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What do we want?

Sequences of numbers that look random.

Example: Bit sequence (head or tail):

011110100110110101001101100101000111?...01111?100110?1?101001101100101000111...

Uniformity: each bit is 1 with probability 1/2.

Uniformity and independance:
Example: 8 possibilities for the 3 bits ? ? ?:

000, 001, 010, 011, 100, 101, 110, 111

Want a probability of 1/8 for each, independently of everything else.

For s bits, probability of 1/2s for each of the 2s possibilities.
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Uniform distribution over (0, 1)
For simulation in general, we want (to imitate) a sequence U0,U1,U2, . . .
of independent random variables uniformly distributed over (0, 1).

We want P[a ≤ Uj ≤ b] = b − a.

0 1a b

Independence: For a random vector U = (U1, . . . ,Us), we want

P[aj ≤ Uj ≤ bj for j = 1, . . . , s] = (b1 − a1) · · · (bs − as).

0 1

1
U2

U1a1 b1

a2
b2
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This notion of independent uniform random variables is only a
mathematical abstraction. Perhaps it does not exist in the real world!
We only wish to imitate it (approximately).

Non-uniform variates:
To generate X such that P[X ≤ x ] = F (x):

X = F−1(Uj) = inf{x : F (x) ≥ Uj}.

This is inversion.

Example: If F (x) = 1− e−λx , take X = [− ln(1− Uj)]/λ.

Also other methods such as rejection, etc., when F−1 is costly to compute.
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Random permutation:

1 2 3 4 5 6 7

1 2 3 4 6 7 5
1 3 4 6 7 5 2
3 4 6 7 5 2 1

For n objets, choose an integer from 1 to n,
then an integer from 1 to n − 1, then from 1 to n − 2, ...
Each permutation should have the same probability.

To shuffle a deck of 52 cards: 52! ≈ 2226 possibilities.
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Physical devices for computers

Photon trajectories (sold by id-Quantique):
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Thermal noise in resistances of electronic circuits

time

0 1 0 1 0 0 1 1 1 0 0 1

The signal is sampled periodically.
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Several commercial devices on the market (and hundreds of patents!).

None is perfect.

Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸
Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and has no (or
little) mathematical analysis.

A much more important drawback: it is not reproducible.



8

Several commercial devices on the market (and hundreds of patents!).

None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸
Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and has no (or
little) mathematical analysis.

A much more important drawback: it is not reproducible.



8

Several commercial devices on the market (and hundreds of patents!).

None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸

Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and has no (or
little) mathematical analysis.

A much more important drawback: it is not reproducible.



8

Several commercial devices on the market (and hundreds of patents!).

None is perfect. Can reduce the bias and dependence by combining bits.
E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸
Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and has no (or
little) mathematical analysis.

A much more important drawback: it is not reproducible.



9

Reproducibility

Simulations are often required to be exactly replicable, and always produce
exactly the same results on different computers and architectures,
sequential or parallel.

Important for debugging and to replay exceptional events in more details,
for better understanding.

Also essential when comparing systems with slightly different
configurations or decision-making rules, by simulating them with common
random numbers (CRNs). That is, to reduce the variance in comparisons,
use the same random numbers at exactly the same places in all
configurations of the system, as much as possible. Important for sensitivity
analysis, derivative estimation, and effective stochastic optimization.

Algorithmic RNGs permit one to replicate without storing the random
numbers, which would be required for physical devices.
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Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



10

Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y

g

y

g

y g

y g

y
· · · uρ−1

u0

u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



10

Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0
f−−−−→ s1

f−−−−→ · · · f−−−−→ sn
f−−−−→ sn+1

f−−−−→ · · ·
g

y

g

y

g

y g

y g

y
· · · uρ−1

u0

u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



10

Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0
f−−−−→ s1

f−−−−→ · · · f−−−−→ sn
f−−−−→ sn+1

f−−−−→ · · ·
g

y

g

y g

y

g

y g

y
· · · uρ−1

u0 u1

· · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



10

Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→

s0
f−−−−→ s1

f−−−−→ · · · f−−−−→ sn
f−−−−→ sn+1

f−−−−→ · · ·

g

y

g

y g

y g

y g

y

· · · uρ−1

u0 u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



10

Algorithmic (pseudorandom) generator

S, finite state space; s0, seed (initial state);
f : S → S, transition function;
g : S → [0, 1], output function.

· · · f−−−−→ sρ−1
f−−−−→ s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.



11

· · · f−−−−→ sρ−1
f−−−−→ s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Goal: if we observe only (u0, u1, . . .), difficult to distinguish from a
sequence of independent random variables over (0, 1).

Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

With random seed s0, an RNG is a gigantic roulette wheel.
Selecting s0 at random and generating s random numbers means spinning
the wheel and taking u = (u0, . . . , us−1).
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Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.

We want to approximate “u has the uniform distribution over [0, 1]s .”

Ψs must cover [0, 1]s very evenly.
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Baby example:

0 1

1

un

un−1

xn = 12 xn−1 mod 101; un = xn/101
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Baby example:

0 0.005

0.005

un

un−1

xn = 4809922 xn−1 mod 60466169 and un = xn/60466169



15Baby example:

0 1

1

un

un−1

xn = 51 xn−1 mod 101; un = xn/101.
Good uniformity in one dimension, but not in two!
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Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this
corresponds to choosing a random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.

We want to approximate “u has the uniform distribution over [0, 1]s .”

Measure of quality: Ψs must cover [0, 1]s very evenly.

Design and analysis:
1. Define a uniformity measure for Ψs , computable

without generating the points explicitly. Linear RNGs.
2. Choose a parameterized family (fast, long period, etc.)

and search for parameters that “optimize” this measure.
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Myth 1. After 60 years of study and thousands of articles, this problem is
certainly solved and RNGs available in popular software must be reliable.

No.

Myth 2. I use a fast RNG with period length > 21000, so it is certainly
excellent!

No.

Example: un = (n/21000) mod 1 for n = 0, 1, 2, ....

Other examples: Subtract-with-borrow, lagged-Fibonacci, xorwow, etc.
Were designed to be very fast: simple and very few operations.
They have bad uniformity in higher dimensions.
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A single RNG does not suffice.

One often needs several independent streams of random numbers, e.g., to:

I Run a simulation on parallel processors.

I Compare systems with well synchronized common random numbers
(CRNs). Can be complicated to implement and manage when
different configurations do not need the same number of Uj ’s.
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An existing solution: RNG with multiple streams and substreams.

Can create RandomStream objects at will, behave as “independent”
streams viewed as virtual RNGs. Can be further partitioned in substreams.

Example: With MRG32k3a generator, streams start 2127 values apart, and
each stream is partitioned into 251 substreams of length 276. One stream:

Current
state
⇓. . . . . . . .

start start next
stream substream substream

RandomStream mystream1 = createStream ();
double u = randomU01 (mystream1);
double z = inverseCDF (normalDist, randomU01(mystream1));
...
rewindSubstream (mystream1);
forwardToNextSubstream (mystream1);
rewindStream (mystream1);
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Comparing systems with CRNs:
a simple inventory example
Xj = inventory level in morning of day j ;
Dj = demand on day j , uniform over {0, 1, . . . , L};
min(Dj ,Xj) sales on day j ;
Yj = max(0,Xj − Dj) inventory at end of day j ;

Orders follow a (s, S) policy: If Yj < s, order S − Yj items.
Each order arrives for next morning with probability p.

Revenue for day j : sales − inventory costs − order costs
= c ·min(Dj ,Xj)− h · Yj − (K + k · (S − Yj)) · I[an order arrives].

Number of calls to RNG for order arrivals is random!

Two streams of random numbers, one substream for each run.
Same streams and substreams for all policies (s,S).
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Inventory example: OpenCL code to simulate m days

double inventorySimulateOneRun (int m, int s, int S,

clrngStream *stream_demand, clrngStream *stream_order) {

// Simulates inventory model for m days, with the (s,S) policy.

int Xj = S, Yj; // Stock Xj in morning and Yj in evening.

double profit = 0.0; // Cumulated profit.

for (int j = 0; j < m; j++) {

// Generate and subtract the demand for the day.

Yj = Xj - clrngRandomInteger (stream_demand, 0, L);

if (Yj < 0) Yj = 0; // Lost demand.

profit += c * (Xj - Yj) - h * Yj;

if ((Yj < s) && (clrngRandomU01 (stream_order) < p)) {

// We have a successful order.

profit -= K + k * (S - Yj); // Pay for successful order.

Xj = S;

} else

Xj = Yj; // Order not received.

}

return profit / m; // Return average profit per day.

}
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Comparing p policies with CRNs

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.

clrngStream* stream_demand = clrngCreateStream();

clrngStream* stream_order = clrngCreateStream();

for (int k = 0; k < p; k++) { // for each policy

for (int i = 0; i < n; i++) { // perform n runs

stat_profit[k, i] = inventorySimulateOneRun (m, s[k], S[k],

stream_demand, stream_order);

// Realign starting points so they are the same for all policies

clrngForwardToNextSubstream (stream_demand);

clrngForwardToNextSubstream (stream_order);

}

clrngRewindStream (stream_demand);

clrngRewindStream (stream_order);

}

// Print and plot results ...

...

Can perform these pn simulations on thousands of parallel processors and
obtain exactly the same results, using the same streams and substreams.
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// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.

clrngStream* stream_demand = clrngCreateStream();

clrngStream* stream_order = clrngCreateStream();

for (int k = 0; k < p; k++) { // for each policy

for (int i = 0; i < n; i++) { // perform n runs

stat_profit[k, i] = inventorySimulateOneRun (m, s[k], S[k],

stream_demand, stream_order);

// Realign starting points so they are the same for all policies

clrngForwardToNextSubstream (stream_demand);

clrngForwardToNextSubstream (stream_order);

}

clrngRewindStream (stream_demand);

clrngRewindStream (stream_order);

}

// Print and plot results ...

...

Can perform these pn simulations on thousands of parallel processors and
obtain exactly the same results, using the same streams and substreams.



23Comparison with independent random numbers

156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.94736 37.95314 37.95718 37.97194 37.95955 37.95281 37.96711 37.95221 37.95325 37.92063

51 37.9574 37.9665 37.95732 37.97337 37.98137 37.94273 37.96965 37.97573 37.95425 37.96074 37.94185 37.93139

52 37.96725 37.96166 37.97192 37.99236 37.98856 37.98708 37.98266 37.94671 37.95961 37.97238 37.95982 37.94465

53 37.97356 37.96999 37.97977 37.97611 37.98929 37.99089 38.00219 37.97693 37.98191 37.97217 37.95713 37.95575

54 37.97593 37.9852 37.99233 38.00043 37.99056 37.9744 37.98008 37.98817 37.98168 37.97703 37.97145 37.96138

55 37.97865 37.9946 37.97297 37.98383 37.99527 38.00068 38.00826 37.99519 37.96897 37.96675 37.9577 37.95672

56 37.97871 37.9867 37.97672 37.9744 37.9955 37.9712 37.96967 37.99717 37.97736 37.97275 37.97968 37.96523

57 37.97414 37.97797 37.98816 37.99192 37.9678 37.98415 37.97774 37.97844 37.99203 37.96531 37.97226 37.93934

58 37.96869 37.97435 37.9625 37.96581 37.97331 37.95655 37.98382 37.97144 37.97409 37.96631 37.96764 37.94759

59 37.95772 37.94725 37.9711 37.97905 37.97504 37.96237 37.98182 37.97656 37.97212 37.96762 37.96429 37.93976

60 37.94434 37.95081 37.94275 37.95515 37.98134 37.95863 37.96581 37.95548 37.96573 37.93949 37.93839 37.9203

61 37.922 37.93006 37.92656 37.93281 37.94999 37.95799 37.96368 37.94849 37.954 37.92439 37.90535 37.93375

50

52

54

56

58

60

37.84

37.86

37.88

37.9

37.92

37.94

37.96

37.98

38

38.02

156 157 158 159 160 161 162 163 164 165
166

167

IRN

37.84-37.86 37.86-37.88 37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38 38-38.02 38.02-38.02
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156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.95166 37.95319 37.95274 37.95318 37.94887 37.94584 37.94361 37.94074 37.93335 37.92832

51 37.9574 37.96169 37.96379 37.96524 37.96546 37.96379 37.96293 37.95726 37.95295 37.94944 37.94536 37.93685

52 37.96725 37.97117 37.97402 37.97476 37.97492 37.97387 37.971 37.96879 37.96184 37.95627 37.95154 37.94626

53 37.97356 37.97852 37.98098 37.98243 37.98187 37.98079 37.97848 37.97436 37.97088 37.96268 37.95589 37.94995

54 37.97593 37.98241 37.98589 37.98692 37.98703 37.98522 37.9829 37.97931 37.97397 37.96925 37.95986 37.95186

55 37.97865 37.98235 37.9874 37.9894 37.98909 37.9879 37.98483 37.98125 37.97641 37.96992 37.96401 37.95343

56 37.97871 37.98269 37.98494 37.98857 37.98917 37.98757 37.98507 37.98073 37.97594 37.96989 37.96227 37.95519

57 37.97414 37.98035 37.98293 37.98377 37.98603 37.98528 37.98239 37.97858 37.97299 37.96703 37.95981 37.95107

58 37.96869 37.97207 37.97825 37.97944 37.97895 37.97987 37.97776 37.97358 37.96848 37.9617 37.95461 37.94622

59 37.95772 37.96302 37.9663 37.97245 37.97234 37.97055 37.9701 37.96664 37.96122 37.95487 37.94695 37.93871

60 37.94434 37.94861 37.95371 37.95691 37.96309 37.96167 37.9586 37.95678 37.95202 37.9454 37.93785 37.92875

61 37.922 37.93169 37.93591 37.94085 37.94401 37.95021 37.94751 37.94312 37.94 37.93398 37.92621 37.91742

50

52

54

56

58

60

37.88

37.9

37.92

37.94

37.96

37.98

38

156 157 158 159 160 161 162 163 164 165 166 167

CRN

37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38
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Parallel computers

Processing elements (PEs) or “cores” are organized in a hierarchy.
Many in a chip. SIMD or MIMD or mixture. Many chips per node, etc.
Similar hierarchy for memory, usually more complicated and with many
types of memory and access speeds.

Since about 10 years, clock speeds of processors no longer increase, but
number of cores increases instead. Roughly doubles every 1.5 to 2 years.

Simulation algorithms (such as for RNGs) must adapt to this.

Some PEs, e.g., on GPUs, only have a small fast-access (private) memory
and have limited instruction sets.
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Streams for parallel RNGs
Why not a single source of random numbers (one stream) for all threads?
Bad because (1) too much overhead for transfer and (2) non reproducible.

A different RNG (or parameters) for each stream? Inconvenient and
limited: would be hard to handle millions of streams.

Splitting: Single RNG with equally-spaced starting points for streams and
for substreams. Recommended when possible. Requires fast computing
of si+ν = f ν(si ) for large ν, and single monitor to create all streams.

Random starting points: acceptable if period ρ is huge.
For period ρ, and s streams of length `,

P[overlap somewhere] = Po ≈ s2`/ρ.

Example: if s = ` = 220, then s2` = 260.
For ρ = 2128, Po ≈ 2−68. For ρ = 21024, Po ≈ 2−964 (negligible).
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How to use streams in parallel processing?
One could use several PEs to fill rapidly a large buffer of random numbers,
and use them afterwards (e.g., on host processor). Many have proposed
software tools to do that. But this is rarely what we want.

Typically, we want independent streams produced and used by the threads.
E.g., simulate the inventory model on each PE.

One stream per PE? One per thread? One per subtask? No.

For reproducibility and effective use of CRNs, streams must be assigned
and used at a logical (hardware-independent) level, and it should be
possible to have many distinct streams in a thread or PE at a time.

Single monitor to create all streams. Perhaps multiple creators of streams.
To run on GPUs, the state should be small, say at most 256 bits.
Some small robust RNGs such as LFSR113, MRG31k3p, and MRG32k3a
are good for that. Also some counter-based RNGs.

Other scheme: streams that can split to create new children streams.



27

How to use streams in parallel processing?
One could use several PEs to fill rapidly a large buffer of random numbers,
and use them afterwards (e.g., on host processor). Many have proposed
software tools to do that. But this is rarely what we want.

Typically, we want independent streams produced and used by the threads.
E.g., simulate the inventory model on each PE.

One stream per PE? One per thread? One per subtask? No.

For reproducibility and effective use of CRNs, streams must be assigned
and used at a logical (hardware-independent) level, and it should be
possible to have many distinct streams in a thread or PE at a time.

Single monitor to create all streams. Perhaps multiple creators of streams.
To run on GPUs, the state should be small, say at most 256 bits.
Some small robust RNGs such as LFSR113, MRG31k3p, and MRG32k3a
are good for that. Also some counter-based RNGs.

Other scheme: streams that can split to create new children streams.



27

How to use streams in parallel processing?
One could use several PEs to fill rapidly a large buffer of random numbers,
and use them afterwards (e.g., on host processor). Many have proposed
software tools to do that. But this is rarely what we want.

Typically, we want independent streams produced and used by the threads.
E.g., simulate the inventory model on each PE.

One stream per PE? One per thread? One per subtask? No.

For reproducibility and effective use of CRNs, streams must be assigned
and used at a logical (hardware-independent) level, and it should be
possible to have many distinct streams in a thread or PE at a time.

Single monitor to create all streams. Perhaps multiple creators of streams.
To run on GPUs, the state should be small, say at most 256 bits.
Some small robust RNGs such as LFSR113, MRG31k3p, and MRG32k3a
are good for that. Also some counter-based RNGs.

Other scheme: streams that can split to create new children streams.



28

Vectorized RNGs

Typical use: Fill a large array of random numbers.

Saito and Matsumoto (2008, 2013): SIMD version of the Mersenne
twister MT19937. Block of successive numbers computed in parallel.

Brent (2007), Nadapalan et al. (2012), Thomas et al. (2009): Similar
with xorshift+Weyl and xorshift+sum.

Bradley et al. (2011): CUDA library with multiple streams of flexible
length, based on MRG32k3a and MT19937.

Barash and Shchur (2014): C library with several types of RNGs, with
jump-ahead facilities.
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Linear multiple recursive generator (MRG)

xn = (a1xn−1 + · · ·+ akxn−k) mod m, un = xn/m.

State: sn = (xn−k+1, . . . , xn). Max. period: ρ = mk − 1.

Numerous variants and implementations.

For k = 1: classical linear congruential generator (LCG).

Structure of the points Ψs :

x0, . . . , xk−1 can take any value from 0 to m − 1, then xk , xk+1, . . . are
determined by the linear recurrence. Thus,
(x0, . . . , xk−1) 7→ (x0, . . . , xk−1, xk , . . . , xs−1) is a linear mapping.

It follows that Ψs is a linear space; it is the intersection of a lattice with
the unit cube.
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0 1

1

un

un−1

xn = 12 xn−1 mod 101; un = xn/101
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Example of bad structure: lagged-Fibonacci

xn = (xn−r + xn−k) mod m.

Very fast, but bad.

We always have un−k + un−r − un = 0 mod 1.

This means: un−k + un−r − un = q for some integer q.
If 0 < un < 1 for all n, we can only have q = 0 or 1.

Then all points (un−k , un−r , un) are in only two parallel planes in [0, 1)3.
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Other example: subtract-with-borrow (SWB)

State (xn−48, . . . , xn−1, cn−1) where xn ∈ {0, . . . , 231 − 1} and cn ∈ {0, 1}:

xn = (xn−8 − xn−48 − cn−1) mod 231,

cn = 1 if xn−8 − xn−48 − cn−1 < 0, cn = 0 otherwise,

un = xn/231,

Period ρ ≈ 21479 ≈ 1.67× 10445.

In Mathematica versions ≤ 5.2:
modified SWB with output ũn = x2n/262 + x2n+1/231.

Great generator? No, not at all; very bad...

All points (un, un+40, un+48) belong to only two parallel planes in [0, 1)3.
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modified SWB with output ũn = x2n/262 + x2n+1/231.

Great generator?

No, not at all; very bad...

All points (un, un+40, un+48) belong to only two parallel planes in [0, 1)3.



32

Other example: subtract-with-borrow (SWB)

State (xn−48, . . . , xn−1, cn−1) where xn ∈ {0, . . . , 231 − 1} and cn ∈ {0, 1}:

xn = (xn−8 − xn−48 − cn−1) mod 231,

cn = 1 if xn−8 − xn−48 − cn−1 < 0, cn = 0 otherwise,

un = xn/231,

Period ρ ≈ 21479 ≈ 1.67× 10445.

In Mathematica versions ≤ 5.2:
modified SWB with output ũn = x2n/262 + x2n+1/231.
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All points (un, un+40, un+48) belong to only two parallel planes in [0, 1)3.

Ferrenberg et Landau (1991). “Critical behavior of the three-dimensional
Ising model: A high-resolution Monte Carlo study.”

Ferrenberg, Landau et Wong (1992). “Monte Carlo simulations: Hidden
errors from “good” random number generators.”

Tezuka, L’Ecuyer, and Couture (1993). “On the Add-with-Carry and
Subtract-with-Borrow Random Number Generators.”

Couture and L’Ecuyer (1994) “On the Lattice Structure of Certain Linear
Congruential Sequences Related to AWC/SWB Generators.”
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Combined MRGs.

Two [or more] MRGs in parallel:

x1,n = (a1,1x1,n−1 + · · ·+ a1,kx1,n−k) mod m1,

x2,n = (a2,1x2,n−1 + · · ·+ a2,kx2,n−k) mod m2.

One possible combinaison:

zn := (x1,n − x2,n) mod m1; un := zn/m1;

L’Ecuyer (1996): the sequence {un, n ≥ 0} is also the output of an MRG
of modulus m = m1m2, with small added “noise”. The period can reach
(mk

1 − 1)(mk
2 − 1)/2.

Permits one to implement efficiently an MRG with large m and several
large nonzero coefficients.

Parameters: L’Ecuyer (1999); L’Ecuyer et Touzin (2000).
Implementations with multiple streams.
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A recommendable generator: MRG32k3a

Choose six 32-bit integers:
x−2, x−1, x0 in {0, 1, . . . , 4294967086} (not all 0) and
y−2, y−1, y0 in {0, 1, . . . , 4294944442} (not all 0). For n = 1, 2, . . . , let

xn = (1403580xn−2 − 810728xn−3) mod 4294967087,

yn = (527612yn−1 − 1370589yn−3) mod 4294944443,

un = [(xn − yn) mod 4294967087]/4294967087.

(xn−2, xn−1, xn) visits each of the 42949670873 − 1 possible values.
(yn−2, yn−1, yn) visits each of the 42949444433 − 1 possible values.

The sequence u0, u1, u2, . . . is periodic, with 2 cycles of period

ρ ≈ 2191 ≈ 3.1× 1057.

Robust and reliable for simulation.
Used by SAS, R, MATLAB, Arena, Automod, Witness, Spielo gaming, ...
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A similar (faster) one: MRG31k3p

State is six 31-bit integers:
Two cycles of period ρ ≈ 2185.

Each nonzero multiplier aj is a sum or a difference or two powers of 2.
Recurrence is implemented via shifts, masks, and additions.

The original MRG32k3a was designed to be implemented in (double)
floating-point arithmetic, with 52-bit mantissa.

MRG31k3p was designed for 32-bit integers.

On 64-bit computers, both can be implemented using 64-bit integer
arithmetic. Faster.
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RNGs based on linear recurrences modulo 2

xn = A xn−1 mod 2 = (xn,0, . . . , xn,k−1)t, (state, k bits)
yn = B xn mod 2 = (yn,0, . . . , yn,w−1)t, (w bits)
un =

∑w
j=1 yn,j−12−j = .yn,0 yn,1 yn,2 · · · , (output)

Clever choice of A: transition via shifts, XOR, AND, masks, etc., on
blocks of bits. Very fast.

Special cases: Tausworthe, LFSR, GFSR, twisted GFSR, Mersenne twister,
WELL, xorshift, etc.

Each coordinate of xn and of yn follows the linear recurrence

xn,j = (α1xn−1,j + · · ·+ αkxn−k,j),

with characteristic polynomial

P(z) = zk − α1z
k−1 − · · · − αk−1z − αk = det(A− zI).

Max. period: ρ = 2k − 1 reached iff P(z) is primitive.
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Uniformity measures based on equidistribution.

For each n ≥ 0, we have yn = BAnx0 mod 2.

Suppose we partition [0, 1)s in 2` equal intervals.
Gives 2s` cubic boxes.

For each s and `, the s` bits that determine the box are the first ` bits of
y0, y1, . . . , ys−1. These bits can be written as M x0 mod 2.

Each box contains exactly 2k−s` points of Ψs iff M has (full) rank s`.
This is possible only if s` ≤ k . We then say that those points are
equidistributed for ` bits in s dimensions.

If this holds for all s and ` such that s` ≤ k , the RNG is called maximally
equidistributed.

Can be generalized to rectangular boxes: take `j bits for coordinate j , with
`0 + · · ·+ `s−1 ≤ k .

Examples: LFSR113, Mersenne twister (MT19937), the WELL family, ...
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Example of fast RNG: operations on blocks of bits.
Example: Choose x0 ∈ {2, . . . , 232 − 1} (32 bits). Evolution:

B = (

(xn−1 � 6) XOR xn−1

)� 13

xn = (((xn−1 with last bit at 0)� 18) XOR B).

xn−1 = 00010100101001101100110110100101

10010100101001101100110110100101

00111101000101011010010011100101

B = 00111101000101011010010011100101

xn−1 00010100101001101100110110100100

00010100101001101100110110100100

xn = 00110110100100011110100010101101

This implements xn = A xn−1 mod 2 for a certain A.
The first k = 31 bits of x1, x2, x3, . . . , visit all integers from 1 to
2147483647 (= 231 − 1) exactly once before returning to x0.

For real numbers in (0, 1): un = xn × 2−31.
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More realistic: LFSR113

Take 4 recurrences on blocks of 32 bits, in parallel.
The periods are 231 − 1, 229 − 1, 228 − 1, 225 − 1.

We add these 4 states by a XOR, then we divide by 232 + 1.
The output has period ≈ 2113 ≈ 1034.
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Impact of a matrix A that changes the state too slowly.

Experiment: take an initial state s0 with a single bit at 1 and run for n
steps to compute un. Try all k possibilities for s0 and average the k values
of un. Also take a moving average over 1000 iterations.

MT19937 (Mersenne twister) vs WELL19937:

0 200 000 400 000 600 000 800 000 n

0.1

0.2

0.3

0.4

0.5
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General linear recurrence modulo m

State (vector) xn evolves as

xn = A xn−1 mod m.

Jumping Ahead:

xn+ν = (Aν mod m)xn mod m.

The matrix Aν mod m can be precomputed for selected values of ν.
This takes O(log ν) multiplications mod m.

If output function un = g(xn) is also linear, one can study the uniformity
of each Ψs by studying the linear mapping. Many tools for this.
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Combined linear/nonlinear generators

Linear generators fail statistical tests built to detect linearity.

To escape linearity, we may

I use a nonlinear transition f ;

I use a nonlinear output transformation g ;

I do both;

I combine RNGs of different types.

There are various proposals in this direction. Many behave well empirically.

L’Ecuyer and Granger-Picher (2003): Large linear generator modulo 2
combined with a small nonlinear one, via XOR.
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Counter-Based RNGs

State at step n is just n, so f (n) = n + 1, and g(n) is more complicated.
Advantages: trivial to jump ahead, can generate a sequence in any order.

Typically, g is a bijective block cipher encryption algorithm.
It has a parameter c called the encoding key.
One can use a different key c for each stream.

Examples: MD5, TEA, SHA, AES, ChaCha, Threefish, etc.
The encoding is often simplified to make the RNG faster.
Threefry and Philox, for example. Very fast!
gc : (k-bit counter) 7→ (k-bit output), period ρ = 2k .
E.g.: k = 128 or 256 or 512 or 1024.

Changing one bit in n should change 50% of the output bits on average.

No theoretical analysis for the point sets Ψs .
But some of them perform very well in empirical statistical tests.

See Salmon, Moraes, Dror, Shaw (2011), for example.
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An API for parallel RNGs in OpenCL

OpenCL is an emerging standard for programming GPUs and other
similar devices. It extends (a subset of) the plain C language.
Limitations: On the device, no pointers to functions, no dynamic memory
allocation, ... Low level.

clRNG is an API and library for RNGs in OpenCL, developed at Université
de Montréal, in collaboration with Advanced Micro Devices (AMD).

Streams can be created only on the host, and can be used either on the
host or on a device (such as by threads or work items on a GPU).

Must use a copy of the stream in private memory on the GPU device to
generate random numbers.

Currently implements MRG32k3a, MRG31k3p, LFSR113, and Philox.

Also clProbDist and clQMC.
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Host interface (subset)

Preprocessor replaces clrng by the name of desired base RNG.

On host computer, streams are created and manipulated as arrays of
streams.

typedef struct ... clrngStreamState;

State of a random stream. Definition depends on generator type.

typedef struct ... clrngStream;

Current state of stream, its initial state, and initial state of current substream.
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clrngStream* clrngAllocStreams(size t count, size t* bufSize,
clrngStatus* err);

Reserve memory space for count stream objects.
clrngStream* clrngCreateStreams(clrngStreamCreator* creator,

size t count, size t* bufSize, clrngStatus* err);

Reserve memory and create (and return) an array of count new streams.

clrngStatus clrngCreateOverStreams(clrngStreamCreator* creator,
size t count, clrngStream* streams);

Create new streams in preallocated buffer.
clrngStream* clrngCopyStreams(size t count, const clrngStream* streams,

clrngStatus* err);

Reserves memory and return in it a clone of array streams.
clrngStatus clrngCopyOverStreams(size t count, clrngStream* destStreams,

const clrngStream* srcStreams);

Copy (restore) srcStreams over destStreams, and all count stream inside.

clrngStatus clrngDestroyStreams(clrngStream* streams);
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cl double clrngRandomU01(clrngStream* stream);
cl int clrngRandomInteger(clrngStream* stream, cl int i, cl int j);
clrngStatus clrngRandomU01Array(clrngStream* stream, size t count,

cl double* buffer);
clrngStatus clrngRandomIntegerArray(clrngStream* stream,

cl int i, cl int j, size t count, cl int* buffer);

clrngStatus clrngRewindStreams(size t count, clrngStream* streams);

Reinitialize streams to their initial states.

clrngStatus clrngRewindSubstreams(size t count, clrngStream* streams);

Reinitialize streams to the initial states of their current substreams.
clrngStatus clrngForwardToNextSubstreams(size t count,

clrngStream* streams);

clrngStatus clrngDeviceRandomU01Array(size t streamCount,
cl mem streams, size t numberCount, cl mem outBuffer,
cl uint numQueuesAndEvents, cl command queue* commQueues,
cl uint numWaitEvents, const cl event* waitEvents,
cl event* outEvents);

Fill buffer at outBuffer with numberCount uniform random numbers, using
streamCount work items.
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Interface on Devices

Functions that can be called on a device (such as a GPU):

clrngStatus clrngCopyOverStreams(size t count, clrngStream* destStreams,
const clrngStream* srcStreams);

clrngStatus clrngCopyOverStreamsFromHost (size t count,
clrngStream* destStreams,
global const clrngHostStream* srcStreams);

clrngStatus clrngCopyOverStreamsToHost(size t count,
global const clrngHostStream* destStreams,

clrngStream* srcStreams);

cl double clrngRandomU01(clrngStream* stream);
cl int clrngRandomInteger(clrngStream* stream, cl int i, cl int j);
clrngStatus clrngRandomU01Array(clrngStream* stream, size t count,

cl double* buffer);
clrngStatus clrngRandomIntegerArray(clrngStream* stream,

cl int i, cl int j, size t count, cl int* buffer);

clrngStatus clrngRewindStreams(size t count, clrngStream* streams);
clrngStatus clrngRewindSubstreams(size t count, clrngStream* streams);
clrngStatus clrngForwardToNextSubstreams(size t count,

clrngStream* streams);
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Inventory example
__kernel void inventorySimulPoliciesGPU (int m, int p,

int *s, int *S, int n2,

__global clrngStreams *streams_demand,

__global clrngStreams *streams_order,

__global double *stat_profit) {

// Each of the n1*p work items simulates n2 runs.

int gid = get_global_id(0); // Id of this work item.

int n1p = get_global_size(0); // Total number of work items.

int n1 = n1p / p; // Number of streams.

int k = gid / n1; // Policy index for this work item.

int j = gid % n1; // Index of stream for this work item.

// Make local copies of the stream states, in private memory.

clrngStream stream_demand_d, stream_order_d;

clrngCopyOverStreamsFromHost (1, &stream_demand_d, &streams_demand[j]);

clrngCopyOverStreamsFromHost (1, &stream_order_d, &streams_order[j]);

for (int i = 0; i < n2; i++) {

stat_profit[i * n1p + gid] = inventorySimulateOneRun(m, s[k], S[k],

&stream_demand_d, &stream_order_d);

clrngForwardToNextSubstreams(1, &stream_demand_d);

clrngForwardToNextSubstreams(1, &stream_order_d);

}

}
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Empirical statistical Tests

Hypothesis H0: “{u0, u1, u2, . . . } are i.i.d. U(0, 1) r.v.’s”.
We know that H0 is false, but can we detect it ?

Test:
— Define a statistic T , function of the ui , whose distribution under H0 is
known (or approx.).
— Reject H0 if value of T is too extreme. If suspect, can repeat.

Different tests detect different deficiencies.

Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an RNG that passes all the tests? Formally
impossible.

Compromise: Build an RNG that passes most reasonable tests.
Tests that fail are hard to find.
Formalization: computational complexity framework.
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Example: A collision test

0 1

1

un+1

un
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•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.
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Collision test

Partition [0, 1)s in k = d s cubic boxes of equal size.
Generate n points (uis , . . . , uis+s−1) in [0, 1)s .

C = number of collisions.

Under H0, C ≈ Poisson of mean λ = n2/(2k), if k is large and λ is small.

If we observe c collisions, we compute the p-values:

p+(c) = P[X ≥ c | X ∼ Poisson(λ)],

p−(c) = P[X ≤ c | X ∼ Poisson(λ)],

We reject H0 if p+(c) is too close to 0 (too many collisions)
or p−(c) is too close to 1 (too few collisions).

Compare with a chi-square test.
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55Example: LCG with m = 101 and a = 12:
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n λ C p−(C )
10 1/2 0 0.6281

20 2 0 0.1304
40 8 1 0.0015
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20 2 5 0.0177
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SWB in (older) Mathematica

For the unit cube [0, 1)3, divide each axis in d = 100 equal intervals.
This gives k = 1003 = 1 million boxes.

Generate n = 10 000 vectors in 25 dimensions: (U0, . . . ,U24).
For each, note the box where (U0,U20,U24) falls.
Here, λ = n2/(2k) = 50.

Results: C = 2070, 2137, 2100, 2104, 2127, ....

With MRG32k3a: C = 41, 66, 53, 50, 54, ....
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Other examples of tests

Nearest pairs of points in [0, 1)s .

Sorting card decks (poker, etc.).

Rank of random binary matrix.

Linear complexity of binary sequence.

Measures of entropy.

Complexity measures based on data compression.

Etc.

For a given class of applications, the most relevant tests would be those
that mimic the behavior of what we want to simulate.
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The TestU01 software

[L’Ecuyer et Simard, ACM Trans. on Math. Software, 2007].

I Large variety of statistical tests.
For both algorithmic and physical RNGs.
Widely used. On my web page.

I Some predefined batteries of tests:
SmallCrush: quick check, 15 seconds;
Crush: 96 test statistics, 1 hour;
BigCrush: 144 test statistics, 6 hours;
Rabbit: for bit strings.

I Many widely-used generators fail these batteries unequivocally.
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ρ = period length;
t-32 and t-64 gives the CPU time to generate 108 random numbers.

Number of failed tests (p-value < 10−10 or > 1− 10−10) in each battery.

Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

LCG in Microsoft VisualBasic 24 3.9 0.66 14 — —

LCG(232, 69069, 1), VAX 32 3.2 0.67 11 106 —

LCG(232, 1099087573, 0) Fishman 30 3.2 0.66 13 110 —

LCG(248, 25214903917, 11), Unix 48 4.1 0.65 4 21 —

Java.util.Random 47 6.3 0.76 1 9 21

LCG(248, 44485709377909, 0), Cray 46 4.1 0.65 5 24 —

LCG(259, 1313, 0), NAG 57 4.2 0.76 1 10 17

LCG(231–1, 16807, 0), Wide use 31 3.8 3.6 3 42 —

LCG(231–1, 397204094, 0), SAS 31 19.0 4.0 2 38 —

LCG(231–1, 950706376, 0), IMSL 31 20.0 4.0 2 42 —

LCG(1012–11, ..., 0), Maple 39.9 87.0 25.0 1 22 34
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Wichmann-Hill, MS-Excel 42.7 10.0 11.2 1 12 22

CombLec88, boost 61 7.0 1.2 1

Knuth(38) 56 7.9 7.4 1 2

ran2, in Numerical Recipes 61 7.5 2.5

CombMRG96 185 9.4 2.0

MRG31k3p 185 7.3 2.0

MRG32k3a SSJ + others 191 10.0 2.1

MRG63k3a 377 — 4.3

LFib(231, 55, 24, +), Knuth 85 3.8 1.1 2 9 14

LFib(231, 55, 24, −), Matpack 85 3.9 1.5 2 11 19

ran3, in Numerical Recipes 2.2 0.9 11 17

LFib(248, 607, 273, +), boost 638 2.4 1.4 2 2

Unix-random-32 37 4.7 1.6 5 101 —

Unix-random-64 45 4.7 1.5 4 57 —

Unix-random-128 61 4.7 1.5 2 13 19
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Knuth-ran array2 129 5.0 2.6 3 4

Knuth-ranf array2 129 11.0 4.5

SWB(224, 10, 24) 567 9.4 3.4 2 30 46

SWB(232 − 5, 22, 43) 1376 3.9 1.5 8 17

Mathematica-SWB 1479 — — 1 15 —

GFSR(250, 103) 250 3.6 0.9 1 8 14

TT800 800 4.0 1.1 12 14

MT19937, widely used 19937 4.3 1.6 2 2

WELL19937a 19937 4.3 1.3 2 2

LFSR113 113 4.0 1.0 6 6

LFSR258 258 6.0 1.2 6 6

Marsaglia-xorshift 32 3.2 0.7 5 59 —
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Generator log2 ρ t-32 t-64 S-Crush Crush B-Crush

Matlab-rand, (until 2008) 1492 27.0 8.4 5 8

Matlab in randn (normal) 64 3.7 0.8 3 5

SuperDuper-73, in S-Plus 62 3.3 0.8 1 25 —

R-MultiCarry, (changed) 60 3.9 0.8 2 40 —

KISS93 95 3.8 0.9 1 1

KISS99 123 4.0 1.1

AES (OFB) 10.8 5.8

AES (CTR) 130 10.3 5.4

AES (KTR) 130 10.2 5.2

SHA-1 (OFB) 65.9 22.4

SHA-1 (CTR) 442 30.9 10.0
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Conclusion

I A flurry of computer applications require RNGs.
A poor generator can severely bias simulation results, or permit one
to cheat in computer lotteries or games, or cause important security
flaws.

I Don’t trust blindly the RNGs of commercial or other widely-used
software, especially if they hide the algorithm (proprietary software...).

I Some software products have good RNGs; check what it is.

I RNGs with multiple streams are available from my web page in Java,
C, and C++. Also OpenCL library, mostly for GPUs.

I Examples of recent proposals or work in progress:
Fast nonlinear RNGs with provably good uniformity;
RNGs based on multiplicative recurrences;
Counter-based RNGs. RNGs with multiple streams for GPUs.
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