
D
ra
ft

1

A C++ Library to Test
the Lattice Structure of Linear Generators

and Search for Good Ones

Pierre L’Ecuyer

Joint work with Christian F. Weiss, Ruhr West University, Germany
and Marc-Antoine Savard, former M.Sc. student, Université de Montréal

MCQMC, Waterloo, Canada, August 2024

D
ra
ft

2

Lattice Tester and LatMRG Software
Lattice Tester is a C++ library to compute measures of uniformity (figures of merit) for
lattices in the t-dimensional integer space Zt . Also basic tools to build a basis from
generating vectors, construct a triangular basis, its m-dual basis, compute shortest vectors,
etc. It uses the NTL library (Shoup, 2005).

LatMRG is a C++ library + executable programs to study the lattice structure of linear
RNGs such as LCGs, MRGs, matrix LCGs, MWC, combined generators, etc. It can search for
good parameters in terms of a given FOM, perhaps with constraints on the parameters, etc.
It uses Lattice Tester.

Both are on GitHub, but still under construction. Each one has an extensive user’s guide that
describes the algorithms, the classes, and give examples.

A first version of LatMRG was written in Modula-2 around 1988–1990 and presented by
L’Ecuyer and Couture (1997). A C++ version was started around 2002, modified by many
people, but never really completed. We are now redesigning, rewriting most of the code, and
writing detailed documentation.

D
ra
ft

3

Linear Random Numbers Generators Modulo a Large m

Linear Congruential Generator (LCG), with 0 < a < m integers:

xn = axn−1 mod m, un = xn/m ∈ [0, 1), for n ≥ 0.

Multiple Recursive Generator (MRG):

xn = (a1xn−1 + . . .+ akxn−k) mod m, un = xn/m ∈ [0, 1),

where xj ∈ Zm, aj ∈ Zm, ak ̸= 0.

D
ra
ft

4

Matrix LCG:

State xn = (xn,0, . . . , xn,k−1)
t, transformed state yn = (yn,0, . . . , xn,w−1)

t,
matrices A (k × k) and B (w × k),

xn = Axn−1 mod m, yn = Bxn mod m, un = yn/m (output vector).

Can produce the sequence of random numbers u0,0, . . . , u0,w−1, u1,0, . . . , u1,w−1, u2,0,
Maximal period is mk − 1, reached iff m is a prime number and the characteristic polynomial
of A is a primitive polynomial modulo m.

The MRG is a special case with w = 1, xn = (xn−k+1, . . . , xn), and

A =

0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
ak ak−1 · · · a1

 and B = ek = (0, . . . , 0, 1).

D
ra
ft

4

Matrix LCG:

State xn = (xn,0, . . . , xn,k−1)
t, transformed state yn = (yn,0, . . . , xn,w−1)

t,
matrices A (k × k) and B (w × k),

xn = Axn−1 mod m, yn = Bxn mod m, un = yn/m (output vector).

Can produce the sequence of random numbers u0,0, . . . , u0,w−1, u1,0, . . . , u1,w−1, u2,0,
Maximal period is mk − 1, reached iff m is a prime number and the characteristic polynomial
of A is a primitive polynomial modulo m.

The MRG is a special case with w = 1, xn = (xn−k+1, . . . , xn), and

A =

0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
ak ak−1 · · · a1

 and B = ek = (0, . . . , 0, 1).

D
ra
ft

4

Matrix LCG:

State xn = (xn,0, . . . , xn,k−1)
t, transformed state yn = (yn,0, . . . , xn,w−1)

t,
matrices A (k × k) and B (w × k),

xn = Axn−1 mod m, yn = Bxn mod m, un = yn/m (output vector).

Can produce the sequence of random numbers u0,0, . . . , u0,w−1, u1,0, . . . , u1,w−1, u2,0,
Maximal period is mk − 1, reached iff m is a prime number and the characteristic polynomial
of A is a primitive polynomial modulo m.

The MRG is a special case with w = 1, xn = (xn−k+1, . . . , xn), and

A =

0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
ak ak−1 · · · a1

 and B = ek = (0, . . . , 0, 1).

D
ra
ft

5

MRG With Carry, Alias Multiply-With-Carry (MWC)

Let b ≥ 2 and a0, . . . , ak be arbitrary integers, with gcd(a0, b) = 1, and a∗0 = a−1
0 (mod b).

MWC generator of order k in base b: state is (xn−k+1, . . . , xn, cn),

τn = a1xn−1 + · · ·+ akxn−k + cn−1,

xn = a∗0τn mod b,

cn = (τn − a0xn) div b = ⌊(τn − a0xn)/b⌋,

output: un =
∞∑
ℓ=1

xn+ℓ−1b
−ℓ (usually truncated).

Equivalent to an LCG with m = −a0 +
∑k

ℓ=1 aℓb
ℓ and multiplier b∗ ≡ b−1 (mod m).

Can take b = 2e for efficient implementation, and get m prime for long period.
In general, the maximal possible period is m − 1. Can approach bk+1.
When b = 2e and a0 = 1, the max period is only (m − 1)/2.
For instance, with e = 64 and k = 4, one may get a period over 2300.

Can be seen as an effective way to implement an LCG with a huge modulus m.

D
ra
ft

5

MRG With Carry, Alias Multiply-With-Carry (MWC)

Let b ≥ 2 and a0, . . . , ak be arbitrary integers, with gcd(a0, b) = 1, and a∗0 = a−1
0 (mod b).

MWC generator of order k in base b: state is (xn−k+1, . . . , xn, cn),

τn = a1xn−1 + · · ·+ akxn−k + cn−1,

xn = a∗0τn mod b,

cn = (τn − a0xn) div b = ⌊(τn − a0xn)/b⌋,

output: un =
∞∑
ℓ=1

xn+ℓ−1b
−ℓ (usually truncated).

Equivalent to an LCG with m = −a0 +
∑k

ℓ=1 aℓb
ℓ and multiplier b∗ ≡ b−1 (mod m).

Can take b = 2e for efficient implementation, and get m prime for long period.
In general, the maximal possible period is m − 1. Can approach bk+1.
When b = 2e and a0 = 1, the max period is only (m − 1)/2.
For instance, with e = 64 and k = 4, one may get a period over 2300.

Can be seen as an effective way to implement an LCG with a huge modulus m.

D
ra
ft

6
Combined Linear Generators

Combining two or more LCGs or MRGs by taking a linear combination of their output is an
effective way to increase the period and improve the structure. Take C MRGs of the form

xc,n = (ac,1xc,n−1 + · · ·+ ac,kxc,n−k) mod mc where ac,k ̸= 0, for c = 1, . . . ,C ,

where m1 > · · · > mc are distinct primes. For arbitrary integers δ1, . . . , δC , a first
combination is

zn = (δ1x1,n + · · ·+ δCxC ,n) mod m1, un = zn/m1,

and a second one is

wn = (δ1x1,n/m1 + · · ·+ δCxC ,n/mC) mod 1.

The two output sequences {un, n ≥ 0} and {wn, n ≥ 0} are almost identical and the second
is exactly equivalent to an MRG with modulus m =

∏C
c=1mc , and whose coefficients aj can

be computed explicitly. We can select the parameters by analyzing the structure of this
equivalent MRG.

We can also combine MWC generators in the same way.

D
ra
ft

7

Lattice Structure

Example: Three LCGs with m = 101. Here we have un = aun−1 mod 1.

0 1

1

un

un−1

a = 12

0 1

1

un

un−1

a = 7

0 1

1

un

un−1

a = 51

D
ra
ft

8

Lattices and their Dual

A lattice with basis v1, . . . , vt ∈ Rt , which is a set of t linearly independent vectors over Z,
can be written as

Lt = {v =
t∑

i=1

bivi : bi ∈ Z}.

We call V =
[
v1 · · · vt

]t
a basis matrix of Lt .

The dual lattice is
L∗t = {w ∈ Rt : w · v ∈ Z for all v ∈ Lt}.

It is also a lattice with basis matrix W = (V−1)t, which is the dual of V.

More generally, we say that W is m-dual to V if V ·Wt = m I. In LatMRG, m is always
chosen so that all coordinates of V and W are integer, so they can be represented exactly.

D
ra
ft

8

Lattices and their Dual

A lattice with basis v1, . . . , vt ∈ Rt , which is a set of t linearly independent vectors over Z,
can be written as

Lt = {v =
t∑

i=1

bivi : bi ∈ Z}.

We call V =
[
v1 · · · vt

]t
a basis matrix of Lt .

The dual lattice is
L∗t = {w ∈ Rt : w · v ∈ Z for all v ∈ Lt}.

It is also a lattice with basis matrix W = (V−1)t, which is the dual of V.

More generally, we say that W is m-dual to V if V ·Wt = m I. In LatMRG, m is always
chosen so that all coordinates of V and W are integer, so they can be represented exactly.

D
ra
ft

9

Lattice Structure of MRGs
For any fixed t > 0, let

Ψt = {(u0, u1, . . . , ut−1) ∈ [0, 1)t : x0 = (x−k+1, . . . , x0) ∈ Zk
m}.

Then Ψt = Lt ∩ [0, 1)t for a lattice

Lt = {v =
t∑

i=1

bivi : bi ∈ Z}

where v1, . . . , vt ∈ Rt are independent vectors that form a basis.
We saw pictures of this for k = 2 and m = 101.

More generally, for (lacunary) indices I = (i1, . . . , is) with 1 ≤ i1 < · · · < is , if

ΨI = {(ui1−1, . . . , uis−1) ∈ [0, 1)s : (x−k+1, . . . , x0) ∈ Zk
m},

then ΨI = LI ∩ [0, 1)s for a lattice LI .

In our software, we multiply all the lattice vector coordinates by m, so they can always be
represented exactly as integers. This gives rescaled lattices Λt and ΛI .

D
ra
ft

9

Lattice Structure of MRGs
For any fixed t > 0, let

Ψt = {(u0, u1, . . . , ut−1) ∈ [0, 1)t : x0 = (x−k+1, . . . , x0) ∈ Zk
m}.

Then Ψt = Lt ∩ [0, 1)t for a lattice

Lt = {v =
t∑

i=1

bivi : bi ∈ Z}

where v1, . . . , vt ∈ Rt are independent vectors that form a basis.
We saw pictures of this for k = 2 and m = 101.

More generally, for (lacunary) indices I = (i1, . . . , is) with 1 ≤ i1 < · · · < is , if

ΨI = {(ui1−1, . . . , uis−1) ∈ [0, 1)s : (x−k+1, . . . , x0) ∈ Zk
m},

then ΨI = LI ∩ [0, 1)s for a lattice LI .

In our software, we multiply all the lattice vector coordinates by m, so they can always be
represented exactly as integers. This gives rescaled lattices Λt and ΛI .

D
ra
ft

10

1. If the lattice contains a very short nonzero vector, then since all multiples of this vector
belong to the lattice, we get a very dense line of points and this bad. So we want the
shortest nonzero vector in the lattice to be as large as possible.

2. The distance between the successive hyperplanes that contain all the points is 1 over the
Euclidean length of the shortest nonzero vector in the dual lattice. So we want that length to
be as large as possible, to avoid large empty slices of space.

3. If we take the ℓ1 length instead, it gives the number of hyperplanes that contain all the
points, and we also want it to be as large as possible.

Dual lattice to Lt , also m-dual to Λt , is

L∗t = {w ∈ Rt : w · v mod 1 = 0 for all v ∈ Lt} = {w ∈ Rt : w · v mod m = 0 for all v ∈ Λt}.

If the rows of matrix V form a basis for Λt , then the rows of the matrix W for which
V ·Wt = mI are a basis for the m-dual.

D
ra
ft

11

Computing a Shortest Nonzero Vector in a Lattice
Given a basis v1, . . . , vt , we can solve by a branch-and-bound (BB) procedure:

min ∥v∥2 subject to v =
t∑

j=1

zjvj ̸= 0, zj ∈ Z.

Takes exponential time in t in worst case, but often works for t up to 50 or more in practice.

The BB requires either a triangular basis V, or a Cholesky decomposition of the Gram matrix
V · Vt . Cholesky has numerical issues when t is large and some vectors V are large. For this,
we use real numbers with very high precision when required. With a triangular basis there is
no numerical issue since all entries are integers, but the bounds are much too wide.

Pre-reducing the basis alleviates numerical issues and makes the BB run much faster.

LLL reduction with factor δ, for 1/4 < δ < 1: Gives nearly-orthogonal basis vectors.

(k, δ)-BKZ reduction: Stronger reduction with k > 2, but requires more work,

In small dimensions, these reductions often already provide a shortest nonzero vector.

D
ra
ft

12

Building a basis for Λt or ΛI
In each row, vi ,n = a1vi ,n−1 + · · ·+ akvi ,n−k . Standard approach for Λt :

V =

v1
v2
...
vt

 =

v1,1 v1,2 . . . v1,t
v2,1 v2,2 . . . v2,t
...

...
...

vk,1 vk,2 . . . vk,t
...

...
...

vt,1 vt,2 . . . vt,t

=

1 0 . . . 0 v1,k+1 . . . v1,t
0 1 . . . 0 v2,k+1 . . . v2,t
...

...
. . .

...
...

...
0 0 . . . 1 vk,k+1 . . . vk,t
0 0 . . . 0 m . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . m

W =

w1

w2

...
wt

 =

m 0 . . . 0 0 . . . 0
0 m . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . m 0 . . . 0

−v1,k+1 −v2,k+1 . . . −vk,k+1 1 . . . 0
...

...
. . .

...
...

. . .
...

−v1,t −v2,t . . . −vk,t 0 . . . 1

,

D
ra
ft

13An alternative basis that requires less work: yn = a1yn−1 + · · ·+ akyn−k .

V(p) =

1 yk+1 yk+2 . . . y2k−1 y2k . . . yt+k−1

0 1 yk+1 . . . y2k y2k−1 . . . yt+k−2

...
...

. . .
...

...
...

0 0 . . . 1 yk+1 yk+2 . . . yt+1

0 0 . . . 0 1 yk+1 . . . yt
0 0 0 m . . . 0
...

...
.

...
...

. . .
...

0 0 0 0 . . . m

and a valid m-dual basis is

W̃(p) =

m 0 . . . 0 0 . . . 0
0 m . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . m 0 . . . 0

−y2k −y2k−1 . . . −yk+1 1 . . . 0
...

...
. . .

...
...

. . .
...

−yt+k−1 −yt+k−2 . . . −yt 0 . . . 1

D
ra
ft

14
Basis for ΛI and its m-dual

For general I = (i1, . . . , is), picking the s corresponding columns (for t ≥ is) gives a set of t
generating vectors, which can be reduced to a basis of s vectors.

1. Can be done by applying LLL to the generating vectors. Gives a basis with short vectors.

2. Can build a triangular basis, as follows. Let c be the gcd of all nonzero entries in first
column. If all entries are 0, put c = m. By subtracting rows from another several times and
exchanging rows, one can obtain c as first entry and zeros in the rest of first column. Then
hide the first row and first column and repeat that recursively.
v1,i1 v1,i2 . . . v1,is
v2,i1 v2,i2 . . . v2,is
...

...
...

vt,i1 vt,i2 . . . vt,is

 ⇒

c v′1,2 . . . v′1,s
0 v ′2,2 . . . v ′2,s
...

...
...

0 v ′t,2 . . . v ′t,s

 ⇒ · · · ⇒

c1 v ′′1,2 . . . v ′′1,s
0 c2 . . . v ′′2,s
...

...
...

0 0 . . . cs

To obtain an m-dual basis, compute the m-inverse of this triangular basis. Fast and easy.
Can reuse the same V for a large number of projections.

Important: The m-dual of a projection is not the same as the projection of the m-dual!

D
ra
ft

15

Sets I with very large lags

Suppose i1 = 1 and some ij are very large, e.g., > 250.
Then we cannot build all the columns from 1 up to ij .
We want to be able to jump directly from column 1 to column ij , in one step.

This can be done efficiently using a polynomial representation of the MRG:

pn(z) = zpn−1 mod P(z)

where pn(z) = cn,0 + cn,1z1 + · · ·+ cn,k−1z
k−1 represents the state at step n and

P(z) = zk − a1z
k−1 − · · · − ak is the characteristic polynomial of the recurrence.

There is a simple one-to-one linear map between the vector of coefficients
(cn,0, cn,1, · · · , cn,k−1) and the MRG state vector xn.

To jump ahead by ν steps, transform the current state xn into pn(z), compute
pn+ν(z) = zνpn(z) mod P(z), then transform to the state xn+ν .

D
ra
ft

16

Example of a Figure of Merit (FOM)
Select d and t1, . . . , td , and let

Mt1,...,td = min
1≤s≤d

min
I∈Ss(ts)

ωI ℓI

ℓ̃∗s (m, k)
where

S1(t1) = {I = {1, . . . , s} | d + 1 ≤ s ≤ t1},
Ss(ts) = {I = {i1, . . . , is} | 1 ≤ i1 < · · · < is ≤ ts},

ℓI = length of shortest nonzero lattice vector in projection I ,

ℓ̃∗s (m, k) = upper bound on largest possible length.

This bound depends on the dimension s and the lattice density for this projection.
We assume that LI has density mmin(s,k), so the rescaled ΛI has density
mmin(s,k)−s = mmin(0,k−s), and its m-dual L∗I has density m−min(s,k).
If the FOM is for the dual, we take the m-dual for each projection.

Each term in the FOM should be less than 1, unless we have the wrong density.
This can happen for the primal lattice when k > 1 and the points project on each other in a
projection (smaller density).

D
ra
ft

16

Example of a Figure of Merit (FOM)
Select d and t1, . . . , td , and let

Mt1,...,td = min
1≤s≤d

min
I∈Ss(ts)

ωI ℓI

ℓ̃∗s (m, k)
where

S1(t1) = {I = {1, . . . , s} | d + 1 ≤ s ≤ t1},
Ss(ts) = {I = {i1, . . . , is} | 1 ≤ i1 < · · · < is ≤ ts},

ℓI = length of shortest nonzero lattice vector in projection I ,

ℓ̃∗s (m, k) = upper bound on largest possible length.

This bound depends on the dimension s and the lattice density for this projection.
We assume that LI has density mmin(s,k), so the rescaled ΛI has density
mmin(s,k)−s = mmin(0,k−s), and its m-dual L∗I has density m−min(s,k).
If the FOM is for the dual, we take the m-dual for each projection.
Each term in the FOM should be less than 1, unless we have the wrong density.
This can happen for the primal lattice when k > 1 and the points project on each other in a
projection (smaller density).

D
ra
ft

17

Some Examples and Timings

Compute shortest vector in m-dual lattice for LCG with 50 different multipliers a,
for prime modulus m = 1099511627791. Timings in microseconds.

Types: Int = NTL::ZZ, Real = double

Num. dimensions: 5 10 20 30 40

LLL5 793 2803 8779 12774 18754

LLL99999 700 3532 23331 60415 92778

BKZ99999-10 715 3720 31545 130793 369886

LLL99999+BB 830 4384 29142 289487 154419563

BKZ99999-12+BB 675 4262 37685 244102 21120263

BKZ999-12+BB 669 4158 37255 257545 20609422

L5+9+BKZ-10+BB 895 4653 34902 232759 18731232

Sums of square lengths of shortest basis vectors:

Num. dimensions: 5 10 20 30 40

LLL5 1867394 12208 2308 1898 1736

LLL99999 1835927 11669 1266 734 667

BKZ99999-10 1835927 11668 1254 695 595

All+BB methods 1835927 11668 1253 689 564

D
ra
ft

18

Total time to do the entire experiment with different number representations.

There were many more combinations of reduction methods.

Code <Int, Real> m = 1048573 m = 1099511627791
primal m-dual primal m-dual

LD <long, double> 18.8 96.8 — —
ZD <ZZ, double> 17.2 106.1 269.2 418.8
ZX <ZZ, xdouble> 81.9 562.0 1548.0 2502.0
ZQ <ZZ, quad float> 64.1 459.8 1177.3 1864.5
ZR <ZZ, RR> — — 10358.4 17828.6

D
ra
ft

19

Comparing FOMs for primal and m-dual

For m = 1048573, we examine 1000 different multipliers a selected at random.
For each, we compute the FOM Mt for both the primal and the m-dual, and look at the
dimension in which the worst-case is attained.
For t, we try t16 = (16, 16, 12, 10) and t32 = (32, 32, 16, 12, 10).
Number of projections of each size: (12, 15, 55, 84) and (27, 31, 120, 220, 210).

dimension

2 3 4 5 6 > 6

proportion 90.3 331.3 506.0 6.02 6.02 60.3
t16 primal 359 433 207 1 0 0

m-dual 370 469 161 0 0 0

proportion 51.0 197.4 361.8 345.4 1.64 42.8
t32 primal 427 392 157 24 0 0

m-dual 468 417 105 10 0 0

D
ra
ft

20
Scatter plot of the m-dual vs primal FOMs, for t32.
Red marks: worst projection is the same and is in two dimensions.

5 · 10−2 0.1 0.15 0.2

5 · 10−2

0.1

0.15

0.2

0.25

D
ra
ft

21
A random search for “good” LCGs

We search for good LCGs in terms of Mt for t = (32, 32, 16, 12, 10).
We examine 100, 000 candidates and want to find the best 3.
1. Naive search method: compute the FOM for each candidate.
2, 3. Keep a list of 3 and discard a candidate as soon as we know he misses the podium.
4. Two stages: first pass with LLL only and keep the best 50,

then a second pass to find the 3 best from this list with t.
5. Same as 4, except that in the first stage we use t0 = (4, 32, 16, 12) instead of t.

m = 1099511627791 primal m-dual
Method CPU time best FOM CPU time best FOM

1. BKZ+BB, naive 3532.4 0.241259 3334.9.0 0.223998
2. BKZ+BB, discard 8.9 0.264833 10.0 0.269388
3. LLL only, discard 8.5 0.264833 9.5 0.269388
4. Two stages, stage 1 with LLL, t; 16.9 17.8

stage 2 with BKZ+BB 0.03 0.264833 0.04 0.269388
5. Two stages, stage 1 with LLL, t0; 26.0 33.2

stage 2 with BKZ+BB 0.06 0.264833 0.12 0.269388

D
ra
ft

21
A random search for “good” LCGs

We search for good LCGs in terms of Mt for t = (32, 32, 16, 12, 10).
We examine 100, 000 candidates and want to find the best 3.
1. Naive search method: compute the FOM for each candidate.
2, 3. Keep a list of 3 and discard a candidate as soon as we know he misses the podium.
4. Two stages: first pass with LLL only and keep the best 50,

then a second pass to find the 3 best from this list with t.
5. Same as 4, except that in the first stage we use t0 = (4, 32, 16, 12) instead of t.

m = 1099511627791 primal m-dual
Method CPU time best FOM CPU time best FOM

1. BKZ+BB, naive 3532.4 0.241259 3334.9.0 0.223998
2. BKZ+BB, discard 8.9 0.264833 10.0 0.269388
3. LLL only, discard 8.5 0.264833 9.5 0.269388
4. Two stages, stage 1 with LLL, t; 16.9 17.8

stage 2 with BKZ+BB 0.03 0.264833 0.04 0.269388
5. Two stages, stage 1 with LLL, t0; 26.0 33.2

stage 2 with BKZ+BB 0.06 0.264833 0.12 0.269388

D
ra
ft

22

Re-testing MRG32k3a

MRG32k3a is a popular 32-bits combined MRG proposed by L’Ecuyer (1999), based on the
Mt1 criterion (only successive coordinates) for t1 = 32. Was then tested for t1 = 48.
Here we test it for multiple projections with lacunary indices, with criterion

Mt1,t2,...,ts = M40,100,100,50,50,25,25,20 with d = 8.

t Seq. 2 3 4 5 6 7 8
it−1 < 40 100 100 50 50 25 25 20
Num. Proj. 37 100 4851 18424 211876 42504 134596 50388

minI St(I) 0.659 0.931 0.495 0.053 0.039 0.114 0.114 0.167

Worst set I 24 0,2 0,2,3
0, 39, 42,

44
0, 13, 33,
34, 39

0, 10, 12,
15, 18, 24

0, 6, 16,
18, 20, 21, 23

0, 1, 2, 5,
7, 10, 12, 19

When testing for so many projections (nearly half a million here), it is inevitable to have a few that
are not “excellent”. But we see here that things are really not so bad. The worst figure of merit is for
a five-dim. projection which corresponds to the linear relation
1234567u0 + 2376763198u5 − 45999765568u8 = 0.

D
ra
ft

22Some relevant references

L’Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number
generators. Operations Research, 47(1):159–164.

L’Ecuyer, P. and Couture, R. (1997). An implementation of the lattice and spectral tests for multiple recursive
linear random number generators. INFORMS Journal on Computing, 9(2):206–217.

L’Ecuyer, P. and Couture, R. (2000). LatMRG User’s Guide: A Modula-2 software for the theoretical analysis
of linear congruential and multiple recursive random number generators.
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-latmrg-m2.pdf.

L’Ecuyer, P. and Simard, R. (2014). On the lattice structure of a special class of multiple recursive random
number generators. INFORMS Journal on Computing, 26(2):449–460.

L’Ecuyer, P. and Touzin, R. (2004). On the Deng-Lin random number generators and related methods.
Statistics and Computing, 14:5–9.

L’Ecuyer, P., Wambergue, P., and Bourceret, E. (2020). Spectral analysis of the MIXMAX random number
generators. INFORMS Journal on Computing, 32(1):135–144.

Shoup, V. (2005). NTL: A Library for doing Number Theory. Courant Institute, New York University, New
York, NY. http://shoup.net/ntl/.

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-latmrg-m2.pdf
http://shoup.net/ntl/

	References

