\alpha)!} \right]^{\mathfrak{u}\mathfrak{l}}
$$

For $\alpha = 1$, we should take $\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. For $\alpha = 2$, we should take $\gamma_{\mathfrak{u}} = [45/\pi^4]^{|{\mathfrak{u}}|} \sigma_{\mathfrak{u}}^2 \approx (0.46197)^{|{\mathfrak{u}}|} \sigma_{\mathfrak{u}}^2.$

Weighted $\mathcal{P}_{2\alpha}$:

$$
\mathcal{P}_{2\alpha} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}
$$

Variance for a worst-case function whose square Fourier coefficients are

$$
|\hat{f}(\mathbf{h})|^2 = \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}.
$$

This is the RQMC variance for a function of the form

$$
f(\mathbf{u})=\sum_{\mathbf{u}\subseteq\{1,\ldots,s\}}\sqrt{\gamma_\mathbf{u}}\prod_{j\in\mathbf{u}}\frac{(2\pi)^{\alpha}}{\alpha!}B_{\alpha}(u_j).
$$

We also have

$$
\sigma_{\mathfrak{u}}^2 = \gamma_{\mathfrak{u}} \left[\mathrm{Var}[B_{\alpha}(U)] \frac{(4\pi^2)^{\alpha}}{(\alpha!)^2} \right]^{\mathfrak{u}\mathfrak{l}} = \gamma_{\mathfrak{u}} \left[|B_{2\alpha}(0)| \frac{(4\pi^2)^{\alpha}}{(2\alpha)!} \right]^{\mathfrak{u}\mathfrak{l}}
$$

For $\alpha = 1$, we should take $\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. For $\alpha = 2$, we should take $\gamma_{\mathfrak{u}} = [45/\pi^4]^{|{\mathfrak{u}}|} \sigma_{\mathfrak{u}}^2 \approx (0.46197)^{|{\mathfrak{u}}|} \sigma_{\mathfrak{u}}^2.$

The ratios weight / variance should decrease exponentially with $|u|$.

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_\mathfrak{u}$ should be proportional to $\mathcal{V}^2(f_\mathfrak{u}),$ which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_\mathfrak{u}$ should be proportional to $\mathcal{V}^2(f_\mathfrak{u}),$ which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Idea 2: try to have γ_u proportional to $V^2(f_u)$ for each u . With a weighted \mathcal{P}_{α} -type criterion, this gives $\gamma_{\mathfrak{u}}=\rho^{|{\mathfrak{u}}|}\sigma_{\mathfrak{u}}^2$ for a constant ρ .

In general, one can define a simple parametric model for the square variations and then estimate the parameters by matching the ANOVA variances (e.g., Wang and Sloan 2006).

For example, $\gamma_{\mathfrak{u}} = \prod_{j\in\mathfrak{u}}\gamma_j$ for some constants $\gamma_j\geq 0$ (product weights). Fewer parameters: take $\gamma_j = a \beta^j$ for $a, \beta > 0$ (geometric).

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_\mathfrak{u}$ should be proportional to $\mathcal{V}^2(f_\mathfrak{u}),$ which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Idea 2: try to have γ_u proportional to $V^2(f_u)$ for each u . With a weighted \mathcal{P}_{α} -type criterion, this gives $\gamma_{\mathfrak{u}}=\rho^{|{\mathfrak{u}}|}\sigma_{\mathfrak{u}}^2$ for a constant ρ .

In general, one can define a simple parametric model for the square variations and then estimate the parameters by matching the ANOVA variances (e.g., Wang and Sloan 2006).

For example, $\gamma_{\mathfrak{u}} = \prod_{j\in\mathfrak{u}}\gamma_j$ for some constants $\gamma_j\geq 0$ (product weights). Fewer parameters: take $\gamma_j = a \beta^j$ for $a, \beta > 0$ (geometric).

Idea 3: Just take simple order-dependent weights. For example, $\gamma_{\mu} = 1$ for $|u| < d$ and $\gamma_{\rm u} = 0$ otherwise. Wang (2007) recommends this with $d = 2$.

Proposal 4: A strategy for order-dependent weights. Assume $\gamma_{\mathfrak{u}}=\mathsf{\Gamma}_{|\mathfrak{u}|}.$ Need to select $\mathsf{\Gamma}_1,\ldots,\mathsf{\Gamma}_s.$ For each μ , let v_u^2 be an estimate of the square variation $V^2(f_u)$. Strategy: take Γ_r as the average

$$
\Gamma_r = {s \choose r}^{-1} \sum_{\{u:|u|=r\}} v_u^2.
$$

Here, the scaling of weights does not matter.

Proposal 5: A strategy for product weights.

Ignore one-dimensional projections; they are the same for all lattices.

The idea is to fit the estimated square variations over all two-dimensional projections via a least-squares procedure. Then we rescale all the weights by a constant factor to match the ratio of average square variations over the three-dimensional projections to that over the two-dimensional projections.

Let τ_i be the unscaled weight for projection j. We first minimize

$$
R = \sum_{k=1}^{s} \sum_{j=1}^{k-1} \left(\tau_j \tau_k - v_{\{j,k\}}^2 \right)^2.
$$

Differentiating w.r.t. τ_i and equaling to 0, we obtain, for each j,

$$
\tau_j \sum_{k=1, k \neq j}^s \tau_k^2 = \sum_{k=1, k \neq j}^s \tau_k v_{\{j,k\}}^2.
$$

This can be solved by an iterative fixed-point algorithm:

$$
\tau_j^{(0)} = \max_{k,l=1,\dots,s} v_{\{k,l\}}, \qquad \qquad \tau_j^{(i+1)} = \frac{\sum_{k=1,\,k\neq j}^s \tau_k^{(i)} v_{\{j,k\}}^2}{\sum_{k=1,\,k\neq j}^s \left(\tau_k^{(i)}\right)^2},
$$

for $i = 1, 2, \ldots$.

We then rescale the weights via $\gamma_j = c\tau_j$ where the constant c satisfies

$$
\frac{\sum_{k=1}^s\sum_{j=1}^{k-1}\tau_j\tau_k}{c\sum_{k=1}^s\sum_{j=1}^{k-1}\sum_{l=1}^{j-1}\tau_j\tau_k\tau_l}=\frac{\sum_{k=1}^s\sum_{j=1}^{k-1}v_{\{j,k\}}^2}{\sum_{k=1}^s\sum_{j=1}^{k-1}\sum_{l=1}^{j-1}v_{\{j,k,l\}}^2}.
$$

 λ

Idea 6: Control the shortest vector in dual lattice, for each projection. Spectral test for LCGs (Knuth, etc.):

$$
\min_{2\leq r\leq t_1}\frac{\ell_{\{1,\ldots,r\}}}{\ell_r^*(n)}
$$

where $\ell_\mathfrak{u}$ is the length of a shortest vector in $L^*(\mathfrak{u})$ and $\ell_r^*(n)$ is a theoretical upper bound on this length, in r dimensions.

Advantages: Computing time of $\ell_{\rm u}$ are almost independent of n, although exponential in $|u|$. Poor lattices can be eliminated quickly: search is fast.

Idea 6: Control the shortest vector in dual lattice, for each projection.

Lemieux and L'Ecuyer (2000, etc.) maximize

$$
M_{t_1,\ldots,t_d} = \min \left[\min_{2 \leq r \leq t_1} \frac{\ell_{\{1,\ldots,r\}}}{\ell_r^*(n)}, \min_{2 \leq r \leq d} \min_{\substack{u = \{j_1,\ldots,j_r\} \subset \{1,\ldots,s\} \\ 1 = j_1 < \cdots < j_r \leq t_r}} \frac{\ell_u}{\ell_r^*(n)} \right],
$$

where $\ell_\mathfrak{u}$ is the length of a shortest vector in $L^*(\mathfrak{u})$ and $\ell_r^*(n)$ is a theoretical upper bound on this length, in r dimensions.

Advantages: Computing time of $\ell_{\rm u}$ are almost independent of n, although exponential in $|u|$. Poor lattices can be eliminated quickly: search is fast.

This can of course be generalized by adding weights to projections.
Searching for lattice parameters

Korobov lattices. Search over all admissible integers a, for $v_1 = (1, a, a^2, \ldots, \ldots)/n.$

Searching for lattice parameters

Korobov lattices. Search over all admissible integers a, for $v_1 = (1, a, a^2, \ldots, \ldots)/n.$

Component by component (CBC) construction.

Let
$$
v_{1,1} = 1/n
$$
;
For $j = 2, 3, ..., s$, find $z \in \{1, ..., n-1\}$, $gcd(z, n) = 1$, such that $(v_{1,1}, v_{1,2}, ..., v_{1,j} = z/n)$ minimizes the selected discrepancy for the first j dimensions.

Searching for lattice parameters

Korobov lattices. Search over all admissible integers a, for $v_1 = (1, a, a^2, \ldots, \ldots)/n.$

Component by component (CBC) construction.

Let
$$
v_{1,1} = 1/n
$$
;
For $j = 2, 3, ..., s$, find $z \in \{1, ..., n - 1\}$, $gcd(z, n) = 1$, such that $(v_{1,1}, v_{1,2}, ..., v_{1,j} = z/n)$ minimizes the selected discrepancy for the first j dimensions.

Partial randomized CBC construction.

Let
$$
v_{1,1} = 1/n
$$
;
For $j = 2, 3, ..., s$, try *r* random $z \in \{1, ..., n-1\}$,
 $gcd(z, n) = 1$, and retain the one that
 $(v_{1,1}, v_{1,2}, ..., v_{1,j} = z/n)$ minimizes the selected
 discrepancy for the first *j* dimensions.

Example: stochastic activity network

Each arc j has random length $V_j = F_j^{-1}$ $j^{-1}(U_j).$ Let $T = f(U_1, \ldots, U_{13})$ = length of longest path from node 1 to node 9. Want to estimate $q(x) = \mathbb{P}[T > x]$ for a given constant x.

To estimate $q(x)$ by MC, we generate *n* independent realizations of T, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

To estimate $q(x)$ by MC, we generate *n* independent realizations of T, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

CMC estimator. Generate the V_j 's only for the 8 arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those V_j 's, $\mathbb{P}[T > x \mid \{V_j, j \notin \mathcal{L}\}]$. This makes the integrand continuous in the U_{j} 's.

To estimate $q(x)$ by MC, we generate *n* independent realizations of T, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

CMC estimator. Generate the V_j 's only for the 8 arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those V_j 's, $\mathbb{P}[T > x \mid \{V_j, j \notin \mathcal{L}\}]$. This makes the integrand continuous in the U_{j} 's.

Illustration: V_j ∼ Normal (μ_j, σ_j^2) for $j = 1, 2, 4, 11, 12$, and $V_i \sim$ Exponential($1/\mu_i$) otherwise.

The μ_j : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

ANOVA decomposition

– Show quickly the full table of ANOVA variances, in separate text file. Then summarize by cardinality of projections.

There are six paths from 1 to 9:

 $\mathcal{P} = \{\{1, 5, 11\}, \{2, 6, 11\}, \{1, 3, 6, 11\}, \{1, 4, 7, 12, 13\}, \{1, 4, 8, 9, 13\}, \{1, 4, 8, 10, 11\}$

We may think that the important projections are only the subsets of those paths:

$$
\mathcal{P}'=\left\{\mathfrak{v}\subseteq\mathfrak{u}\in\mathcal{P}\right\}.
$$

Fraction of the total variance that lies in these projections:

ANOVA Variances for the Stochastic Activity **Network**

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Korobov vs. CBC

Korobov vs. CBC

Histograms

Histograms

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \ldots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \ldots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c -dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have $s = cd$.

Let
$$
\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]
$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \Sigma)$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have $s = cd$.

To generate \textbf{Y} : Decompose $\boldsymbol{\Sigma} = \textbf{A}\textbf{A}^{\text{t}}$, generate $\mathsf{Z}=(Z_1,\ldots,Z_s)=(\Phi^{-1}(U_1),\ldots,\Phi^{-1}(U_s))\sim \mathsf{N}(\mathbf{0},\mathsf{I})$ and return $Y = AZ$.

Let
$$
\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]
$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \Sigma)$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have $s = cd$.

To generate \textbf{Y} : Decompose $\boldsymbol{\Sigma} = \textbf{A}\textbf{A}^{\text{t}}$, generate $\mathsf{Z}=(Z_1,\ldots,Z_s)=(\Phi^{-1}(U_1),\ldots,\Phi^{-1}(U_s))\sim \mathsf{N}(\mathbf{0},\mathsf{I})$ and return $Y = AZ$. Choice of A?

Let
$$
\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]
$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \Sigma)$.

For example, if the payoff of a financial derivative is a function of the values taken by a c -dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have $s = cd$.

To generate **Y**: Decompose
$$
\Sigma = AA^t
$$
, generate
\n $Z = (Z_1, ..., Z_s) = (\Phi^{-1}(U_1), ..., \Phi^{-1}(U_s)) \sim N(\mathbf{0}, \mathbf{I})$ and return
\n $\mathbf{Y} = \mathbf{A}Z$.
\nChoice of **A**?

Cholesky factorization: A is lower triangular.

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors.

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Principal component decomposition (PCA): 57

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{X(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{X(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then **, etc.**

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{X(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then **, etc.**

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $\bm{\mathsf{X}}(t_d)$, then $\bm{\mathsf{X}}(t_{d/2})$ conditional on $(\bm{\mathsf{X}}(0),\bm{\mathsf{X}}(t_d))$,

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{X(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then **, etc.**

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $\bm{\mathsf{X}}(t_d)$, then $\bm{\mathsf{X}}(t_{d/2})$ conditional on $(\bm{\mathsf{X}}(0),\bm{\mathsf{X}}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_{d/2})),$ and so on.

The first few $N(0, 1)$ r.v.'s already sketch the path trajectory.
Principal component decomposition (PCA): ⁵⁷

 ${\sf A} = {\sf PD}^{1/2}$ where ${\sf D} = {\rm diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of ${\sf \Sigma}$ in decreasing order) and the columns of P are the corresponding unit-length eigenvectors. With this A , Z_1 accounts for the maximum amount of variance of **Y**, then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{X(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then **, etc.**

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $\bm{\mathsf{X}}(t_d)$, then $\bm{\mathsf{X}}(t_{d/2})$ conditional on $(\bm{\mathsf{X}}(0),\bm{\mathsf{X}}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_{d/2})),$ and so on.

The first few $N(0, 1)$ r.v.'s already sketch the path trajectory.

Each of these methods corresponds to some matrix A. Choice has large impact on the ANOVA decomposition of f.

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$
f(\mathbf{U})=e^{-rt_s}\max\left[0,\,\frac{1}{s}\sum_{j=1}^sS(t_j)-K\right]
$$

and $\{S(t), t \geq 0\}$ is a geometric Brownian motion. We have $f(U) = g(Y)$ where $Y = (Y_1, \ldots, Y_s) \sim N(0, \Sigma)$.

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$
f(\mathbf{U})=e^{-rt_s}\max\left[0,\,\frac{1}{s}\sum_{j=1}^sS(t_j)-K\right]
$$

and $\{S(t), t \geq 0\}$ is a geometric Brownian motion. We have $f(U) = g(Y)$ where $Y = (Y_1, \ldots, Y_s) \sim N(0, \Sigma)$.

Let $S(0) = 100$, $K = 100$, $r = 0.05$, $t_s = 1$, and $t_i = jT/s$ for $1 \le j \le s$. We consider $\sigma = 0.2$, 0.5 and $s = 3, 6, 12$.

ANOVA Variances for the Asian Option

Total Variance per Coordinate for the Asian Option

60

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Solid: CBC. Dashed: Korobov.

Histograms for the Asian Option in $s = 6$

Histograms for the Asian option, $s = 6$

A down-and-in Asian option with barrier B

Same as for Asian option, except that payoff is zero unless

min $S(t_j) \leq B$

for a given constant $B = 80$.

82 ANOVA Variances for the down-and-in Asian Option

% of total variance

Total Variance per Coordinate for the down-and-in Asian Option

Down-and-In $(s = 6)$, $S(0) = K = 100$, $r = 0.05$, $\sigma = 0.2$, $B = 80$

86

87

n

ANOVA variances for the maximum of 6 assets

Total Variance per Coordinate for the maximum of 6 assets

Maximum of 6 assets, $S(0) = K = 100$, $r = 0.05$, $\sigma = 0.5$, $\rho = 0.3$

n

92

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Callable bond

ANOVA Variances for the Callable Bond

98 Total Variance per Coordinate for the Callable Bond

Discrete choice with multinomial mixed logit probability

Utility of alternative *i* for individual q is

$$
U_{q,j} = \beta_q^{\mathsf{t}} \mathbf{x}_{q,j} + \epsilon_{q,j} = \sum_{\ell=1}^s \beta_{q,\ell} x_{q,j,\ell} + \epsilon_{q,j}, \text{ where}
$$

\n
$$
\beta_q^{\mathsf{t}} = (\beta_{q,1}, \dots, \beta_{q,s}) \text{ gives the tastes of individual } q,
$$

\n
$$
\mathbf{x}_{q,j}^{\mathsf{t}} = (x_{q,j,1}, \dots, x_{q,j,s}) \text{ attributes of alternative } j \text{ for individual } q,
$$

\n
$$
\epsilon_{q,j} \text{ noise; Gumbel of mean 0 and scale parameter } \lambda = 1.
$$

Individual q selects alternative with largest utility $U_{q,j}$.

Can observe the $x_{q,i}$ and choices y_q , but not the rest.

Logit model: for β_q fixed, j is chosen with probability

$$
L_q(j \mid \beta_q) = \frac{\exp[\beta_q^{\mathsf{t}} \mathbf{x}_{q,j}]}{\sum_{a \in \mathcal{A}(q)} \exp[\beta_q^{\mathsf{t}} \mathbf{x}_{q,a}]}
$$

where $\mathcal{A}(q)$ are the available alternatives for q.

Logit model: for β_a fixed, j is chosen with probability

$$
L_q(j \mid \beta_q) = \frac{\exp[\beta_q^{\mathsf{t}} \mathbf{x}_{q,j}]}{\sum_{a \in \mathcal{A}(q)} \exp[\beta_q^{\mathsf{t}} \mathbf{x}_{q,a}]}
$$

where $A(q)$ are the available alternatives for q.

For a random individual, suppose β_q is random with density f_{θ} , which depends on (unknown) parameter vector θ . We want to estimate θ from the data (the $x_{q,j}$ and y_q).

The unconditional probability of choosing *is*

$$
p_q(j,\theta) = \int L_q(j \mid \beta) f_{\theta}(\beta) \beta.
$$

It depends on $\mathcal{A}(q)$, j, and θ .

Maximum likelihood: Maximize the log of the joint probability of the 104 sample, w.r.t. θ :

$$
\ln L(\theta) = \ln \prod_{q=1}^m p_q(y_q, \theta) = \sum_{q=1}^m \ln p_q(y_q, \theta).
$$

Maximum likelihood: Maximize the log of the joint probability of the 104 sample, w.r.t. θ :

$$
\ln L(\theta) = \ln \prod_{q=1}^m p_q(y_q, \theta) = \sum_{q=1}^m \ln p_q(y_q, \theta).
$$

No formula for $p_q(j, \theta)$, but can use MC or RQMC, for each q and fixed θ . Generate *n* realizations of β from f_{θ} , say $\beta_q^{(1)}(\theta), \ldots, \beta_q^{(n)}(\theta)$, and estimate $p_a(y_a, \theta)$ by

$$
\hat{p}_q(y_q,\theta)=\frac{1}{n}\sum_{i=1}^n L_q(j,\beta_q^{(i)}(\theta)).
$$

Then we can find the maximizer $\hat{\theta}$ of In $\prod_{q=1}^m \hat{p}_q(y_q, \theta)$ w.r.t. $\theta.$

Maximum likelihood: Maximize the log of the joint probability of the 104 sample, w.r.t. θ :

$$
\ln L(\theta) = \ln \prod_{q=1}^m p_q(y_q, \theta) = \sum_{q=1}^m \ln p_q(y_q, \theta).
$$

No formula for $p_q(j, \theta)$, but can use MC or RQMC, for each q and fixed θ . Generate *n* realizations of β from f_{θ} , say $\beta_q^{(1)}(\theta), \ldots, \beta_q^{(n)}(\theta)$, and estimate $p_a(y_a, \theta)$ by

$$
\hat{p}_q(y_q,\theta)=\frac{1}{n}\sum_{i=1}^n L_q(j,\beta_q^{(i)}(\theta)).
$$

Then we can find the maximizer $\hat{\theta}$ of In $\prod_{q=1}^m \hat{p}_q(y_q, \theta)$ w.r.t. $\theta.$

– How many alternatives? – 4 alternatives, the first two are generated from independent $N(1, 1)$ and the last two from $N(0.5, 1)$.

Suppose $\bm{\beta_q}$ is a vector of \bm{s} independent $\mathsf{N}(1,1)$ random variables. We try $s = 5, 10, 15.$

ANOVA Variances for the Mixed Logit Model

Total Variance per Coordinate for the Mixed Logit Model

106

107 Total Variance per Coordinate for the Mixed Logit Model

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Still missing

– Compare criteria with and without baker.

– Il faudrait essayer un critere qui donne un poids different a chaque u, au lieu de supposer la forme produit ou order-dependent.