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Basic Monte Carlo setting
Want to estimate

µ = µ(f ) =

∫
[0,1)s

f (u) du = E[f (U)]

where f : [0, 1)s → R and U is a uniform r.v. over [0, 1)s .

Standard Monte Carlo:

I Generate n independent copies of U, say U1, . . . ,Un;

I estimate µ by µ̂n = 1
n

∑n
i=1 f (Ui ).

Almost sure convergence as n→∞ (strong law of large numbers).
For confidence interval of level 1− α, can use central limit theorem:

P
[
µ ∈

(
µ̂n −

cαSn√
n

, µ̂n +
cαSn√

n

)]
≈ 1− α,

where S2
n is any consistent estimator of σ2 = Var[f (U)].
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Quasi-Monte Carlo (QMC)

Replace the random points Ui by a set of deterministic points
Pn = {u0, . . . ,un−1} that cover [0, 1)s more evenly.
This Pn is called a highly-uniform or low-discrepancy point set if some
measure of discrepancy between the empirical distribution of Pn and the
uniform distribution → 0 faster than for independent random points.

If infinite sequence of points: low-discrepancy sequence.
For Pn, take the first n points, for any n.

Main construction methods: lattice rules and digital nets
(Korobov, Hammersley, Halton, Sobol’, Faure, Niederreiter, etc.)
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Simplistic solution: rectangular grid
Pn = {(i1/d , . . . , is/d) such that 0 ≤ ij < d ∀j} where n = d s .

0 1

1

ui ,1

ui ,2

Quickly becomes impractical when s increases.
And each one-dimensional projection has only d distinct points, each
two-dimensional projections has only d2 distinct points, etc.
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Example: lattice with s = 2, n = 101, a = 12

Pn = {(x/m, (ax/m) mod 1) : x = 0, . . . ,m − 1}
= {(x/101, (12x/101) mod 1) : x = 0, . . . , 100}

0 1

1

ui ,1

ui ,2

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

Two problems: (1) point at (0, 0) and (2) how to estimate the error?



5

Example: lattice with s = 2, n = 101, a = 12

Pn = {(x/m, (ax/m) mod 1) : x = 0, . . . ,m − 1}
= {(x/101, (12x/101) mod 1) : x = 0, . . . , 100}

0 1

1

ui ,1

ui ,2

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

Two problems: (1) point at (0, 0) and (2) how to estimate the error?



5

Example: lattice with s = 2, n = 101, a = 12

Pn = {(x/m, (ax/m) mod 1) : x = 0, . . . ,m − 1}
= {(x/101, (12x/101) mod 1) : x = 0, . . . , 100}

0 1

1

ui ,1

ui ,2

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

Two problems: (1) point at (0, 0) and (2) how to estimate the error?



5

Example: lattice with s = 2, n = 101, a = 12

Pn = {(x/m, (ax/m) mod 1) : x = 0, . . . ,m − 1}
= {(x/101, (12x/101) mod 1) : x = 0, . . . , 100}

0 1

1

ui ,1

ui ,2

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.

Two problems: (1) point at (0, 0) and (2) how to estimate the error?



5

Example: lattice with s = 2, n = 101, a = 12

Pn = {(x/m, (ax/m) mod 1) : x = 0, . . . ,m − 1}
= {(x/101, (12x/101) mod 1) : x = 0, . . . , 100}

0 1

1

ui ,1

ui ,2

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.
Two problems: (1) point at (0, 0) and (2) how to estimate the error?



6

Randomized quasi-Monte Carlo (RQMC)

An RQMC estimator of µ has the form

µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ),

with Pn = {U0, . . . ,Un−1} ⊂ (0, 1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0, 1)s ;

(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased).

Can perform m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then
estimate µ and Var[µ̂n,rqmc] by their sample mean X̄m and sample
variance S2

m (also unbiased).
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Generalized antithetic variates and RQMC

Var[µ̂n,rqmc] =
1

n2

n−1∑
i=0

n−1∑
j=0

Cov[f (Ui ), f (Uj)]

=
Var[f (Ui )]

n
+

2

n2

∑
i<j

Cov[f (Ui ), f (Uj)].

We want to make the last sum as negative as possible.

Special cases:
antithetic variates (n = 2),
Latin hypercube sampling (LHS),
randomized quasi-Monte Carlo (RQMC).
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Error and variance bounds
Koksma-Hlawka-type inequalities (worst-case error):

|µ̂n,rqmc − µ| ≤ V (f ) · D(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f −µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn.

For RQMC (Pn is random):

Var[µ̂n,rqmc] ≤ V 2(f ) · E[D2(Pn)].

With MC: D(Pn) ≈ O(n−1/2).

“Classical” Koksma-Hlawka (worst-case) inequality for QMC: f must have
finite variation in the sense of Hardy and Krause (implies no discontinuity
not aligned with the axes), and several known constructions achieve
D(Pn) = O(n−1(ln n)s) = O(n−1+δ).

For certain Hilbert spaces of smooth functions f with square-integrable
partial derivatives of order up to α: D(Pn) = O(n−α+δ).



9

Error and variance bounds
Koksma-Hlawka-type inequalities (worst-case error):

|µ̂n,rqmc − µ| ≤ V (f ) · D(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f −µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn.

For RQMC (Pn is random):

Var[µ̂n,rqmc] ≤ V 2(f ) · E[D2(Pn)].

With MC: D(Pn) ≈ O(n−1/2).

“Classical” Koksma-Hlawka (worst-case) inequality for QMC: f must have
finite variation in the sense of Hardy and Krause (implies no discontinuity
not aligned with the axes), and several known constructions achieve
D(Pn) = O(n−1(ln n)s) = O(n−1+δ).

For certain Hilbert spaces of smooth functions f with square-integrable
partial derivatives of order up to α: D(Pn) = O(n−α+δ).



9

Error and variance bounds
Koksma-Hlawka-type inequalities (worst-case error):

|µ̂n,rqmc − µ| ≤ V (f ) · D(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f −µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn.

For RQMC (Pn is random):

Var[µ̂n,rqmc] ≤ V 2(f ) · E[D2(Pn)].

With MC: D(Pn) ≈ O(n−1/2).

“Classical” Koksma-Hlawka (worst-case) inequality for QMC: f must have
finite variation in the sense of Hardy and Krause (implies no discontinuity
not aligned with the axes), and several known constructions achieve
D(Pn) = O(n−1(ln n)s) = O(n−1+δ).

For certain Hilbert spaces of smooth functions f with square-integrable
partial derivatives of order up to α: D(Pn) = O(n−α+δ).



9

Error and variance bounds
Koksma-Hlawka-type inequalities (worst-case error):

|µ̂n,rqmc − µ| ≤ V (f ) · D(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f −µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn.

For RQMC (Pn is random):

Var[µ̂n,rqmc] ≤ V 2(f ) · E[D2(Pn)].

With MC: D(Pn) ≈ O(n−1/2).

“Classical” Koksma-Hlawka (worst-case) inequality for QMC: f must have
finite variation in the sense of Hardy and Krause (implies no discontinuity
not aligned with the axes), and several known constructions achieve
D(Pn) = O(n−1(ln n)s) = O(n−1+δ).

For certain Hilbert spaces of smooth functions f with square-integrable
partial derivatives of order up to α: D(Pn) = O(n−α+δ).



10

Lattice rules
Integration lattice:

Ls =

v =
s∑

j=1

zjvj such that each zj ∈ Z

 ,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls
contains Zs . Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0, 1)s .

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1.
Korobov rule: v1 = z/n = (1, a, a2 mod n, . . . )/n.

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice, with
point set Pn(u).

Random shift modulo 1: generate a single point U uniformly over (0, 1)s

and add it to each point of Pn, modulo 1, coordinate-wise:
Ui = (ui + U) mod 1. Each Ui is uniformly distributed over [0, 1)s .
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Randomly-shifted lattice: Two-dim. example
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Example of a poor lattice: s = 2, n = 101, a = 51

0 1

1

ui ,1

ui ,2

Good uniformity in one dimension, but not in two!
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Variance expression

Suppose f has Fourier expansion

f (u) =
∑
h∈Zs

f̂ (h)e2π
√
−1htu.

For a randomly shifted lattice, the exact variance is (always)

Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂ (h)|2,

where L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls} ⊆ Zs is the dual lattice.

From the viewpoint of variance reduction, an optimal lattice for f
minimizes the square discrepancy D2(Pn) = Var[µ̂n,rqmc].
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Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂ (h)|2.

If f has square-integrable mixed partial derivatives up to order α, and the
periodic continuation of its derivatives up to order α− 1 is continuous
across the unit cube boundaries, then

|f̂ (h)|2 = O((max(1, h1), . . . ,max(1, hs))−2α).

Moreover, there is a v1 = v1(n) such that

P2α
def
=

∑
0 6=h∈L∗s

(max(1, h1), . . . ,max(1, hs))−2α = O(n−2α+δ).

This is the variance for a worst-case f having

|f̂ (h)|2 = (max(1, h1), . . . ,max(1, hs))−2α.

Beware of hidden factor in O when s is large.
This worst-case function may be far from representative in applications.
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Baker’s transformation

Want to make the periodic continuation continuous.
If f (0) 6= f (1), define f̃ by f̃ (1− u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance to O(n−4+δ) (Hickernell 2002).
The resulting f̃ also symmetric with respect to u = 1/2.

In practice, we transform the points Ui instead of f

.
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One-dimensional case
Here the random shift can be seen as uniform over [0, 1/n) and the
shifted points become {U/n, (1 + U)/n, . . . , (n − 1 + U)/n)}.

0 10.5

U/n

Random shift followed by baker’s transformation.
Along each coordinate, stretch everything by a factor of 2 and fold.
Same as replacing Uj by min[2Uj , 2(1− Uj)].
Gives locally antithetic points in intervals of size 2/n.

0 10.5
U/n
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17Searching for a lattice that minimizes

Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂ (h)|2

is unpractical, because:

I the Fourier coefficients are usually unknown,

I there are infinitely many,

I must do it for each f .

We nevertheless want to see how far we can go in that direction.

Let us start with a simple function for which we know the Fourier
expansion.
Even then, the discrepancy involves an infinite number of terms!

Possible ideas: Truncate the sum to a finite subset B:∑
0 6=h∈L∗s ∩B

|f̂ (h)|2,

or to the largest q square coefficients |f̂ (h)|2. But hard to implement!
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Dual-space exploration

The following makes sense if the |f̂ (h)|2 tend to decrease with each |hj |.
Start with a large set L of lattices (or generating vectors v1, for given n).

Search for vectors h with large weights w(h) = |f̂ (h)|2, via a neighborhood
search starting at h = 0, keeping a sorted list (as in Dijkstra’s shortest
path algorithm), and eliminate (successively) from L the lattices whose
dual contains h for the next largest w(h), until a single lattice remains.

Example of neighborhood N (h): only one coordinate differs, by one unit.

Component-by-component version: For j = 1, 2, . . . , s, we apply the
algorithm for a set L of j-dimensional lattices with common (fixed) j − 1
first coordinates, and determine the jth coordinate by visiting the
j-dimensional vectors h.
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The following makes sense if the |f̂ (h)|2 tend to decrease with each |hj |.
Start with a large set L of lattices (or generating vectors v1, for given n).

Search for vectors h with large weights w(h) = |f̂ (h)|2, via a neighborhood
search starting at h = 0, keeping a sorted list (as in Dijkstra’s shortest
path algorithm), and eliminate (successively) from L the lattices whose
dual contains h for the next largest w(h), until a single lattice remains.

Example of neighborhood N (h): only one coordinate differs, by one unit.

Component-by-component version: For j = 1, 2, . . . , s, we apply the
algorithm for a set L of j-dimensional lattices with common (fixed) j − 1
first coordinates, and determine the jth coordinate by visiting the
j-dimensional vectors h.
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Algorithm Dual-Space-Exploration(lattice set L, weights w);

Q ← N (0) // vectors h to be visited, sorted by weight w(h);
M←N (0) // vectors h who already entered Q;
while |L| > 1 do

h← remove first from Q;
for all lattices Ls ∈ L such that h ∈ L∗s do

remove Ls from L;
if |L| = 1 then

return the single lattice Ls ∈ L and exit;
end if

end for
for all h′ ∈ N (h) \M do

add h′ to M and to Q with priority (weight) w(h′);
end for

end while
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An example

Take the product V-shaped function

f (u) =
s∏

j=1

|4uj − 2|+ cj
1 + cj

,

so

f̂ (h) =
∏

{j : hj is odd}

4

(1 + cj)π2h2
j

.

Dimensions s = 5 and 10.
Constants cj = 1, j , j2, j3.
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Estimated variance vs n for s = 5
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Estimated variance vs n for s = 10
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ANOVA decomposition
The Fourier expansion has too many terms to handle. As a cruder
expansion, we can write f (u) = f (u1, . . . , us) as:

f (u) =
∑

u⊆{1,...,s}

fu(u) = µ+
s∑

i=1

f{i}(ui ) +
s∑

i ,j=1

f{i ,j}(ui , uj) + · · ·

where

fu(u) =

∫
[0,1)|ū|

f (u) duū −
∑
v⊂u

fv(uv),

and the Monte Carlo variance decomposes as

σ2 =
∑

u⊆{1,...,s}

σ2
u , where σ2

u = Var[fu(U)].

Sensitivity indices: Su = σ2
u/σ

2. Can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections of Pn are very uniform for
the important subsets u (i.e., with large Su).
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Shift-invariant discrepancy
In a reproducing kernel Hilbert space (RKHS) with kernel K , and
randomly-shifted points, the relevant discrepancy corresponds to the
shift-invariant kernel

Ksh(ui ,uj) := E[K (Ui ,Uj)] = E[K (ui + U,uj + U)] = E[K (ui − uj + U,U)].

The mean square discrepancy can be written as

E[D2(Pn)] =
1

n

∑
06=h∈Zs

w(h)
n−1∑
i=0

e2π
√
−1htui .

and the corresponding square variation is

V 2(f ) =
∑

06=h∈Zs

|f̂ (h)|2

w(h)
.

Key issue: choice of the weights w(h).
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Regrouping by projections

Denote u(h) = u(h1, . . . , hs) the set of indices j for which hj 6= 0. We have

E[D2(Pn)] =
∑

u⊆{1,...,s}

∑
h:u(h)=u

w(h)
1

n

n−1∑
i=0

e2π
√
−1htui =

∑
u⊆{1,...,s}

D2
u(Pn)

and

V 2(f ) =
∑

u⊆{1,...,s}

∑
h:u(h)=h

|f̂ (h)|2

w(h)
=

∑
u⊆{1,...,s}

V 2(fu).

The RKHS decomposes as a direct sum and the RQMC variance has a
corresponding decomposition. Variance bound:

Var[µ̂n,rqmc] =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤
∑

u⊆{1,...,s}

V 2(fu) ·E[D2
u (Pn(u))].

The mean square discrepancy for each u should be weighted by V 2(fu),
which is typically unknown. The problem of choosing K remains.
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Example: a weighted Sobolev space

Space of functions with integrable partial derivatives. RKHS with kernel

K (u, x) =
∑

u⊆{1,...,s}

γu
∏
j∈u

2π2 [B2((uj − xj) mod 1)/2 + (uj − 0.5)(xj − 0.5)]

where B2(u) = u2 − u + 1/6. The shift-invariant kernel is

Ksh(u, x) =
∑

u⊆{1,...,s}

γu
∏
j∈u

2π2B2((uj − xj) mod 1)

and the corresponding mean square discrepancy for a randomly-shifted
lattice rule with v1 = (v1, . . . , vs) is

E[D2(Pn)] =
1

n

n∑
i=1

∑
u⊆{1,...,s}

γu
∏
j∈u

2π2B2((i vj/n) mod 1).
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E[D2(Pn)] =
1

n

n∑
i=1

∑
u⊆{1,...,s}

γu
∏
j∈u

∑
hj 6=0

h−2
j e2π

√
−1ihjvj/n

=
∑

06=h∈L∗s

γu(h)

∏
j∈u(h)

h2
j =

∑
0 6=h∈L∗s

w(h).

For those weights, we have w(h) = |f̂ (h)|2 for the function

f (u) =
∑

u⊆{1,...,s}

(2π)|u|γ
1/2
u

∏
j∈u

B1(uj),

so E[D2(Pn)] is the RQMC variance for this f .

On the other hand, the ANOVA variance components for this f are

σ2
u = (4π2)|u|γu

∏
j∈u

Var[B1(U)] = (3/π2)−|u|γu,

because Var[B1(U)] = 1/12. The optimal weights are then

γu = (3/π2)|u|σ2
u ≈ (0.30396)|u|σ2

u ,

if we believe that this worst-case function is representative of our f .
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Using the same kernel and a different heuristic argument, Wang and Sloan
(2006) come up with weights that generalize to (they do this for product
weights only):

γ2
u = (45/π4)|u|σ2

u ,

that is,
γu = (

√
45/π2)|u|σu ≈ 0.6797|u|σu,

With γu = 1, we obtain the classical (unweighted) P2.
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29Weighted P2α:

P2α =
∑

06=h∈L∗s

γu(h)(max(1, h1), . . . ,max(1, hs))−2α

Variance for a worst-case function whose square Fourier coefficients are

|f̂ (h)|2 = γu(h)(max(1, h1), . . . ,max(1, hs))−2α.

This is the RQMC variance for a function of the form

f (u) =
∑

u⊆{1,...,s}

√
γu
∏
j∈u

(2π)α

α!
Bα(uj).

We also have

σ2
u = γu

[
Var[Bα(U)]

(4π2)α

(α!)2

]|u|
= γu

[
|B2α(0)| (4π2)α

(2α)!

]|u|
.

For α = 1, we should take γu = (3/π2)|u|σ2
u ≈ (0.30396)|u|σ2

u .
For α = 2, we should take γu = [45/π4]|u|σ2

u ≈ (0.46197)|u|σ2
u .

The ratios weight / variance should decrease exponentially with |u|.
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Heuristics for choosing the weights

Idea 1: take γu ≈ σ2
u or γu ≈ Su for each u. Too simplistic.

The weight γu should be proportional to V 2(fu), which is generally not
proportional to σ2

u .

Idea 2: try to have γu proportional to V 2(fu) for each u. With a weighted
Pα-type criterion, this gives γu = ρ|u|σ2

u for a constant ρ.

In general, one can define a simple parametric model for the square
variations and then estimate the parameters by matching the ANOVA
variances (e.g., Wang and Sloan 2006).

For example, γu =
∏

j∈u γj for some constants γj ≥ 0 (product weights).

Fewer parameters: take γj = aβj for a, β > 0 (geometric).

Idea 3: Just take simple order-dependent weights. For example, γu = 1 for
|u| ≤ d and γu = 0 otherwise. Wang (2007) recommends this with d = 2.
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Proposal 4: A strategy for order-dependent weights.

Assume γu = Γ|u|. Need to select Γ1, . . . , Γs .

For each u, let v2
u be an estimate of the square variation V 2(fu).

Strategy: take Γr as the average

Γr =

(
s
r

)−1 ∑
{u :|u|=r}

v2
u .

Here, the scaling of weights does not matter.
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Proposal 5: A strategy for product weights.

Ignore one-dimensional projections; they are the same for all lattices.

The idea is to fit the estimated square variations over all two-dimensional
projections via a least-squares procedure. Then we rescale all the weights
by a constant factor to match the ratio of average square variations over
the three-dimensional projections to that over the two-dimensional
projections.

Let τj be the unscaled weight for projection j . We first minimize

R =
s∑

k=1

k−1∑
j=1

(
τjτk − v2

{j ,k}

)2
.

Differentiating w.r.t. τj and equaling to 0, we obtain, for each j ,

τj

s∑
k=1, k 6=j

τ2
k =

s∑
k=1, k 6=j

τkv
2
{j ,k}.
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This can be solved by an iterative fixed-point algorithm:

τ
(0)
j = max

k,l=1,...,s
v{k,l}, τ

(i+1)
j =

∑s
k=1, k 6=j τ

(i)
k v2
{j ,k}∑s

k=1, k 6=j

(
τ

(i)
k

)2
,

for i = 1, 2, . . . .

We then rescale the weights via γj = cτj where the constant c satisfies∑s
k=1

∑k−1
j=1 τjτk

c
∑s

k=1

∑k−1
j=1

∑j−1
l=1 τjτkτl

=

∑s
k=1

∑k−1
j=1 v2

{j ,k}∑s
k=1

∑k−1
j=1

∑j−1
l=1 v

2
{j ,k,l}

.
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Idea 6: Control the shortest vector in dual lattice, for each projection.

Spectral test for LCGs (Knuth, etc.):

Lemieux and L’Ecuyer (2000, etc.) maximize

Mt1,...,td = min



min
2≤r≤t1

`{1,...,r}

`∗r (n)

, min
2≤r≤d

min
u={j1,...,jr}⊂{1,...,s}

1=j1<···<jr≤tr

`u
`∗r (n)

 ,

where `u is the length of a shortest vector in L∗(u) and `∗r (n) is a
theoretical upper bound on this length, in r dimensions.

Advantages: Computing time of `u are almost independent of n, although
exponential in |u|. Poor lattices can be eliminated quickly: search is fast.

This can of course be generalized by adding weights to projections.
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Searching for lattice parameters

Korobov lattices. Search over all admissible integers a, for
v1 = (1, a, a2, . . . , ...)/n.

Component by component (CBC) construction.

Let v1,1 = 1/n;
For j = 2, 3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z , n) = 1, such

that (v1,1, v1,2, . . . , v1,j = z/n) minimizes the selected
discrepancy for the first j dimensions.

Partial randomized CBC construction.

Let v1,1 = 1/n;
For j = 2, 3, . . . , s, try r random z ∈ {1, . . . , n − 1},

gcd(z , n) = 1, and retain the one that
(v1,1, v1,2, . . . , v1,j = z/n) minimizes the selected
discrepancy for the first j dimensions.
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Example: stochastic activity network
Each arc j has random length Vj = F−1

j (Uj).
Let T = f (U1, . . . ,U13) = length of longest path from node 1 to node 9.
Want to estimate q(x) = P[T > x ] for a given constant x .

1

source

2

V1

3
V2

V3

4
V4

5

V8

6

V5

V6

V10

7
V7

8
V9

V12

9

sink
V11

V13
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To estimate q(x) by MC, we generate n independent realizations of T ,
say T1, . . . ,Tn, and (1/n)

∑n
i=1 I[Ti > x ].

For RQMC, we replace the n realizations of (U1, . . . ,U13) by the n points
of a randomly-shifted lattice.

CMC estimator. Generate the Vj ’s only for the 8 arcs that do not belong
to the cut L = {5, 6, 7, 9, 10}, and replace I[T > x ] by its conditional
expectation given those Vj ’s, P[T > x | {Vj , j 6∈ L}].
This makes the integrand continuous in the Uj ’s.

Illustration: Vj ∼ Normal(µj , σ
2
j ) for j = 1, 2, 4, 11, 12, and

Vj ∼ Exponential(1/µj) otherwise.

The µj : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.
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ANOVA decomposition

– Show quickly the full table of ANOVA variances, in separate text file.
Then summarize by cardinality of projections.

There are six paths from 1 to 9:

P = {{1, 5, 11}, {2, 6, 11}, {1, 3, 6, 11}, {1, 4, 7, 12, 13}, {1, 4, 8, 9, 13}, {1, 4, 8, 10, 11}} .

We may think that the important projections are only the subsets of those paths:

P ′ = {v ⊆ u ∈ P} .

Fraction of the total variance that lies in these projections:

x = 30 x = 64 x = 100
crude MC 80.6 % 96.3 %

conditional MC 88.8 % 99.5 % 100 %
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ANOVA Variances for the Stochastic Activity
Network

0 20 40 60 80 100

x = 64

x = 100

CMC, x = 30

CMC, x = 64

CMC, x = 100

% of total variance

Order 1

Order 2
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Order 4

Order 5
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC

26 28 210 212 214

10−10

10−9

10−8

10−7

10−6

10−5

n

va
ri

a
n

ce

Stochastic Activity Network (CMC x = 30)

MC

Sobol

M13,13,13,13,13,13

weighted M13,13,13,13,13,13

P2 order 2D

P2 order v2
u = (3/π2)|u|σ2

u

P2 product v2
u = (3/π2)|u|σ2

u

P2 product v2
u = (3/π2)|u|σ2

u (no baker)

P2 product v2
u = (45/π4)|u|σ2

u

P2 product Wang & Sloan (2006)

n−2



43

Lattices of Rank 1 with CBC
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Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the
values taken by a c-dimensional geometric Brownian motions (GMB) at d
observations times 0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate
Z = (Z1, . . . ,Zs) = (Φ−1(U1), . . . ,Φ−1(Us)) ∼ N(0, I) and return
Y = AZ.
Choice of A?

Cholesky factorization: A is lower triangular.
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57Principal component decomposition (PCA):
A = PD1/2 where D = diag(λs , . . . , λ1) (eigenvalues of Σ in decreasing
order) and the columns of P are the corresponding unit-length
eigenvectors.

With this A, Z1 accounts for the maximum amount of
variance of Y, then Z2 for the maximum amount of variance conditional
on Z1, and so on.

Function of a Brownian motion:
Payoff depends on c-dimensional Brownian motion {X(t), t ≥ 0} observed
at times 0 = t0 < t1 < · · · < td .

Sequential (or random walk) method: generate X(t1), then X(t2)−X(t1),
then X(t3)− X(t2), etc.

Brownian bridge (BB) sampling: Suppose d = 2m.
Generate X(td), then X(td/2) conditional on (X(0),X(td)),
then X(td/4) conditional on (X(0),X(td/2)), and so on.

The first few N(0, 1) r.v.’s already sketch the path trajectory.

Each of these methods corresponds to some matrix A.
Choice has large impact on the ANOVA decomposition of f .
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Example: Pricing an Asian option

Single asset, s observation times t1, . . . , ts . Want to estimate E[f (U)],
where

f (U) = e−rts max

0,
1

s

s∑
j=1

S(tj)− K


and {S(t), t ≥ 0} is a geometric Brownian motion.
We have f (U) = g(Y) where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

Let S(0) = 100, K = 100, r = 0.05, ts = 1, and tj = jT/s for 1 ≤ j ≤ s.
We consider σ = 0.2, 0.5 and s = 3, 6, 12.



58

Example: Pricing an Asian option

Single asset, s observation times t1, . . . , ts . Want to estimate E[f (U)],
where

f (U) = e−rts max

0,
1

s

s∑
j=1

S(tj)− K


and {S(t), t ≥ 0} is a geometric Brownian motion.
We have f (U) = g(Y) where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

Let S(0) = 100, K = 100, r = 0.05, ts = 1, and tj = jT/s for 1 ≤ j ≤ s.
We consider σ = 0.2, 0.5 and s = 3, 6, 12.



59

ANOVA Variances for the Asian Option
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Total Variance per Coordinate for the Asian Option

0 20 40 60 80 100

sequential

BB

PCA

% of total variance

Asian Option (s = 6) with S(0) = 100, K = 100, r = 0.05, σ = 0.5

Coordinate 1

Coordinate 2

Coordinate 3

Coordinate 4

Coordinate 5

Coordinate 6



61

Lattices of Rank 1 with CBC
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Random vs. Full CBC
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Prime vs. Power-of-2 Number of Points
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Korobov vs. CBC
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Korobov vs. CBC
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Korobov vs. CBC
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Histograms for the Asian Option in s = 6
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Histograms for the Asian option, s = 6
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A down-and-in Asian option with barrier B

Same as for Asian option, except that payoff is zero unless

min
1≤j≤s

S(tj) ≤ B

for a given constant B = 80.
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ANOVA Variances for the down-and-in Asian Option
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Total Variance per Coordinate for the down-and-in
Asian Option
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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ANOVA variances for the maximum of 6 assets
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Total Variance per Coordinate for the maximum of 6
assets
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Prime vs. Power-of-2 Number of Points
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Korobov vs. CBC
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Callable bond
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ANOVA Variances for the Callable Bond
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Total Variance per Coordinate for the Callable Bond
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Discrete choice with multinomial mixed logit
probability

Utility of alternative j for individual q is

Uq,j = βt
qxq,j + εq,j =

s∑
`=1

βq,`xq,j ,` + εq,j , where

βt
q = (βq,1, . . . , βq,s) gives the tastes of individual q,

xt
q,j = (xq,j ,1, . . . , xq,j ,s) attributes of alternative j for individual q,

εq,j noise; Gumbel of mean 0 and scale parameter λ = 1.

Individual q selects alternative with largest utility Uq,j .

Can observe the xq,j and choices yq, but not the rest.
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Logit model: for βq fixed, j is chosen with probability

Lq(j | βq) =
exp[βt

qxq,j ]∑
a∈A(q) exp[βt

qxq,a]

where A(q) are the available alternatives for q.

For a random individual, suppose βq is random with density fθ, which
depends on (unknown) parameter vector θ. We want to estimate θ from
the data (the xq,j and yq).

The unconditional probability of choosing j is

pq(j ,θ) =

∫
Lq(j | β)fθ(β)β. .

It depends on A(q), j , and θ.
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104Maximum likelihood: Maximize the log of the joint probability of the
sample, w.r.t. θ:

ln L(θ) = ln
m∏

q=1

pq(yq,θ) =
m∑

q=1

ln pq(yq,θ).

No formula for pq(j ,θ), but can use MC or RQMC, for each q and fixed θ.

Generate n realizations of β from fθ, say β
(1)
q (θ), . . . ,β

(n)
q (θ), and

estimate pq(yq,θ) by

p̂q(yq,θ) =
1

n

n∑
i=1

Lq(j ,β
(i)
q (θ)).

Then we can find the maximizer θ̂ of ln
∏m

q=1 p̂q(yq,θ) w.r.t. θ.

– How many alternatives? – 4 alternatives, the first two are generated
from independent N(1, 1) and the last two from N(0.5, 1).

Suppose βq is a vector of s independent N(1, 1) random variables. We try
s = 5, 10, 15.
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ANOVA Variances for the Mixed Logit Model
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Total Variance per Coordinate for the Mixed Logit
Model
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Total Variance per Coordinate for the Mixed Logit
Model
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Lattices of Rank 1 with CBC
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Random vs. Full CBC
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Random vs. Full CBC
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Prime vs. Power-of-2 Number of Points
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Prime vs. Power-of-2 Number of Points
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Korobov vs. CBC
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Korobov vs. CBC
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Still missing

– Compare criteria with and without baker.

– Il faudrait essayer un critere qui donne un poids different a chaque u, au
lieu de supposer la forme produit ou order-dependent.


