Randomized Quasi-Monte Carlo: Theory, Choice of Discrepancy, and Applications

Pierre L'Ecuyer and David Munger

Informatique et Recherche Opérationnelle, Université de Montréal

Randomized Quasi-Monte Carlo: Theory, Choice of Discrepancy, and Applications featuring randomly-shifted lattice rules

Pierre L'Ecuyer and David Munger

Informatique et Recherche Opérationnelle, Université de Montréal

- 1. Monte Carlo (MC), quasi-MC (QMC), randomized QMC (RQMC).
- 2. Lattice rules and RQMC variance.
- 3. Weighted discrepancies and choice of weights.
- 4. Several examples.

Basic Monte Carlo setting

Want to estimate

$$\boldsymbol{\mu} = \boldsymbol{\mu}(f) = \int_{[0,1)^s} f(\mathbf{u}) \, d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]$$

where $f: [0,1)^s \to \mathbb{R}$ and U is a uniform r.v. over $[0,1)^s$. Standard Monte Carlo:

- ► Generate *n* independent copies of **U**, say **U**₁,..., **U**_n;
- estimate μ by $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{U}_i)$.

Basic Monte Carlo setting

Want to estimate

$$\boldsymbol{\mu} = \boldsymbol{\mu}(f) = \int_{[0,1)^s} f(\mathbf{u}) \, d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]$$

where $f: [0,1)^s \to \mathbb{R}$ and U is a uniform r.v. over $[0,1)^s$. Standard Monte Carlo:

► Generate *n* independent copies of **U**, say **U**₁,..., **U**_n;

• estimate
$$\mu$$
 by $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{U}_i)$.

Almost sure convergence as $n \to \infty$ (strong law of large numbers). For confidence interval of level $1 - \alpha$, can use central limit theorem:

$$\mathbb{P}\left[\mu \in \left(\hat{\mu}_n - \frac{c_\alpha S_n}{\sqrt{n}}, \ \hat{\mu}_n + \frac{c_\alpha S_n}{\sqrt{n}}\right)\right] \approx 1 - \alpha,$$

where S_n^2 is any consistent estimator of $\sigma^2 = \operatorname{Var}[f(\mathbf{U})]$.

Quasi-Monte Carlo (QMC)

Replace the random points \mathbf{U}_i by a set of deterministic points $P_n = {\mathbf{u}_0, \dots, \mathbf{u}_{n-1}}$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

Quasi-Monte Carlo (QMC)

Replace the random points \mathbf{U}_i by a set of deterministic points $P_n = {\mathbf{u}_0, \dots, \mathbf{u}_{n-1}}$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

If infinite sequence of points: low-discrepancy sequence. For P_n , take the first *n* points, for any *n*.

Quasi-Monte Carlo (QMC)

Replace the random points \mathbf{U}_i by a set of deterministic points $P_n = {\mathbf{u}_0, \dots, \mathbf{u}_{n-1}}$ that cover $[0, 1)^s$ more evenly. This P_n is called a highly-uniform or low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\rightarrow 0$ faster than for independent random points.

If infinite sequence of points: low-discrepancy sequence. For P_n , take the first *n* points, for any *n*.

Main construction methods: lattice rules and digital nets (Korobov, Hammersley, Halton, Sobol', Faure, Niederreiter, etc.)

Simplistic solution: rectangular grid

 $P_n = \{(i_1/d, \dots, i_s/d) \text{ such that } 0 \leq i_j < d \ \forall j\} \text{ where } n = d^s.$

Simplistic solution: rectangular grid

 $P_n = \{(i_1/d, \dots, i_s/d) \text{ such that } 0 \leq i_j < d \ \forall j\}$ where $n = d^s$.

Quickly becomes impractical when s increases.

And each one-dimensional projection has only d distinct points, each two-dimensional projections has only d^2 distinct points, etc.

$$P_n = \{ (x/m, (ax/m) \mod 1) : x = 0, \dots, m-1 \} \\ = \{ (x/101, (12x/101) \mod 1) : x = 0, \dots, 100 \}$$

Here, each one-dimensional projection is $\{0, 1/n, \ldots, (n-1)/n\}$.

$$P_n = \{ (x/m, (ax/m) \mod 1) : x = 0, \dots, m-1 \} \\ = \{ (x/101, (12x/101) \mod 1) : x = 0, \dots, 100 \}$$

Here, each one-dimensional projection is $\{0, 1/n, \ldots, (n-1)/n\}$.

$$P_n = \{ (x/m, (ax/m) \mod 1) : x = 0, \dots, m-1 \} \\ = \{ (x/101, (12x/101) \mod 1) : x = 0, \dots, 100 \}$$

Here, each one-dimensional projection is $\{0, 1/n, \ldots, (n-1)/n\}$.

$$P_n = \{ (x/m, (ax/m) \mod 1) : x = 0, \dots, m-1 \} \\ = \{ (x/101, (12x/101) \mod 1) : x = 0, \dots, 100 \}$$

Here, each one-dimensional projection is $\{0, 1/n, \ldots, (n-1)/n\}$.

$$P_n = \{ (x/m, (ax/m) \mod 1) : x = 0, \dots, m-1 \} \\ = \{ (x/101, (12x/101) \mod 1) : x = 0, \dots, 100 \}$$

Here, each one-dimensional projection is $\{0, 1/n, \dots, (n-1)/n\}$. Two problems: (1) point at (0,0) and (2) how to estimate the error?

Randomized quasi-Monte Carlo (RQMC)

An RQMC estimator of $\boldsymbol{\mu}$ has the form

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{n},\mathrm{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{U}_i),$$

with $P_n = { \mathbf{U}_0, \dots, \mathbf{U}_{n-1} } \subset (0,1)^s$ an RQMC point set:

(i) each point U_i has the uniform distribution over (0, 1)^s;
(ii) P_n as a whole is a low-discrepancy point set.

$$\mathbb{E}[\hat{\mu}_{n,\mathrm{rqmc}}] = \mu$$
 (unbiased).

Can perform *m* independent realizations X_1, \ldots, X_m of $\hat{\mu}_{n,\text{rqmc}}$, then estimate μ and $\text{Var}[\hat{\mu}_{n,\text{rqmc}}]$ by their sample mean \overline{X}_m and sample variance S_m^2 (also unbiased).

 $u_{i,2}$

Generalized antithetic variates and RQMC

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)]$$
$$= \frac{\operatorname{Var}[f(\mathbf{U}_i)]}{n} + \frac{2}{n^2} \sum_{i < j} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)].$$

We want to make the last sum as negative as possible.

```
Special cases:
antithetic variates (n = 2),
Latin hypercube sampling (LHS),
randomized quasi-Monte Carlo (RQMC).
```

Koksma-Hlawka-type inequalities (worst-case error):

 $|\hat{\mu}_{n,\mathrm{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n .

Koksma-Hlawka-type inequalities (worst-case error):

$$|\hat{\mu}_{n,\mathrm{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC (P_n is random):

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].$$

Koksma-Hlawka-type inequalities (worst-case error):

$$|\hat{\mu}_{n,\mathrm{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC (P_n is random):

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].$$

With MC: $D(P_n) \approx O(n^{-1/2})$.

Koksma-Hlawka-type inequalities (worst-case error):

$$|\hat{\mu}_{n,\mathrm{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n . For RQMC (P_n is random):

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] \leq V^2(f) \cdot \mathbb{E}[D^2(P_n)].$$

With MC: $D(P_n) \approx O(n^{-1/2})$.

"Classical" Koksma-Hlawka (worst-case) inequality for QMC: f must have finite variation in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes), and several known constructions achieve $D(P_n) = O(n^{-1}(\ln n)^s) = O(n^{-1+\delta}).$

For certain Hilbert spaces of smooth functions f with square-integrable partial derivatives of order up to α : $D(P_n) = O(n^{-\alpha+\delta})$.

Integration lattice:

$$\mathcal{L}_{s} = \left\{ \mathbf{v} = \sum_{j=1}^{s} z_{j} \mathbf{v}_{j} \text{ such that each } z_{j} \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0, 1)^s$.

Integration lattice:

$$\mathcal{L}_{s} = \left\{ \mathbf{v} = \sum_{j=1}^{s} z_{j} \mathbf{v}_{j} \text{ such that each } z_{j} \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0, 1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$. Korobov rule: $\mathbf{v}_1 = \mathbf{z}/n = (1, a, a^2 \mod n, \dots)/n$.

Integration lattice:

$$\mathcal{L}_{s} = \left\{ \mathbf{v} = \sum_{j=1}^{s} z_{j} \mathbf{v}_{j} \text{ such that each } z_{j} \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0, 1)^s$.

Lattice rule of rank 1:
$$\mathbf{u}_i = i\mathbf{v}_1 \mod 1$$
 for $i = 0, \dots, n-1$.
Korobov rule: $\mathbf{v}_1 = \mathbf{z}/n = (1, a, a^2 \mod n, \dots)/n$.

For any $\mathfrak{u} \subset \{1, \ldots, s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice, with point set $P_n(\mathfrak{u})$.

Integration lattice:

$$\mathcal{L}_{s} = \left\{ \mathbf{v} = \sum_{j=1}^{s} z_{j} \mathbf{v}_{j} \text{ such that each } z_{j} \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = {\mathbf{u}_0, \ldots, \mathbf{u}_{n-1}} = L_s \cap [0, 1)^s$.

Lattice rule of rank 1:
$$\mathbf{u}_i = i\mathbf{v}_1 \mod 1$$
 for $i = 0, \dots, n-1$.
Korobov rule: $\mathbf{v}_1 = \mathbf{z}/n = (1, a, a^2 \mod n, \dots)/n$.

For any $\mathfrak{u} \subset \{1, \ldots, s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice, with point set $P_n(\mathfrak{u})$.

Random shift modulo 1: generate a single point **U** uniformly over $(0, 1)^s$ and add it to each point of P_n , modulo 1, coordinate-wise: $\mathbf{U}_i = (\mathbf{u}_i + \mathbf{U}) \mod 1$. Each \mathbf{U}_i is uniformly distributed over $[0, 1)^s$.

 $u_{i,2}$

Example of a poor lattice: s = 2, n = 101, a = 51

Good uniformity in one dimension, but not in two!

Variance expression

Suppose f has Fourier expansion

$$f(\mathbf{u}) = \sum_{\mathbf{h}\in\mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi\sqrt{-1}\mathbf{h}^t\mathbf{u}}.$$

For a randomly shifted lattice, the exact variance is (always)

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2,$$

where $L_s^* = {\mathbf{h} \in \mathbb{R}^s : \mathbf{h}^t \mathbf{v} \in \mathbb{Z} \text{ for all } \mathbf{v} \in L_s} \subseteq \mathbb{Z}^s$ is the dual lattice. From the viewpoint of variance reduction, an optimal lattice for f minimizes the square discrepancy $D^2(P_n) = \operatorname{Var}[\hat{\mu}_{n, \operatorname{rqmc}}]$.

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2.$$

If f has square-integrable mixed partial derivatives up to order α , and the periodic continuation of its derivatives up to order $\alpha - 1$ is continuous across the unit cube boundaries, then

$$|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\mathsf{max}(1,h_1),\ldots,\mathsf{max}(1,h_s))^{-2lpha}).$$

Moreover, there is a $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$\mathcal{P}_{2\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha} = \mathcal{O}(n^{-2\alpha+\delta}).$$

This is the variance for a worst-case f having

$$|\hat{f}(\mathbf{h})|^2 = (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha}.$$
$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2.$$

If f has square-integrable mixed partial derivatives up to order α , and the periodic continuation of its derivatives up to order $\alpha - 1$ is continuous across the unit cube boundaries, then

$$|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\mathsf{max}(1,h_1),\ldots,\mathsf{max}(1,h_s))^{-2lpha}).$$

Moreover, there is a $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$\mathcal{P}_{2\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha} = \mathcal{O}(n^{-2\alpha+\delta}).$$

This is the variance for a worst-case f having

$$|\widehat{f}(\mathbf{h})|^2 = (\mathsf{max}(1,h_1),\ldots,\mathsf{max}(1,h_s))^{-2lpha}$$

Beware of hidden factor in O when s is large.

This worst-case function may be far from representative in applications.

For smooth f, can reduce the variance to $O(n^{-4+\delta})$ (Hickernell 2002). The resulting \tilde{f} also symmetric with respect to u = 1/2. In practice, we transform the points \mathbf{U}_i instead of f.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$.

Here the random shift can be seen as uniform over [0, 1/n) and the shifted points become $\{U/n, (1+U)/n, \dots, (n-1+U)/n)\}$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$. Gives locally antithetic points in intervals of size 2/n.

Searching for a lattice that minimizes

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2$$

is unpractical, because:

- the Fourier coefficients are usually unknown,
- there are infinitely many,
- must do it for each f.

We nevertheless want to see how far we can go in that direction.

Searching for a lattice that minimizes

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2$$

is unpractical, because:

- the Fourier coefficients are usually unknown,
- there are infinitely many,
- must do it for each f.

We nevertheless want to see how far we can go in that direction.

Let us start with a simple function for which we know the Fourier expansion.

Even then, the discrepancy involves an infinite number of terms!

Possible ideas: Truncate the sum to a finite subset *B*:

$$\sum_{\mathbf{0}\neq\mathbf{h}\in L^*_s\cap B}|\hat{f}(\mathbf{h})|^2,$$

or to the largest q square coefficients $|\hat{f}(\mathbf{h})|^2$. But hard to implement!

Dual-space exploration

The following makes sense if the $|\hat{f}(\mathbf{h})|^2$ tend to decrease with each $|h_j|$. Start with a large set \mathcal{L} of lattices (or generating vectors \mathbf{v}_1 , for given n). Search for vectors \mathbf{h} with large weights $w(\mathbf{h}) = |\hat{f}(\mathbf{h})|^2$, via a neighborhood search starting at $\mathbf{h} = \mathbf{0}$, keeping a sorted list (as in Dijkstra's shortest path algorithm), and eliminate (successively) from \mathcal{L} the lattices whose dual contains \mathbf{h} for the next largest $w(\mathbf{h})$, until a single lattice remains.

Example of neighborhood $\mathcal{N}(\mathbf{h})$: only one coordinate differs, by one unit.

Dual-space exploration

The following makes sense if the $|\hat{f}(\mathbf{h})|^2$ tend to decrease with each $|h_j|$. Start with a large set \mathcal{L} of lattices (or generating vectors \mathbf{v}_1 , for given n). Search for vectors \mathbf{h} with large weights $w(\mathbf{h}) = |\hat{f}(\mathbf{h})|^2$, via a neighborhood search starting at $\mathbf{h} = \mathbf{0}$, keeping a sorted list (as in Dijkstra's shortest path algorithm), and eliminate (successively) from \mathcal{L} the lattices whose dual contains \mathbf{h} for the next largest $w(\mathbf{h})$, until a single lattice remains.

Example of neighborhood $\mathcal{N}(\mathbf{h})$: only one coordinate differs, by one unit.

Component-by-component version: For j = 1, 2, ..., s, we apply the algorithm for a set \mathcal{L} of *j*-dimensional lattices with common (fixed) j - 1 first coordinates, and determine the *j*th coordinate by visiting the *j*-dimensional vectors **h**.

Algorithm Dual-Space-Exploration(lattice set \mathcal{L} , weights w);

 $\mathcal{Q} \leftarrow \mathcal{N}(\mathbf{0})$ // vectors **h** to be visited, sorted by weight $w(\mathbf{h})$; $\mathcal{M} \leftarrow \mathcal{N}(\mathbf{0})$ // vectors **h** who already entered \mathcal{Q} ; while $|\mathcal{L}| > 1$ do

```
 \begin{split} \mathbf{h} &\leftarrow \text{remove first from } \mathcal{Q}; \\ \text{for all lattices } & L_s \in \mathcal{L} \text{ such that } \mathbf{h} \in L_s^* \text{ do} \\ \text{remove } & L_s \text{ from } \mathcal{L}; \\ \text{ if } & |\mathcal{L}| = 1 \text{ then} \\ \text{ return the single lattice } & L_s \in \mathcal{L} \text{ and exit}; \\ \text{ end if} \\ \text{end for} \\ \text{for all } \mathbf{h}' \in \mathcal{N}(\mathbf{h}) \setminus \mathcal{M} \text{ do} \\ \text{ add } \mathbf{h}' \text{ to } \mathcal{M} \text{ and to } \mathcal{Q} \text{ with priority (weight) } w(\mathbf{h}'); \end{split}
```

end for

end while

An example

Take the product V-shaped function

$$f(\mathbf{u}) = \prod_{j=1}^{s} \frac{|4u_j - 2| + c_j}{1 + c_j},$$

SO

$$\widehat{f}(\mathbf{h}) = \prod_{\{j : h_j ext{ is odd}\}} rac{4}{(1+c_j)\pi^2 h_j^2}.$$

Dimensions s = 5 and 10. Constants $c_j = 1, j, j^2, j^3$.

Estimated variance vs n for s = 5

п

п

Estimated variance vs n for s = 10

п

п

ANOVA decomposition

The Fourier expansion has too many terms to handle. As a cruder expansion, we can write $f(\mathbf{u}) = f(u_1, \dots, u_s)$ as:

$$f(\mathbf{u}) = \sum_{\mathbf{u} \subseteq \{1,...,s\}} f_{\mathbf{u}}(\mathbf{u}) = \mu + \sum_{i=1}^{s} f_{\{i\}}(u_i) + \sum_{i,j=1}^{s} f_{\{i,j\}}(u_i, u_j) + \cdots$$

where

$$f_{\mathfrak{u}}(\mathbf{u}) = \int_{[0,1)^{|\overline{\mathfrak{u}}|}} f(\mathbf{u}) \, \mathrm{d} \mathbf{u}_{\overline{\mathfrak{u}}} - \sum_{\mathfrak{v} \subset \mathfrak{u}} f_{\mathfrak{v}}(\mathbf{u}_{\mathfrak{v}}),$$

and the Monte Carlo variance decomposes as

$$\sigma^2 = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} \sigma_{\mathfrak{u}}^2, \quad \text{where } \sigma_{\mathfrak{u}}^2 = \operatorname{Var}[f_{\mathfrak{u}}(\mathsf{U})].$$

Sensitivity indices: $S_{\mu} = \sigma_{\mu}^2 / \sigma^2$. Can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections of P_n are very uniform for the important subsets \mathfrak{u} (i.e., with large $S_{\mathfrak{u}}$).

Shift-invariant discrepancy

In a reproducing kernel Hilbert space (RKHS) with kernel K, and randomly-shifted points, the relevant discrepancy corresponds to the shift-invariant kernel

$$\mathcal{K}_{\mathrm{sh}}(\mathbf{u}_i,\mathbf{u}_j) := \mathbb{E}[\mathcal{K}(\mathbf{U}_i,\mathbf{U}_j)] = \mathbb{E}[\mathcal{K}(\mathbf{u}_i+\mathbf{U},\mathbf{u}_j+\mathbf{U})] = \mathbb{E}[\mathcal{K}(\mathbf{u}_i-\mathbf{u}_j+\mathbf{U},\mathbf{U})].$$

The mean square discrepancy can be written as

$$\mathbb{E}[D^2(P_n)] = \frac{1}{n} \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} w(\mathbf{h}) \sum_{i=0}^{n-1} e^{2\pi \sqrt{-1}\mathbf{h}^t \mathbf{u}_i}$$

and the corresponding square variation is

$$V^2(f) = \sum_{\mathbf{0} \neq \mathbf{h} \in \mathbb{Z}^s} \frac{|\hat{f}(\mathbf{h})|^2}{w(\mathbf{h})}.$$

Key issue: choice of the weights $w(\mathbf{h})$.

Regrouping by projections

Denote $\mathfrak{u}(\mathbf{h}) = \mathfrak{u}(h_1, \ldots, h_s)$ the set of indices j for which $h_j \neq 0$. We have

$$\mathbb{E}[D^{2}(P_{n})] = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} \sum_{\mathbf{h}:\mathfrak{u}(\mathbf{h})=\mathfrak{u}} w(\mathbf{h}) \frac{1}{n} \sum_{i=0}^{n-1} e^{2\pi \sqrt{-1}\mathbf{h}^{t}\mathbf{u}_{i}} = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} D_{\mathfrak{u}}^{2}(P_{n})$$

and

$$V^{2}(f) = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \sum_{\mathbf{h}:\mathfrak{u}(\mathbf{h})=\mathbf{h}} \frac{|\hat{f}(\mathbf{h})|^{2}}{w(\mathbf{h})} = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} V^{2}(f_{\mathfrak{u}}).$$

The RKHS decomposes as a direct sum and the RQMC variance has a corresponding decomposition. Variance bound:

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} \operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}(f_{\mathfrak{u}})] \leq \sum_{\mathfrak{u} \subseteq \{1,...,s\}} V^2(f_{\mathfrak{u}}) \cdot \mathbb{E}[D_{\mathfrak{u}}^2(P_n(\mathfrak{u}))].$$

The mean square discrepancy for each \mathfrak{u} should be weighted by $V^2(f_{\mathfrak{u}})$, which is typically unknown. The problem of choosing K remains.

Example: a weighted Sobolev space

Space of functions with integrable partial derivatives. RKHS with kernel

$$\mathcal{K}(\mathbf{u}, \mathbf{x}) = \sum_{\mathfrak{u} \subseteq \{1, \dots, s\}} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} 2\pi^2 \left[B_2((u_j - x_j) \bmod 1)/2 + (u_j - 0.5)(x_j - 0.5) \right]$$

where $B_2(u) = u^2 - u + 1/6$. The shift-invariant kernel is

$$\mathcal{K}_{\mathrm{sh}}(\mathbf{u},\mathbf{x}) = \sum_{\mathfrak{u} \subseteq \{1,\dots,s\}} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} 2\pi^2 B_2((u_j - x_j) \bmod 1)$$

and the corresponding mean square discrepancy for a randomly-shifted lattice rule with $\mathbf{v}_1 = (v_1, \dots, v_s)$ is

$$\mathbb{E}[D^2(P_n)] = \frac{1}{n} \sum_{i=1}^n \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} 2\pi^2 B_2((i \, v_j/n) \bmod 1).$$

From the Fourier expansion of B_2 , we also have

$$\mathbb{E}[D^{2}(P_{n})] = \frac{1}{n} \sum_{i=1}^{n} \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} \sum_{h_{j} \neq 0} h_{j}^{-2} e^{2\pi \sqrt{-1}ih_{j}v_{j}/n}$$
$$= \sum_{\mathbf{0} \neq \mathbf{h} \in L_{s}^{*}} \gamma_{\mathfrak{u}}(\mathbf{h}) \prod_{j \in \mathfrak{u}} h_{j}^{2} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_{s}^{*}} w(\mathbf{h}).$$

For those weights, we have $w(\mathbf{h}) = |\hat{f}(\mathbf{h})|^2$ for the function

$$f(\mathbf{u}) = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} (2\pi)^{|\mathfrak{u}|} \gamma_{\mathfrak{u}}^{1/2} \prod_{j \in \mathfrak{u}} B_1(u_j),$$

so $\mathbb{E}[D^2(P_n)]$ is the RQMC variance for this f.

On the other hand, the ANOVA variance components for this f are

$$\sigma_{\mathfrak{u}}^{2} = (4\pi^{2})^{|\mathfrak{u}|} \gamma_{\mathfrak{u}} \prod_{j \in \mathfrak{u}} \operatorname{Var}[B_{1}(U)] = (3/\pi^{2})^{-|\mathfrak{u}|} \gamma_{\mathfrak{u}},$$

because $Var[B_1(U)] = 1/12$. The optimal weights are then

$$\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2,$$

if we believe that this worst-case function is representative of our f.

Using the same kernel and a different heuristic argument, Wang and Sloan (2006) come up with weights that generalize to (they do this for product weights only):

$$\gamma_{\mathfrak{u}}^{2} = (45/\pi^{4})^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^{2},$$

that is,

$$\gamma_{\mathfrak{u}} = (\sqrt{45}/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}} \approx 0.6797^{|\mathfrak{u}|} \sigma_{\mathfrak{u}},$$

Using the same kernel and a different heuristic argument, Wang and Sloan (2006) come up with weights that generalize to (they do this for product weights only):

$$\gamma_{\mathfrak{u}}^{2} = (45/\pi^{4})^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^{2},$$

that is,

$$\gamma_{\mathfrak{u}} = (\sqrt{45}/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}} \approx 0.6797^{|\mathfrak{u}|} \sigma_{\mathfrak{u}},$$

With $\gamma_{\mathfrak{u}} = 1$, we obtain the classical (unweighted) \mathcal{P}_2 .

Weighted $\mathcal{P}_{2\alpha}$:

$$\mathcal{P}_{2\alpha} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha}$$

Variance for a worst-case function whose square Fourier coefficients are

$$|\hat{f}(\mathbf{h})|^2 = \gamma_{\mathfrak{u}(\mathbf{h})}(\mathsf{max}(1,h_1),\ldots,\mathsf{max}(1,h_s))^{-2lpha}$$

This is the RQMC variance for a function of the form

$$f(\mathbf{u}) = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} \sqrt{\gamma_{\mathfrak{u}}} \prod_{j \in \mathfrak{u}} \frac{(2\pi)^{\alpha}}{\alpha!} B_{\alpha}(u_j).$$

We also have

$$\sigma_{\mathfrak{u}}^{2} = \gamma_{\mathfrak{u}} \left[\operatorname{Var}[B_{\alpha}(U)] \frac{(4\pi^{2})^{\alpha}}{(\alpha!)^{2}} \right]^{|\mathfrak{u}|} = \gamma_{\mathfrak{u}} \left[|B_{2\alpha}(0)| \frac{(4\pi^{2})^{\alpha}}{(2\alpha)!} \right]^{|\mathfrak{u}|}$$

For $\alpha = 1$, we should take $\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. For $\alpha = 2$, we should take $\gamma_{\mathfrak{u}} = [45/\pi^4]^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.46197)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. Weighted $\mathcal{P}_{2\alpha}$:

$$\mathcal{P}_{2\alpha} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha}$$

Variance for a worst-case function whose square Fourier coefficients are

$$|\hat{f}(\mathbf{h})|^2 = \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1,h_1),\ldots,\max(1,h_s))^{-2lpha}$$

This is the RQMC variance for a function of the form

$$f(\mathbf{u}) = \sum_{\mathfrak{u} \subseteq \{1,...,s\}} \sqrt{\gamma_{\mathfrak{u}}} \prod_{j \in \mathfrak{u}} \frac{(2\pi)^{\alpha}}{\alpha!} B_{\alpha}(u_j).$$

We also have

$$\sigma_{\mathfrak{u}}^{2} = \gamma_{\mathfrak{u}} \left[\operatorname{Var}[B_{\alpha}(U)] \frac{(4\pi^{2})^{\alpha}}{(\alpha!)^{2}} \right]^{|\mathfrak{u}|} = \gamma_{\mathfrak{u}} \left[|B_{2\alpha}(0)| \frac{(4\pi^{2})^{\alpha}}{(2\alpha)!} \right]^{|\mathfrak{u}|}$$

For $\alpha = 1$, we should take $\gamma_{\mathfrak{u}} = (3/\pi^2)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.30396)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. For $\alpha = 2$, we should take $\gamma_{\mathfrak{u}} = [45/\pi^4]^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2 \approx (0.46197)^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$. The ratios weight / variance should decrease exponentially with $|\mathfrak{u}|$.

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_{\mathfrak{u}}$ should be proportional to $V^2(f_{\mathfrak{u}})$, which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_{\mathfrak{u}}$ should be proportional to $V^2(f_{\mathfrak{u}})$, which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Idea 2: try to have $\gamma_{\mathfrak{u}}$ proportional to $V^2(f_{\mathfrak{u}})$ for each \mathfrak{u} . With a weighted \mathcal{P}_{α} -type criterion, this gives $\gamma_{\mathfrak{u}} = \rho^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$ for a constant ρ .

In general, one can define a simple parametric model for the square variations and then estimate the parameters by matching the ANOVA variances (e.g., Wang and Sloan 2006).

For example, $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ for some constants $\gamma_j \ge 0$ (product weights). Fewer parameters: take $\gamma_j = a\beta^j$ for $a, \beta > 0$ (geometric).

Heuristics for choosing the weights

Idea 1: take $\gamma_{\mathfrak{u}} \approx \sigma_{\mathfrak{u}}^2$ or $\gamma_{\mathfrak{u}} \approx S_{\mathfrak{u}}$ for each \mathfrak{u} . Too simplistic. The weight $\gamma_{\mathfrak{u}}$ should be proportional to $V^2(f_{\mathfrak{u}})$, which is generally not proportional to $\sigma_{\mathfrak{u}}^2$.

Idea 2: try to have $\gamma_{\mathfrak{u}}$ proportional to $V^2(f_{\mathfrak{u}})$ for each \mathfrak{u} . With a weighted \mathcal{P}_{α} -type criterion, this gives $\gamma_{\mathfrak{u}} = \rho^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$ for a constant ρ .

In general, one can define a simple parametric model for the square variations and then estimate the parameters by matching the ANOVA variances (e.g., Wang and Sloan 2006).

For example, $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ for some constants $\gamma_j \ge 0$ (product weights). Fewer parameters: take $\gamma_j = a\beta^j$ for $a, \beta > 0$ (geometric).

Idea 3: Just take simple order-dependent weights. For example, $\gamma_{\mathfrak{u}} = 1$ for $|\mathfrak{u}| \leq d$ and $\gamma_{\mathfrak{u}} = 0$ otherwise. Wang (2007) recommends this with d = 2.

Proposal 4: A strategy for order-dependent weights. Assume $\gamma_{\mathfrak{u}} = \Gamma_{|\mathfrak{u}|}$. Need to select $\Gamma_1, \ldots, \Gamma_s$. For each \mathfrak{u} , let $v_{\mathfrak{u}}^2$ be an estimate of the square variation $V^2(f_{\mathfrak{u}})$. Strategy: take Γ_r as the average

$$\Gamma_r = \binom{s}{r}^{-1} \sum_{\{\mathfrak{u}: |\mathfrak{u}|=r\}} v_{\mathfrak{u}}^2.$$

Here, the scaling of weights does not matter.

Proposal 5: A strategy for product weights.

Ignore one-dimensional projections; they are the same for all lattices.

The idea is to fit the estimated square variations over all two-dimensional projections via a least-squares procedure. Then we rescale all the weights by a constant factor to match the ratio of average square variations over the three-dimensional projections to that over the two-dimensional projections.

Let τ_i be the unscaled weight for projection j. We first minimize

$$R = \sum_{k=1}^{s} \sum_{j=1}^{k-1} \left(\tau_j \tau_k - \mathsf{v}_{\{j,k\}}^2 \right)^2.$$

Differentiating w.r.t. τ_j and equaling to 0, we obtain, for each j,

$$\tau_j \sum_{k=1, \, k \neq j}^{s} \tau_k^2 = \sum_{k=1, \, k \neq j}^{s} \tau_k v_{\{j,k\}}^2.$$

This can be solved by an iterative fixed-point algorithm:

$$\tau_j^{(0)} = \max_{k,l=1,\dots,s} v_{\{k,l\}}, \qquad \tau_j^{(i+1)} = \frac{\sum_{k=1,\,k\neq j}^s \tau_k^{(i)} v_{\{j,k\}}^2}{\sum_{k=1,\,k\neq j}^s \left(\tau_k^{(i)}\right)^2},$$

for i = 1, 2, ...

We then rescale the weights via $\gamma_i = c\tau_i$ where the constant *c* satisfies

$$\frac{\sum_{k=1}^{s} \sum_{j=1}^{k-1} \tau_{j} \tau_{k}}{c \sum_{k=1}^{s} \sum_{j=1}^{k-1} \sum_{l=1}^{j-1} \tau_{j} \tau_{k} \tau_{l}} = \frac{\sum_{k=1}^{s} \sum_{j=1}^{k-1} v_{\{j,k\}}^{2}}{\sum_{k=1}^{s} \sum_{j=1}^{k-1} \sum_{l=1}^{j-1} v_{\{j,k,l\}}^{2}}$$

10

Idea 6: Control the shortest vector in dual lattice, for each projection. Spectral test for LCGs (Knuth, etc.):

$$\min_{2 \le r \le t_1} \frac{\ell_{\{1,...,r\}}}{\ell_r^*(n)}$$

where $\ell_{\mathfrak{u}}$ is the length of a shortest vector in $L^*(\mathfrak{u})$ and $\ell_r^*(n)$ is a theoretical upper bound on this length, in *r* dimensions.

Advantages: Computing time of $\ell_{\mathfrak{u}}$ are almost independent of *n*, although exponential in $|\mathfrak{u}|$. Poor lattices can be eliminated quickly: search is fast.

Idea 6: Control the shortest vector in dual lattice, for each projection.

Lemieux and L'Ecuyer (2000, etc.) maximize

$$M_{t_1,...,t_d} = \min\left[\min_{2 \le r \le t_1} \frac{\ell_{\{1,...,r\}}}{\ell_r^*(n)}, \min_{\substack{2 \le r \le d \\ 1 = j_1 < \cdots < j_r \le t_r}} \frac{\min}{\ell_r^*(n)} \frac{\ell_u}{\ell_r^*(n)}\right],$$

where $\ell_{\mathfrak{u}}$ is the length of a shortest vector in $L^*(\mathfrak{u})$ and $\ell_r^*(n)$ is a theoretical upper bound on this length, in *r* dimensions.

Advantages: Computing time of $\ell_{\mathfrak{u}}$ are almost independent of *n*, although exponential in $|\mathfrak{u}|$. Poor lattices can be eliminated quickly: search is fast.

This can of course be generalized by adding weights to projections.
Searching for lattice parameters

Korobov lattices. Search over all admissible integers *a*, for $\mathbf{v}_1 = (1, a, a^2, \dots, \dots)/n$.

Searching for lattice parameters

Korobov lattices. Search over all admissible integers *a*, for $\mathbf{v}_1 = (1, a, a^2, \dots, \dots)/n$.

Component by component (CBC) construction.

Let
$$v_{1,1} = 1/n$$
;
For $j = 2, 3, \ldots, s$, find $z \in \{1, \ldots, n-1\}$, $gcd(z, n) = 1$, such that $(v_{1,1}, v_{1,2}, \ldots, v_{1,j} = z/n)$ minimizes the selected discrepancy for the first j dimensions.

Searching for lattice parameters

Korobov lattices. Search over all admissible integers *a*, for $\mathbf{v}_1 = (1, a, a^2, \dots, \dots)/n$.

Component by component (CBC) construction.

Let
$$v_{1,1} = 1/n$$
;
For $j = 2, 3, \ldots, s$, find $z \in \{1, \ldots, n-1\}$, $gcd(z, n) = 1$, such that $(v_{1,1}, v_{1,2}, \ldots, v_{1,j} = z/n)$ minimizes the selected discrepancy for the first j dimensions.

Partial randomized CBC construction.

Let
$$v_{1,1} = 1/n$$
;
For $j = 2, 3, ..., s$, try r random $z \in \{1, ..., n-1\}$,
 $gcd(z, n) = 1$, and retain the one that
 $(v_{1,1}, v_{1,2}, ..., v_{1,j} = z/n)$ minimizes the selected
discrepancy for the first j dimensions.

Example: stochastic activity network

Each arc *j* has random length $V_j = F_j^{-1}(U_j)$. Let $T = f(U_1, \ldots, U_{13}) =$ length of longest path from node 1 to node 9. Want to estimate $q(x) = \mathbb{P}[T > x]$ for a given constant *x*.

To estimate q(x) by MC, we generate *n* independent realizations of *T*, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

To estimate q(x) by MC, we generate *n* independent realizations of *T*, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

CMC estimator. Generate the V_j 's only for the 8 arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those V_j 's, $\mathbb{P}[T > x \mid \{V_j, j \notin \mathcal{L}\}]$. This makes the integrand continuous in the U_i 's.

To estimate q(x) by MC, we generate *n* independent realizations of *T*, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

CMC estimator. Generate the V_j 's only for the 8 arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those V_j 's, $\mathbb{P}[T > x \mid \{V_j, j \notin \mathcal{L}\}]$. This makes the integrand continuous in the U_j 's.

Illustration: $V_j \sim \text{Normal}(\mu_j, \sigma_j^2)$ for j = 1, 2, 4, 11, 12, and $V_j \sim \text{Exponential}(1/\mu_j)$ otherwise.

The μ_i : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

ANOVA decomposition

- Show quickly the full table of ANOVA variances, in separate text file. Then summarize by cardinality of projections.

There are six paths from 1 to 9:

 $\mathcal{P} = \{\{1,5,11\},\{2,6,11\},\{1,3,6,11\},\{1,4,7,12,13\},\{1,4,8,9,13\},\{1,4,8,10,11\},\{1,4,8,10\},\{$

We may think that the important projections are only the subsets of those paths:

$$\mathcal{P}' = \{\mathfrak{v} \subseteq \mathfrak{u} \in \mathcal{P}\}.$$

Fraction of the total variance that lies in these projections:

	x = 30	<i>x</i> = 64	<i>x</i> = 100
crude MC		80.6 %	96.3%
conditional MC	88.8%	99.5 %	100 %

ANOVA Variances for the Stochastic Activity Network

40

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

49

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Korobov vs. CBC

Korobov vs. CBC

Histograms

Histograms

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a *c*-dimensional geometric Brownian motions (GMB) at *d* observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a *c*-dimensional geometric Brownian motions (GMB) at *d* observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose $\boldsymbol{\Sigma} = \boldsymbol{A}\boldsymbol{A}^t$, generate $\boldsymbol{Z} = (Z_1, \dots, Z_s) = (\Phi^{-1}(U_1), \dots, \Phi^{-1}(U_s)) \sim N(\boldsymbol{0}, \boldsymbol{I})$ and return $\boldsymbol{Y} = \boldsymbol{A}\boldsymbol{Z}$.

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a *c*-dimensional geometric Brownian motions (GMB) at *d* observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose $\Sigma = AA^t$, generate $Z = (Z_1, \ldots, Z_s) = (\Phi^{-1}(U_1), \ldots, \Phi^{-1}(U_s)) \sim N(0, I)$ and return Y = AZ. Choice of A?

Let $\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a *c*-dimensional geometric Brownian motions (GMB) at *d* observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose
$$\Sigma = AA^t$$
, generate
 $Z = (Z_1, ..., Z_s) = (\Phi^{-1}(U_1), ..., \Phi^{-1}(U_s)) \sim N(0, I)$ and return
 $Y = AZ$.
Choice of **A**?

Cholesky factorization: A is lower triangular.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $X(t_1)$, then $X(t_2) - X(t_1)$, then $X(t_3) - X(t_2)$, etc.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $X(t_1)$, then $X(t_2) - X(t_1)$, then $X(t_3) - X(t_2)$, etc.

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0), \mathbf{X}(t_d))$,

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $X(t_1)$, then $X(t_2) - X(t_1)$, then $X(t_3) - X(t_2)$, etc.

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $X(t_d)$, then $X(t_{d/2})$ conditional on $(X(0), X(t_d))$, then $X(t_{d/4})$ conditional on $(X(0), X(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.
Principal component decomposition (PCA):

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \operatorname{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\boldsymbol{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \ge 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $X(t_1)$, then $X(t_2) - X(t_1)$, then $X(t_3) - X(t_2)$, etc.

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $X(t_d)$, then $X(t_{d/2})$ conditional on $(X(0), X(t_d))$, then $X(t_{d/4})$ conditional on $(X(0), X(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.

Each of these methods corresponds to some matrix \mathbf{A} . Choice has large impact on the ANOVA decomposition of f.

Example: Pricing an Asian option

Single asset, *s* observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max \left[0, \ \frac{1}{s} \sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \ge 0\}$ is a geometric Brownian motion. We have $f(\mathbf{U}) = g(\mathbf{Y})$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Example: Pricing an Asian option

Single asset, *s* observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max\left[0, \ \frac{1}{s}\sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \ge 0\}$ is a geometric Brownian motion. We have $f(\mathbf{U}) = g(\mathbf{Y})$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let S(0) = 100, K = 100, r = 0.05, $t_s = 1$, and $t_j = jT/s$ for $1 \le j \le s$. We consider $\sigma = 0.2$, 0.5 and s = 3, 6, 12.

ANOVA Variances for the Asian Option

Total Variance per Coordinate for the Asian Option

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Solid: CBC. Dashed: Korobov.

Histograms for the Asian Option in s = 6

Histograms for the Asian option, s = 6

A down-and-in Asian option with barrier B

Same as for Asian option, except that payoff is zero unless

$$\min_{1\leq j\leq s}S(t_j)\leq B$$

for a given constant B = 80.

ANOVA Variances for the down-and-in Asian Option

Total Variance per Coordinate for the down-and-in **Asian Option**

Down-and-In (s = 6), S(0) = K = 100, r = 0.05, $\sigma = 0.2$, B = 80

ANOVA variances for the maximum of 6 assets

Total Variance per Coordinate for the maximum of 6 assets

Maximum of 6 assets, S(0) = K = 100, r = 0.05, $\sigma = 0.5$, $\rho = 0.3$

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Callable bond

ANOVA Variances for the Callable Bond

Total Variance per Coordinate for the Callable Bond

99

Discrete choice with multinomial mixed logit probability

Utility of alternative j for individual q is

$$\begin{array}{lll} U_{q,j} &=& \beta_q^{\rm t} {\bf x}_{q,j} + \epsilon_{q,j} = \sum_{\ell=1}^s \beta_{q,\ell} x_{q,j,\ell} + \epsilon_{q,j}, \mbox{ where} \\ \beta_q^{\rm t} &=& (\beta_{q,1}, \ldots, \beta_{q,s}) \mbox{ gives the tastes of individual } q, \\ {\bf x}_{q,j}^{\rm t} &=& (x_{q,j,1}, \ldots, x_{q,j,s}) \mbox{ attributes of alternative } j \mbox{ for individual } q, \\ \epsilon_{q,j} & \mbox{ noise; Gumbel of mean 0 and scale parameter } \lambda = 1. \end{array}$$

Individual q selects alternative with largest utility $U_{q,j}$.

Can observe the $\mathbf{x}_{q,j}$ and choices y_q , but not the rest.

Logit model: for β_q fixed, j is chosen with probability

$$L_q(j \mid \boldsymbol{\beta}_q) = \frac{\exp[\boldsymbol{\beta}_q^{\mathsf{t}} \mathbf{x}_{q,j}]}{\sum_{a \in \mathcal{A}(q)} \exp[\boldsymbol{\beta}_q^{\mathsf{t}} \mathbf{x}_{q,a}]}$$

where $\mathcal{A}(q)$ are the available alternatives for q.

Logit model: for β_q fixed, j is chosen with probability

$$L_{q}(j \mid \boldsymbol{\beta}_{q}) = \frac{\exp[\boldsymbol{\beta}_{q}^{t} \mathbf{x}_{q,j}]}{\sum_{a \in \mathcal{A}(q)} \exp[\boldsymbol{\beta}_{q}^{t} \mathbf{x}_{q,a}]}$$

where $\mathcal{A}(q)$ are the available alternatives for q.

For a random individual, suppose β_q is random with density f_{θ} , which depends on (unknown) parameter vector θ . We want to estimate θ from the data (the $\mathbf{x}_{q,j}$ and y_q).

The unconditional probability of choosing j is

$$p_q(j,\theta) = \int L_q(j \mid \beta) f_{\theta}(\beta) \beta.$$

It depends on $\mathcal{A}(q)$, *j*, and θ .

Maximum likelihood: Maximize the log of the joint probability of the sample, w.r.t. θ :

$$\ln L(\theta) = \ln \prod_{q=1}^{m} p_q(y_q, \theta) = \sum_{q=1}^{m} \ln p_q(y_q, \theta).$$

Maximum likelihood: Maximize the log of the joint probability of the ¹⁰⁴ sample, w.r.t. θ :

$$\ln L(\boldsymbol{\theta}) = \ln \prod_{q=1}^{m} p_q(y_q, \boldsymbol{\theta}) = \sum_{q=1}^{m} \ln p_q(y_q, \boldsymbol{\theta}).$$

No formula for $p_q(j, \theta)$, but can use MC or RQMC, for each q and fixed θ . Generate n realizations of β from f_{θ} , say $\beta_q^{(1)}(\theta), \ldots, \beta_q^{(n)}(\theta)$, and estimate $p_q(y_q, \theta)$ by

$$\hat{p}_q(y_q, \theta) = \frac{1}{n} \sum_{i=1}^n L_q(j, \beta_q^{(i)}(\theta)).$$

Then we can find the maximizer $\hat{\theta}$ of $\ln \prod_{q=1}^{m} \hat{p}_q(y_q, \theta)$ w.r.t. θ .

Maximum likelihood: Maximize the log of the joint probability of the ¹⁰⁴ sample, w.r.t. θ :

$$\ln L(\boldsymbol{\theta}) = \ln \prod_{q=1}^{m} p_q(y_q, \boldsymbol{\theta}) = \sum_{q=1}^{m} \ln p_q(y_q, \boldsymbol{\theta}).$$

No formula for $p_q(j, \theta)$, but can use MC or RQMC, for each q and fixed θ . Generate n realizations of β from f_{θ} , say $\beta_q^{(1)}(\theta), \ldots, \beta_q^{(n)}(\theta)$, and estimate $p_q(y_q, \theta)$ by

$$\hat{p}_q(y_q, \theta) = \frac{1}{n} \sum_{i=1}^n L_q(j, \beta_q^{(i)}(\theta)).$$

Then we can find the maximizer $\hat{\theta}$ of $\ln \prod_{q=1}^{m} \hat{p}_q(y_q, \theta)$ w.r.t. θ .

- How many alternatives? - 4 alternatives, the first two are generated from independent N(1,1) and the last two from N(0.5,1).

Suppose β_q is a vector of *s* independent N(1, 1) random variables. We try s = 5, 10, 15.

ANOVA Variances for the Mixed Logit Model

Total Variance per Coordinate for the Mixed Logit¹⁰⁶ Model

Total Variance per Coordinate for the Mixed Logit¹⁰⁷ Model

108

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Still missing

- Compare criteria with and without baker.

- Il faudrait essayer un critere qui donne un poids different a chaque \mathfrak{u} , au lieu de supposer la forme produit ou order-dependent.